GW INSTEK #### POWER SUPPLIES CATALOG # World-Class Quality and Performance Affordable Price A Wide Range of Selections Originally known and founded in 1975 as Good Will Instrument, GW Instek is the first professional manufacturer in Taiwan specializing in electrical test and measurement instruments. GW Instek began as a manufacturer of power supplies and quickly expanded into developing high precision electronic test and measurement instruments. After 49 years in the test and measurement industry, GW Instek has grown to become one of the most recognized manufacturers of instruments in the world. Today, GW Instek has more than 300 items ranging from oscilloscopes, spectrum analyzers, signal sources, DC power supplies, AC power sources, digital meters, LCR meters, other specific application meters to video surveillance systems. Think of the word "innovation" and it's easy to think of R&D, new inventions, faster processing and groundbreaking technologies. At GW Instek, we focus on another type of innovation that is based on flexibility, manageability and efficient performance in real-world test applications. We call this "customer-focused" innovation and we strongly believe in it. By listening to our customers around the world, we are able to anticipate their needs and respond quickly to emerging trends. So when one of our customers introduces an exciting new technology, GW Instek is ready to test it. Whether our customers are designing products with the ability to change people's lives, educating and training the engineers of tomorrow, or discovering new technologies that solve complex problems, GW Instek can be trusted to perform reliably and accurately in even the most demanding test environments. How can we be sure? We have the numbers to back it up. Actually, we have just one: 40. That's the number of in-house quality and performance verification tests each GW Instek product must pass before it leaves our facilities. This thorough process starts with environmental, safety and durability testing in the product design phase, through to burn-in and shipping tests ahead of final inspection and packing. Furthermore, our two manufacturing facilities in Taiwan and China all adhere to ISO quality and environmental management standards, as well as European CE safety regulations. That's why GW Instek products can be trusted to test. At GW Instek, quality is reflected not in higher cost, but in greater value. We pride ourselves on the quality, reliability and affordability of our test and measurement instruments. With each of our products often in use for decades, it's not hard to understand the importance of measuring a product's value not by price, but by lifetime cost. This importance is deep-rooted to us; we have consistently produced products with some of the industry's lowest total cost per ownership. Reducing the total cost per ownership of our products allows us to provide exceptional value, reliability and performance with leading service and support over the lifetime of a product. That's why year after year, GW Instek can be trusted to perform reliably. The industries we serve are as diverse as they are specialized. Our experience and expertise allow us to deliver high-performance test solutions that address the unique requirements of each client. GW Instek provides customized solutions that are backed by reliable products, comprehensive after-sales support, warranty, calibration services, and one of the industry's lowest Total Cost per Ownership. ### **GWINSTEK** Simply Reliable ## 49 Years of Reputation & Trust We take prides in creating more than 49 years of satisfied customer experiences throughout the world. Today, GW Instek is considered the most Reliable Brand for professional measurement instruments with supreme quality and the **lowest TCO - Total Cost per Ownership**. We invite you to be part of GW Instek success story and help perpetuate this value. ## Uncompromised Durability With an overriding commitment to provide highly durable products, GW Instek is your most **Reliable choice** when it comes to selecting the best measurement instruments with the **lowest TCO - Total Cost per Ownership**. Highly durable products mean long product lifetime capable of reducing operation & maintenance costs. This is definitely what you need to consider before investing. ## Your Most Trustworthy Partner Being your most trustworthy and Reliable Partner, GW Instek promises to proactively provide insightful business solutions and products with the lowest TCO – Total Cost per Ownership, assisting your business to thrive in the highly competitive world. From feasibility evaluation, product selection, solution adaptation to timely after-sales service, we are dedicated to serving each individual customer and making your professional life easier than ever. | 1975 | Good Will Instrument Co., Ltd was Established as a Power Supply Manufacturer. | |------|--| | 1983 | The Kaohsiung Branch was Established. | | 1985 | The Taichung Branch was Established. | | 1989 | Good Will Southeast Asia (Malaysia) was Established. | | 1991 | Instek America Corp. was Established. | | 1993 | Taiwan Headquarters was ISO-9002 Certified. Granted the National Small and Medium Enterprise Award. Granted the Industrial Technology Advancement Award of Distinction. | | 1996 | Good Will Southeast Asia (Malaysia) was ISO-9002 Certified. | | 1998 | Taiwan Headquarters was ISO-9001 Certified. | | 1999 | Taiwan Headquarters was ISO-14001 Environmental Management Certified. Good Will Instrument Co., Ltd. Delivered Initial Public Offer on Taiwan's Over-The-Counter Security Exchange (OTC). | | 2000 | The CNLA Electricity Calibration Laboratory Certification was Granted. Good Will Instrument was Went Public on the Taiwan Stock Exchange. | | 2001 | Good Will Instrument Suzhou was Established. | | 2002 | Taiwan Headquarters was ISO-9001 : 2000 Certified. | | 2003 | Suzhou Subsidiary was ISO-9001 : 2000 Certified. | | 2004 | Instek Electronics Shanghai was Established. | | 2005 | Global Operational Headquarters was Established in Taiwan. The Brand new CIS (Corporate Identity System) was Introduced. | | 2006 | Instek Japan Corporation was Established. | | 2007 | Good Will Instrument Korea was Established. | | 2009 | The Group Quality Award of Business Excellence Performance Model from the Chinese Society for Quality was Granted. | | 2010 | Marketing office was set up in India. | | 2011 | GW Instek won Taiwan Excellence Award for GDS-1000-U Series, AFG-3000 Series, PEL-2000 Series and GDM-8261. | | 2012 | GW Instek won Technology Innovation Award for GDS-3000 Series and GSP-930. Acquired Japan TEXIO Technology Corporation. | | 2013 | Instek Digital was Merged to Become a Member of GW Instek Business Group. GW Instek Cooperated with Hitachi and EMIC to Establish GW Alliance in Suzhou, China. GW Instek won Technology Innovation Award for PPH-1503 and AFG-2225. | | 2014 | GW Instek won Technology Innovation Award (Gold) for GDS-300 full Touch Screen Oscilloscope. European Subsidiary was Established in the Netherlands. | | 2015 | GW Instek won Taiwan Excellence Award for GDS-300/200 Series and PEL-3000 Series. | | 2016 | GW Instek won Taiwan Excellence Award for GDS-2000E Series and GSP-9330. | | 2017 | GW Instek won Taiwan Excellence Award for C-1100 and GPM-8213. | | 2018 | GW Instek won Taiwan Excellence Award for C-1200 and GDM-906X Series. | | 2019 | GW Instek INDIA LLP was Established. | | | GW Instek won Taiwan Excellence Award for GPT-12000 Series and SKTS-5000. | | 2020 | GW Instek won Taiwan Excellence Award for C-3200 and GPM-8310. | | 2021 | GW Instek won Taiwan Excellence Award for GDS-30 <mark>00A Series, PPX-Series, GPP-3</mark> 060/6030 and GSM-20H10 and GPM-8310. | Europe Subsidiary Malaysia Subsidiary India Subsidiary China Subsidiary Japan Subsidiary **Korea Subsidiary** U.S.A. Subsidiary #### Comprehensive Electronic Measurement Solutions Becoming the highest customer value TMI products and services provider in the global market is the vision of GW Instek and this vision, in the meantime, has always been the managerial objective ever since the establishment of the company. Over the span of 44 years' continuous refinement and progression, GW Instek began as a manufacturer of the earliest models of analog power supplies and has rapidly expanded to provide users of nowadays with more than 300 products consisting of 500 MHz Digital Oscilloscope, High-Power D.C. Power Supplies, High-Power D.C. Electronic Loads, 3 GHz Spectrum Analyzer, 80 MHz /25 MHz Arbitrary Waveform Generator, Programmable D.C. Power Supplies, A.C.(D.C.) Power Source, 6 1/2 Digit Dual Measurement Multi-Meter, 10 MHz High Frequency LCR Meter, and All-in-one electronic Safety Testers, etc. so as to not only fully satisfy users' demands in the process of product development, verification, production, test and quality assurance, but also meet comprehensive and complete equipment requirements for a wide extent of tests, including military industry and scientific research. Manufacturers of various industrial electronic and consumer electronic products are seeking ways to reduce production costs down in order to keep up with the market competitiveness while facing the dramatic changes of the global electronic industry. The design of the new generation programmable switching power supply satisfies the recharging test applications for high power batteries. The built-in Sink Current Circuit not only effectively expedites the voltage fall time during output off mode, but also prevents reverse voltage from happening so as to effectively protect the power supply. Reverse voltage occurs when external voltage is higher than the internal voltage of the power supply
once the external unit is fully charged. The new generation Programmable Switching D.C. Power Supply adopts Interleaved PFC (Power Factor Correction Circuit) and DC/DC module circuit to effectively reduce high frequency ripples during output on and to meet the requirements of low ripple applications. In recent years, we have successfully constructed power measurement functions on Digital Storage Oscilloscopes. Via the combination of Power Management App and internal measurement hardware module, we have simplified the required power measurement equipment. With respect to AC/DC Power Source products, we have met the international regulation (Energy Star) for low standby mode power consumption measurement requirements. To meet the requirements of all-in-one equipment, we have combined A.C. power source with power meter measurement functions. All-in-one equipment provides convenience for measurement and system integration, and most importantly, it strengthens the market competitiveness and dramatically enhances functionality. In the future, we will devote our efforts to strengthening single instrument's performance, including A. user interface; B. measurement items; C. measurement accuracy; and D. measurement speed to meet the recent industrial requirements from power supply manufacturing, automotive electronics, and green energy industry. More than a simple instrument provider, GW Intek, with scores of practically appplied experiences in instruments, is now offering this specific catalog for power supplies to betterly provide users with a conceptaully systematic combination, further assisting our customers acheiving the purposes of both products applications and measurements. **Uncompromised Durability** with Highest Quality Standard #### **Editing and Synthesis of Power Supply Output Waveform** In the development and verification process of electronic products, signal generators are often utilized to generate test signals or simulate signals for testing and specification/ function verification of the designed electronic circuit. Common test signals include Sine, Square, Triangle, Ramp, Pulse, Noise, Burst waveform and communications modulation waveform etc. Signal generators provide a variety of test waveforms that can meet a variety of applications, however, signal generators generally only provide 10Vp-p signal output, which cannot meet the requirement of the test signals for high-voltage outputs. Using a signal generator with a GW Instek ASR series power source can provide high-voltage output test signals. Select AC power output mode (AC-INT Mode) or AC/DC power output mode (AC+DC-INT Mode) of ASR-Series to set AC power output or AC&DC power output; select External AC signal source mode (AC-EXT Mode) or External AC/DC signal source mode (AC+DC-EXT Mode) to use the ASR series as an amplifier, which can directly amplify and output external input signals by the ASR series; select External AC signal superimposition mode (AC-ADD Mode) or External AC/DC signal superimposition mode (AC+DC-ADD Mode) to superimpose and output the external input signals and the voltage signals set by the ASR series. Signal generator+ASR-3000 provides a maximum signal output of 400Vrms/±570Vdc/999.9Hz, and signal generator+ASR-2000 provides a maximum signal output of 350Vrms/±500Vdc/999.9Hz. In addition, the editing and synthesis of power waveforms can also be realized via the PC Software provided by the ASR series. PC Software's built-in Arbitrary Waveform Function (ARB) editing function can directly save the edited test waveforms to a USB flash drive and upload it to the ASR series or directly transmit them to the ASR series through a communications interface (USB, LAN, RS-232 or GPIB) for the output to the DUT. The ARB editing screen has a canvas with a horizontal axis of 4096 points (0–4095) and a vertical axis of 16bits resolution (-32767 ~ +32767) for users to edit user-defined arbitrary waveforms. Editing methods include 1) Draw hand-drawn pen mode; 2) Line straight line mode; 3) Insert function mode Sine, Square, Triangle, Exponential Rise, Exponential Fall, Noise, DC and Harmonic Synthesizer; 4) Oscilloscope directly imports waveforms (GDS-3000 only); 5) Mathematical synthesis waveform modes: Add, Subtract, Multiply. The examples in the figures below are i). Sine waveform mathematically synthesized 1/4 amplitude & 5 times frequency Sine waveform; ii) Sinc waveform starting from 90 degrees and lasting 1024 points to connect with two cycles of hand-drawn waveforms; connect the Triangle waveform starting from 0 degree and last for 1024 points; and finally connect the Noise waveform. Sine+(1/4 Amplitude& 5 Times feq.) Sine Waveform Sinc+Draw+Triangle+Noise Waveform Shown on Oscilloscope Shown on Oscilloscope #### Single-phase AC Power Source and Applications of Three-phase System AC power is a power supply whose voltage amplitude and current direction change periodically. AC power is often used as a source of household power and industrial power. AC power is mainly divided into single-phase and three-phase power supplies. Single-phase power includes a live wire and a neutral wire. In most cases, household power and general commercial power are provided by single-phase power, since single-phase power has the advantages of simple wiring and low design cost. Three-phase power includes three live wires and a neutral wire. The three live wires have same frequency, same voltage amplitude and the phase difference of 120 degrees. The advantages of the three-phase power are small power loss, better power output efficiency, stable current, and operating under a larger power load, therefore, three-phase power is often utilized in industries, power grids, and places with large power load requirements. GW Instek ASR-2000/3000 Series are a single-phase AC+DC Power Source. ASR-3000 Series provides a maximum power output of 4kVA/400Vrms/±570Vdc, which not only outputs AC sine wave, square wave, triangle wave, but also allows users to edit 16 sets of arbitrary waveforms. Furthermore, the powerful ASR-2000/3000 Series AC power source can measure Vrms, Vavg, Vpeak, Irms, Iavg, Ipeak, IpkH, P, S, Q, PF, CF, Voltage Harmonic and Current Harmonic, and set the start /stop phase of the output waveform to generate sequential AC and DC power output. ASR-2000/3000 Series have an option of ASR-002 three-phase power controller to achieve voltage multiplication and meet the output requirements of 1P3W, 3P3W, and 3P4W power output. Users use a computer to communicate with ASR-002 and ASR-002 synchronously controls signals so as to control the output amplitude, frequency and phase angle of three ASR-2000/3000 Series to provide a three-phase power output. ASR-2000/3000+ASR-002 is a practical single-phase three-phase AC output solution. *Functions of ASR-Series are limited when ASR-Series applied to ASR-002. Please refer to ASR-2000/3000 for detailed information. #### Three-Phase #### ISO-16750-2 Pretest with ASR-2000 Series The applications of electronic technology products are growing at a fast pace in our daily lives. Other than mobile phones, tablet computers or general consumer electronics, electronic technology products are also utilized in the automotive industry, including LED headlights / taillights, HUD (Head Up Display), adaptive front lighting, tire pressure monitoring system, ABS system, GPS, windshield wiper, AV system, etc. In order to ensure the safety of drivers and passengers as well as driving, vehicle manufacturers are required to have a higher product stability and stricter quality control standards for electronic devices installed in the automobile. Vehicle driving process is an extremely harsh challenge for electronics manufacturers manufacturing automotive electronics. Rough-road driving, vibration from a piston-engine, electrical systems exposed to low or high temperatures, temporary exposure to unknown chemical mixtures, alternator overvoltage, and momentary drop in supply voltage all may cause the product to malfunction. Therefore, the environmental reliability requirements of automotive electronic products will be more rigorously regulated. At present, the ISO-16750 has been widely adopted and referenced by relevant automotive electronics manufacturers. ISO-16750 contains 5 parts. In addition to ISO-16750-1 General, the rest are ISO-16750-2 Electrical loads, ISO-16750-4 Climate loads, and ISO-16750-5 Chemical loads. The sequence mode of ASR-2000 can arbitrarily edit the voltage test waveform, which is very suitable for generating the verification waveform of ISO-16750-2 Electrical loads. Momentary drop in supply voltage by ASR-2000 Series Reset behavior at voltage drop by ASR-2000 Series Starting profile by ASR-2000 Series Load dump by ASR-2000 Series #### ASR-2000 for the Applications of ISO-16750-2 Verification Items are as Follows: #### **Direct Current Supply Voltage** ASR-2000 Series provides the maximum / minimum supply voltage to verify the DUT of a full range of 12V power supply system and the 24V power supply system. #### Overvoltage ASR-2000 Series simulates the occurrence of overvoltage when the generator regulator fails. #### Superimposed Alternating Voltage The internal resistance parameter requirements of the power supply is not considered. ASR-2000 Series collocating with a signal generator can simulate power output to have the frequency change from 1 to 999.9Hz. #### Slow Decrease And Increase of Supply Voltage ASR-2000 Series sequence mode can simulate the battery being gradually charged and discharged. #### Momentary Drop in Supply Voltage Setting ASR-2000 Series power supply voltage to be interrupted instantaneously can simulate the effect caused by the melting of the conventional fuse component in another circuit. ASR-2000 Series can provide a minimum power interruption output of 100us. #### Reset Behaviour at Voltage Drop ASR-2000 Series can flexibly set different voltage drop times to test the reset behaviour of
the DUT. #### Starting Profile The starting profile generated by ASR-2000 Series can verify the characteristics of the DUT during and after the car ignition. #### Load Dump Load dump is generated when the battery powering the generator or inductive component is instantaneously disconnected. If the parameter requirements of the input impedance of the power supply are not considered, editing the ASR-2000's Series sequence mode can obtain the waveforms of ISO-16750 test A and test B. #### Reversed Voltage ASR-2000 Series reversed output can meet the verification requirements of various automotive electronic products. #### Vehicle Power Supply Simulation and Windshield Wiper Motor Application With the popularity of technology and the evolution of electronic products, the electronic components used in today's cars are also becoming more diverse. Power windows, power mirrors, parking sensors, windshield wiper motors, etc., use batteries as a source of power. However, during the running of the vehicle, the supplied power supply is not constant. In order to ensure that the electronic components of the vehicle can still work normally under the condition of power supply fluctuation, the power supply can be used to simulate the abnormal output that may be generated by the battery to perform functional tests on the vehicle electronic products that is conducive to screen out defective components and products during the product testing phase. Take the windshield wiper motor as an example. The processes of the windshield wiper motor operation generally include: 1 The rotation of the motor drives the back and forth of the windshield wiper. 2 Each time the windshield wiper is stationary, the windshield wiper must stay at the edge of the viewing angle without obstructing the driver's line of sight. 3 When the two windshield wipers are brushed at the same time, there should be no collision. The motor operating voltage range is DC: 10V ~ 15V, and its maximum operating current will be different at low speed or high speed. In order to verify that the varying power supply voltage does not affect the operation of the windshield wiper motor, the DC power supply can be used directly to generate a series of varying power outputs to the windshield wiper motor. The following figure shows the variable power supply for testing the windshield wiper motor. As follows, after a stable DC power supply, an unstable power supply output is provided to the windshield wiper motor and its operation is evaluated. Schematic Windshield Wiper Motor **PSW-Series Test Scripts Function** The PSW Test Script function can be used to plan a continuous set of voltage changes. Users can edit the output voltage, current and execution time separately. For individual steps, OVP, OCP, voltage rise/fall slope or current rise/fall slope, and constant voltage or constant current priority mode can be set. By editing the required power change output (eg. 200 cycles) on the Excel table, then loading the Excel table into the PSW stand-alone unit to perform the stand-alone automated execution, users can perform the above power output to verify the operation of the windshield wiper motor by a stand-alone unit. | Step | Point | Output | Time(sec) | Voltage (| Current (| A OVP(V) | OCP(A) | Bleeder | IV Mode | Vsr up(V/ | s Vsr down | [Isr up(A/s] | Isr down(AIR(c | ohm) | Beeper | Sense Ave | Jump to | Jump Cnt | |------|-------|--------|-----------|-----------|-----------|----------|--------|---------|---------|-----------|------------|--------------|----------------|------|--------|-----------|---------|----------| | 1 | start | On | 7200 | 13.5 | | 6 MAX | MIN | ON | CVHS | MAX | MAX | MAX | MAX | | | | | | | 2 | | On | 1.5 | 12 | | 6 MAX | MIN | ON | CVHS | MAX | 2 | MAX | MAX | | | | | | | 3 | | On | 15 | 12 | | 4 MAX | MIN | ON | CVHS | MAX | MAX | MAX | MAX | | | | | | | - 4 | | On | 1.6 | 15.2 | | 6 MAX | MIN | ON | CVHS | 2 | MAX 2 | MAX | MAX | | | | | | | - 5 | | On | 45 | 15.2 | | 6 MAX | MIN | ON | CVHS | MAX | MAX | MAX | MAX | | | | | | | 6 | | On | 1.6 | 12 | | 6 MAX | MIN | ON | CVHS | MAX | 2 | MAX | MAX | | | | 3 | 569 | | 7 | end | On | 1 | 13.5 | | 6 MAX | MIN | ON | CVHS | MAX | MAX | MAX | MAX | | | | 1 | 199 | | 8 | 9 | 10 | 11 | 12 | With the Test Script function provided by GW Instek, it is very easy to perform the complex power output control under Excel editing. For users, there is no need to install an additional software, and there is no cumbersome step. Hence, using the PSW to perform complex sequential power outputs is a simple task. PSW Built-in Resistance Variable Function Simulating Battery Output Resistance and Wire Harness In addition, for the simulation of the real power supply situation at the factory, PSW can simulate the battery to supply power to the windshield wiper motor and activate PSW's built-in resistance variable function to set the built-in resistance value to simulate the battery output resistance and Wire Harness's resistance. By so doing, PSW can verify the output characteristics of the windshield wiper motor before it is installed in the car. #### Car DC-DC Converter Effectiveness Evaluation The output voltage of common electric vehicle batteries is high voltage ranging from 200V to 400V. In order to drive conventional 12V vehicle electronic devices, e.g. instrument panel display, lighting, electronic control unit (ECU), etc., the high-voltage output battery often transforms the high voltage of the battery into a 12V output through the step-down DC-DC converter. The step-down DC-DC converter is generally required to provide a stable voltage output, even if its input source cannot be maintained at a stable output. Therefore, the output characteristic test of the step-down DC-DC converter is very important. Generally, a high-voltage power supply can be used to simulate the input of the step-down DC-DC converter, and a large-capacity electronic load can be used to simulate vehicle electronic devices to test the output capability of the step-down DC-DC converter. The PSU high-voltage model includes a voltage output range from 200V to 400V, and it can achieve a power output of 6KW through parallel connection, which can be used to simulate the battery output of the electric vehicle. The PEL-3955 can simulate the power consumption of a 12V automotive electronic device and output the monitored current to the oscilloscope for observation. PSU can set the sequential power output to generate a set of varying power outputs to the step-down DC-DC converter to evaluate the Line Regulation characteristics of the step-down DC-DC converter. In addition, setting the PEL-3955 to operate under the Dynamic mode, users can evaluate the transient recovery time and load regulation of the step-down DC-DC converter. According to the load waveform of the vehicle device, users can edit the PEL-3955's sequence function to generate the load waveform so as to verify the output capability of the step-down DC-DC converter. #### The Reliability Test of Vehicle Horn Vehicle Horn is often used in transportation such as cars, motorcycles, trucks, buses, trains, etc. During the travel of the vehicle, the Vehicle Horn can sound to warn other vehicles or draw attention to avoid danger. If the sound intensity of the Vehicle Horn is to be measured during the burn-in test, the fanless PFR series power supply best meets such test requirements. The PFR series fanless design structure can quietly output power to the Vehicle Horn and the sequential output power function Test Script allows users to edit the burn-in test process. #### **PFR-Series** A Sound Measurement of the Vehicle Horn A Car Equipped Vehicle Horn #### Edited Test Script to PFR for Burn-in Test: | | A | В | С | D | E | F | | Voltage: 13.0V | | |----|---------------|-----------|------------|-----------|------------|-----------|----|-----------------|--| | 1 | memo H | lone test | | | | | | Current : 7.0A | | | 2 | DisplayItem V | T | | | | | | | | | } | CycleItems N | Number | Start Step | End step | | | | Cycle : 50,000 | | | 1 | Cycle | 50000 | 2 | 3 | | | N. | | | | 5 | Step P | Point | Output | Time(sec) | Voltage(V) | CurrentA) | | | | | 5 | 1 S | Start | Off | 0.5 | 0 | | | | | | 7 | 2 | | On | 1 | 13 | | | 8. 7 | | | 8 | 3 | | Off | 4 | 13 | | 7 | | | | 9 | 4 E | End | Off | 0.5 | 0 | | 7 | | | | 10 | | | | | | | | | | #### PFR Output Waveform for Burn-in Test: #### **LED Test Application** The light-emitting diode is a special diode. Its main structure is the same as that of a common diode. It is composed of a P-type and N-type semiconductor. It uses the different characteristics of the forward bias and reverse bias of the P-N junction to turn on or off. The voltage-current output relationship when applying a forward bias to a light-emitting diode (see Fig. 1.). When the applied forward bias is greater than the Vf value, the diode begins to emit light, and the luminosity of the LED is directly related to the magnitude of the driving current. The larger the current value, the stronger the illuminance. If the current value is too large and exceeds the rated current value, the LED will have permanent damage. In the actual test process of the LED, the conventional power supply output is usually under the CV mode. When the forward bias voltage is greater than the Vf value of the LED, the LED may be given a surge current due to the instantaneous conduction. If this surge current exceeds the rated maximum current value, it may cause permanent damage to the LED. The CC priority mode function designed by GW Instek on the power supplies allows the output of the power supply to run under the CC mode preferentially to avoid the
surge current and prevent the LED from being damaged by the surge current during the LED test. Note: PFR series, PLR series, PSW series, PSU series, PSB-1000 series support the CC priority mode function. Fig. 1.: V-I Characteristic Chart Illustrations of PSB-1000 Connecting to LEDs Under the Conventional C.V Mode, Inrush Current and Surge Voltage Appeared at Forward Voltage (Vf) of LED Under C.C Priority Mode, Inrush and Surge Voltage are Effectively Restrained #### Precise Control RF Attenuator with PEL-3021 PSW+PEL-3000 can form a low-cost, high-accuracy, high-resolution current output controller. Typical RF Attenuators often use PIN diodes as microwave switches and microwave attenuators. In high frequency applications, providing a PIN diode forward bias or reverse bias can control whether the high frequency signal RFin can be output to RFout. As shown in the figure below, the DC Block component is nearly short-circuited for the high-frequency RFin signal, so the RFin signal can pass directly. The RF Block is nearly open-circuited for the high-frequency RFin signal, so that the RFin signal is output to the RFout via the DC Block and the PIN diode. Precise control of the DC current flowing through the PIN diode allows precise determination of how much RFin signal is attenuated and then be output to RFout. The PEL-3021 has a high resolution setting of 0.01mA. It can increase the DC control current by the increment of 10uA to observe the relationship between the measurement signal RFin and RFout, and further draw the attenuation curve of the RF Attenuator. The RF Attenuator's automated measurement can automatically increase the load current value using the PEL-3021's Sequence Function and simultaneously trigger the external device to conduct measurement using the Trigger Output function. Bias Current vs. Attenuations #### Reliability Test for Relay Using GW PSW Power Supply and PEL-3111 E. Load How do you conduct relay connection point (N.O. / N.C.) tests? How do you test the life cycle of relay's connection point (N.O. / N.C.)? How do you evaluate the connection resistance of connection point (N.O. / N.C.) after multiple tests? How do you evaluate the speed for operating connection point (N.O. / N.C.)? Relay, functioning to produce mechanical on-off movement by receiving electric signal to change electro magnet, is often applied to control other electronic device via receiving electronic signal. Voltage exerted on relay's coil allows current to pass through coil and magnetizes core. Armature is then be pulled by core due to electromagnetic force. Hence, a mechanical on-off movement is produced. As shown on the top diagram, PSW 30-108, Relay and PEL-3111 are connected by series. PEL-3111 is set to 80A current sink. Each time, Relay's NO-COM is closed, NO-COM is tested for its current reliability. In the meantime, PSW 80-40.5 is utilized to output sequential power supply to produce control signal to control Relay's NO-COM. One GW Instek PSW 80-40.5 can meet the actual measurement requirements via planning Relay's control signal. It not only controls signal's voltage, current, time and period, but also determines the number of operating cycle. There are totally 20,000 steps and each step can be set from 50ms to 20 days. The number of cycle can reach 1 billion or infinite by different specifications. Relay's control signal can only verify the mechanical characteristics of NO-COM and NC-COM. For further electric characteristic verification of NO-COM and NC-COM, PSW 30-108 and PEL-3111 must be concurrently utilized to produce C.C. output. Based upon Relay's specifications, the combined application of two instruments can conduct fast current switching test and provide large current verification, including current withstanding value and current withstanding time so as to ensure Relay's quality. #### Waveforms Measured Ch1: Current Waveform Ch2: Voltage Waveform for Relay 80A for 1s and 0A for 2s #### Note: NO: The NO pin is open to com pin in general unless the power provides to the coil. So it calls Normally Open Terminal of Relay. NC: The NC pin is short to com pin in general unless the power provides to the coil. So it calls Normally Closed Terminal of Relay. NO-COM: Its a connection status between NO pin and COM pin. It is short when power provides the coil; otherwise, it keeps open. #### **LED Pulse Current Assessment Test** Electronic load simulates actual loads by drawing current. The drawn current is called load current for power supply that can be used to test the characteristics of power supply or battery. By placing an electronic load in series with a power supply and a load (such as LED Module) and by setting different constant current conditions on the electronic load, the electronic load can draw different current targets from the system loop. The PEL-3000 series features the fast slew rate and the sequence function to simulate real and fast load changes. The following diagram illustrates a pulse current test system composed of a programmable DC electronic load and a DC power supply to conduct tests on LED illumination characteristics. Programmable DC electronic loads, after settings, simulate DUT's pulse current (fast load changes) capability by drawing large and small current. Electronic loads produce pulse current and collocate with the sequence function to execute tests on fast or arbitrary waveform current. Oscilloscope monitors voltage waveform changes for LED and current source. Oscilloscope with a current probe can monitor current waveform in real time. #### Benefits of PEL-3000 Series Applications #### Construct A Large Pulse Current Source with Lower Costs Normally, bipolar power is fast in response but it is also very expensive. Therefore, equipment for large pulse current is expensive. The feature of fast switching of electronic load can be used to construct pulse current source with lower costs. #### Rating Current Requires Only 1.5V Input Voltage Power supply outputs voltage - the required voltage of LED is approximately 1.5V, which requires only 1.5V peak value. PEL-3021(175W) can satisfy 35A pulse current requirement with 1.5V voltage input. #### For Constant Current Usages and Multiple DUT Applications Constant current source can be used on changing characteristics for diode device of LED, surface processing (electroplating), pulse charging of rechargeable battery, burn-out of various fuses, and current sensor applications. #### The Benefits That PFR-100 Power Supply Can Provide in Burn-in Test Burin-in is one of many common methods manufacturers utilize to sort out defective components and products during the testing process of the electronic products. Burn-in test is normally conducted in the factory before shipment and after products are completely assembled. Burn-in process helps manufacturers sieve out defective components so as to prevent defective products from being sold to customers. Burn-in test requires additional space for power supplies and its power consumption for a long period of time will increase energy demand and electric bill. Burn-in test is a tremendous cost challenge to all manufacturers in terms of space, electric power and man power. To tackle this cost challenge, GW Instek PFR series can easily assist manufacturers in solving all difficult problems. - * With respect to space, the PFR series provides better space flexibility in the limited test area by its 3U height (H:124/W:70/D:300 mm) and as light as a total weight of 2.5kg. - * Pertaining to power saving, the PFR series, a high-efficiency power conversion power supply, adopts high-efficiency PWM design comparing with low-efficiency linear power supplies. Hence, the PFR series is capable of saving electricity during long-time burn-in test. Compared the same 100W output power supplies, the PFR series requires 143W of input power, while the linear power supplies with 0.5 efficiency require 200W of input power. After a full year of burn-in test, the PFR series will consume 1235 kWh and the linear power supplies will consume 1728kWh. For three years of burn-in test, the PFR series only consumes 3703kWh and linear power supplies consume 5184kWh. - * The PFR series is a five-fold multi-range power supply, which allows users to arbitrarily adjust voltage and current within the rated power. This function allows users to adjust the voltage and current settings according to the maximum output power. Compared with the conventional 100W power supplies with maximum output 20V/5A, the 100W PFR-100L provides a maximum output of 50V@2A or 10V@10A, and the PFR-100M provides an output of up to 250V@0.4A or 50V@2A. Voltage/Current Operating Area - * In terms of personnel operation, the Test Script function of PFR series edits sequential power outputs based upon customer's burn-in test process and executes automatically during the burn-in procedures. Additionally, the built-in USB, RS- 232/485 communications of the PFR series allow testing personnel to remotely control or execute self-defined programs to realize automated tests and reduce manpower investment during burn-in process. - * For power supplies connected to the inside of the Chamber, the phenomenon of voltage drop is often happened due to the long wiring. The PFR series provides the Remote Sense function to compensate the voltage drop so as to ensure an accurate voltage output to the DUT. The operator does not need to adjust voltage for voltage drop. - * Conventional power supplies produce fan noise while in operation. Power supplies with fan design will absorb dust in the fan filter during long-term operation. The accumulated dust may affect the air circulation inside the power supply. Poor air circulation inside the power supply will cause the internal components of the power supply to function under a high-temperature environment. The components that work in the high-temperature environment for a long time will shorten the life cycle of the power supply. The
fanless PFR series without fan noise is suitable for a quiet working environment, furthermore, fanless design is ideal for clean and quiet test environment (e.g. clean room). The fanless PFR series can prolong its life cycle during burn-in test. Schematic Diagram for Burn-in Test #### Best-fitting Electronic Load for Your Test (Single Channel or Multiple Channels?) Electronic loads are often simulated as the characteristics (constant resistance, constant voltage or constant current) of the DUTs to test whether the output capability of the battery, power supply, solar cell, or power supply unit meets user's requirements. Unlike using general resistive components to test batteries and power supplies, electronic loads can dynamically switch simulated resistors, voltages or currents, customize the rise and fall times of current sink, and even edit a complex and continuous load change. #### THE BASIC APPLICATIONS OF THE SINGLE-CHANNEL DC ELECTRONIC LOAD PEL-3000 SERIES #### **Current Sensor Evaluation** The PEL-3000 series provides three current levels: high, medium and low. The minimum current resolution of 0.01 mA can be selected based upon the test requirements. If a PEL-3000 collocating with a DC power supply, a high-precision constant current power supply can be formed to evaluate the current sensor. **Current Sensor Evaluation** #### Solar Panel I-V Curve Display & MPPT Measurement The MPPT Function can be done by the PEL-3000 series to simulate the operating current of the solar panel ranging from zero to the maximum current value, and at the same time measuring the output voltage and power of the solar panel to obtain the solar panel output voltage/current/power curve. The MPPT Function of the PEL-3000 series not only provides users with the Pmax, Vmp, Imp, Isc, Voc values of the solar panel, but also tracks the maximum power point of the solar panel in different shade conditions. I-V Curve of The Solar Panel Connections Between PEL-3041 and Solar Panel Measurements for MPPT #### Remark: Pmax→ Maximum Power Point V_{MP}→ Voltage at Maximum Power I_{MP}→ Current at maximum power Voc→ Open Circuit Voltage Isc→ Short Circuit Current #### Best-fitting Electronic Load for Your Test (Single Channel or Multiple Channels?) If users need to measure multiple sets of batteries or power supply units at a time, or evaluate multi-channel power output in the circuit, the multi-channel DC electronic load PEL-2000A will be the best measurement solution. PEL-2000A can evaluate the simultaneous power output capability of multiple power supplies, or test the output current of multiple power supplies by sequentially loading each output current according to the time interval defined by each output. #### THE BASIC APPLICATIONS OF THE MULTI-CHANNEL DC ELECTRONIC LOAD PEL-2000A SERIES #### The Output Test of PC Power Supply Power supply output devices with small-power, multi-group and different specifications such as the ATX power supply for PCs can use PEL-2000A to evaluate the synchronous power output of multiple power supplies. A typical ATX power supply has 6 outputs. In order to ensure that the ATX power supply can provide sufficient power output when the 6 channels output simultaneously, the PEL-2000A can perform dynamic mode and load regulation tests on six outputs at the same time, or users can edit the Program mode to customize the severe test conditions to automatically determine the Pass or Fail of the ATX Test Diagram for ATX Power Supply #### **Battery Evaluation Test** Automated testing of high-speed battery charge and high-speed discharge can be achieved by using the PEL-2000A electronic load module in series and parallel with the power supply. The automated switching operation between the module and the module of the PEL-2000A can greatly shorten the test time and increase the reliability during the measurement process while comparing with the manual operation. Automated Charge/ Discharge Test with PEL-2000A #### **Automotive Wire Harness Performance Test System** #### Automotive Wire Harness Uses Multi-Channel and Continuous Power Supply Test System Electric wire, installed in the automobile, plays an important role in supplying power and transmitting signals. The importance of electric wire has increased in the wake of the evolution of automotive electronization. For safe and comfortable driving, the reliability test for automotive wire harness is essential. The multi-channel test system, composed of a DC electronic load and a large current power supply, saves time in testing each wire harness and saves space for placing test instruments. DC power supply and DC electronic load can be rack mounted by customers' electric power wiring test requirements. The following diagram shows many units of PEL-2000A series were used for providing power to multi-channel automotive wire harness in a long period of time. The PEL-2000A series saves system rack space and costs. The series can flexibly arrange the required number of channels according to the actual requirements of DUTs. The series can also simulate many automotive devices to conduct continuous tests. The PEL-2000A series saves system rack space and costs. The PEL-2000A series programmable DC electronic load, via USB or GPIB, can conduct independent control over multiple channels. By using custom-made monitor software, the series can simultaneously control many independent channels. Test terminal and rack can be custom made. Users' test wire harness required terminal can be jointly mounted on a rack. #### **Test Script Applications-Solving Complex Test Patterns** The uniqueness of GW Instek Test Script function is to streamline test operator's complex measurement work by directly planning a set of changing voltage and current parameters via Microsoft Excel and uploading the edited Excel file to GW Instek power supplies so as to execute sequential power outputs. The following four test applications with different test patterns were easily executed by GW Instek Test Script function without software programming. Test Script allows users to run repetitive cycle tests by setting parameters including output voltage, current, time, cycle, OVP, OCP, Bleeder, etc. Four GW Instek Power supplies support Test Script, including PFR, PSU, PSB, and PSW. #### Parrern 1: Pulse output Waveform Measurement Settings: Set and execute a pattern that switches 12V/1sec to 5V/1sec for 6 times with the current setting of 3A. #### Test Script Setting: | 28 | CycleItem | Number | Start Step | End Step | | | | | | | | |----|-----------|--------|------------|-----------|------------|------------|--------|------------|---------|----------|------| | | Cycle | | | | | | | | | | | | | 2 | | | | | | | | | | | | | Step | Point | Output | Time(sec) | Voltage (V | Current (A | Beeper | Sense Aver | Jump to | Jump Cnt | Trig | | | 1 | Start | On | 0.5 | 0 | 0 | | | | | | | | 2 | | On | 1 | 12 | 3 | On | | | | | | | 3 | | On | 1 | 5 | 3 | | | 2 | 5 | | | | 4 | end | On | 1 | 0 | . 0 | | | | | | #### **Test Script Applications - Solving Complex Test Patterns** #### Parrern 2: Aging test with a controlled rise time **Pattern Setting** Waveform Measurement The output voltage rises from 0V to 5V in 50 seconds at current setting of 10A and maintains the settings for 30 minutes and then output is turned off automatically. #### **Test Script Setting:** #### Parrern 3: Add burst noise Burst signals are applied in the middle of the constant voltage output. For example, a continuous voltage output generates a burst noise that fluctuates between 12V and 8V. Each burst signal is 100ms and the burst signals last 1.5s that appears after every 10 minutes (600 s) of constant 12V output. #### **Test Script Setting:** Waveform Measurement #### **Test Script Applications - Solving Complex Test Patterns** #### Parrern 4: Lifetime test **Pattern Setting** Waveform Measurement For durability tests such as lights, heaters, etc., pattern that repeats for 18-hour output on and 6-hour output off for 100 days is as follows. #### **Test Script Setting:** #### Parrern 5: PPTC device (Resettable fuse) test **Pattern Setting** Waveform Measurement A test example of self-resetting PTC verifies its open circuit characteristic by increasing current from 0 to 3A with 16-step resolutions. Test Script can easily execute a series of different currents under a constant voltage setting to test the blown and reset characteristic of a self-resetting PTC. #### **Test Script Setting:** | | ema Number | Start Step | End Step | | | | | | | | | | | | | |-------|------------|------------|-----------|------------|-------------|--------|--------|---------|---------|----------|--------------|-------------|------------|---------|------| | Cycle | | 1 1 | 16 | | | | | | | | | | | | | | Step | Point | Output | Time(sec) | Voltage (V | Current (A) | OVP(V) | OCP(A) | Bleeder | IV Mode | Var up(V | 'n Vsr down(| 'Isr up(A/m | Isr down(A | IR(ohm) | Beep | | | 1 Start | On | 0.1 | 12 | 0.1875 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 2 | On | 0.1 | 12 | 0.375 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 3 | On | 0.1 | 12 | 0.5625 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 4 | On | 0.1 | 12 | 0.75 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 5 | On | 0.1 | 12 | 0.9375 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 6 | On | 0.1 | 12 | 1.125 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 7 | On | 0.1 | 12 | 1.3125 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 8 | On | 0.1 | 12 | 1.5 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | 1 11 | 9 | On | 0.1 | 12 | 1,6875 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 10 | On | 0.1 | 12 | 1.875 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 11 | On | 0.1 | 12 | 2.0625 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 12 | On | 0.1 | 12 | 2.25 | MAX |
MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 13 | On | 0.1 | 12 | 2,4375 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 14 | On | 0.1 | 12 | 2.625 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 15 | On | 0.1 | 12 | | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | | | 16 End | On | 0.1 | 12 | 3 | MAX | MAX | ON | CCHS | MAX | MAX | MAX | MAX | MIN | | #### To Fulfil High Power Testing Requirements #### High-Performance AC/DC Power Supply #### ASR-6450/6600 4.5kVA/6kVA #### ASR-6450-09/ASR-6600-12 ASR-6450-13.5/ASR-6600-18 #### Application Fields: - CRPS Server Power Supply Testing - Three-Phase Motor Protection Device Testing - . High Power UPS Testing - . High Power Inverter Testing - · Aerospace Equipment Testing | Para | allel Models | ASR-6450-09 | ASR-6600-12 | ASR-6450-13.5 | ASR-6600-18 | | | | | | |-----------|-----------------|--|---------------------------------------|---------------------------------------|--|--|--|--|--|--| | | Power Type | Three-phase Four-wire Y connection 380 Vac to 460 Vac ±10 % (Line Voltage) 1P2W / 1P3W / 3P4W(Y connection) | | | | | | | | | | AC Input | Voltage | | | | | | | | | | | | Mode | | | | | | | | | | | | Output Capacity | 1P2W / 3P4W: 9kVA
1P3W: 6kVA | 1P2W / 3P4W: 12kVA
1P3W: 8kVA | 1P2W / 3P4W: 13.5kVA
1P3W: 9kVA | 1P2W/3P4W:18kVA
1P3W: 12kVA | | | | | | | AC Output | Phase Voltage | | 0 | 350V | | | | | | | | | Line Voltage | 1P3W: 0~700V / 3P4W: 0~606.2V | | | | | | | | | | | Maximum Current | Single-phase : 90A
Polyphase : 30A | Single-phase :120A
Polyphase : 40A | Single-phase :135A
Polyphase : 45A | Single-phase : 180A
Polyphase : 60A | | | | | | | | Output Capacity | 9kW | 12kW | 13.5kW | 18kW | | | | | | | DC Output | Voltage | | -500V | ~ +500V | | | | | | | | | Maximum Current | 90A | 120A | 135A | 180A | | | | | | The ASR-6000 series offers 9kVA, 12kVA, 13.5kVA, and 18kVA models capable of outputting up to 18kVA AC (single/three-phase) and 18kW DC high power. The series features high-efficiency power output and stable and reliable power quality, making it suitable for high power related product testing applications. #### Single Unit Provides AC Single/Three-phase Input Function AC One-phase Input AC Three-phase Input (Delta Connection) AC Three-phase Input (Y Connection) The ASR-6000 series is GW Instek's first programmable AC/DC power source that supports AC single/three-phase input. AC three-phase input supports delta (Delta) and star (Y) wiring methods Advantages: a .ASR-6000 can use mains in most countries around the world (ex. Mainland China, Southeast. Asia, India, Europe...)AC single-phase 220V input can help test software development engineers work with the ASR-6000 on mains in the office. No additional three-phase power source is required. ASR-6000 can be used immediately in various regions around the world and is not affected by differences in power grids in different countries. Note: 1. The AC input three-phase Y connection method must be connected to the N wire, otherwise the ASR-6000 cannot be turned on. 2. ASR-6000 AC voltage input range AC 200V ~ AC240V. #### To Fulfil High Power Testing Requirements #### AC Single/Three-phase Output + Multi-channel Output Function The ASR-6000 series has diverse output functions, including three modes: 1P2W, 1P3W and 3P4W. The maximum output for phase voltage is 350Vrms and the maximum output for line voltage is In AC three-phase output (3P4W) mode, each phase supports independent output settings. Taking ASR-6600 as an example, The maximum output of each phase reaches 2kVA, supporting power supply testing of up to three DUTs to meet the needs of server power modules, Testing requirements for high-power AC power products such as electric vehicle chargers and uninterruptible power supply systems.independent output settings. Taking ASR-6600 as an example, The maximum output of each phase reaches 2kVA, supporting power supply testing of up to three DUTs to meet the needs of server power modules, Testing requirements for high-power AC power products such as electric vehicle chargers and uninterruptible power supply systems. #### AC Balanced/Unbalanced Three-phase Output Modes **AC Balanced Three-phase** The ASR-6000 series has unbalanced and balanced three-phase output modes. In the AC three-phase output mode, users can set the phase angles of L1, L2 and L3 for control. #### AC Unbalanced Three-phase Main applications: Three-phase input power supply products, when emulating unbalanced three-phase input and phase loss, the ability of three-phase power input products to restore balanced three-phase. #### **Voltage and Current Output Monitoring Functions** ASR-6000 provides dual-channel voltage and current monitoring, allowing instant output of voltage and current signals of each phase to an oscilloscope for measurement. #### **Advanced Web Server Control Features** ASR-6000 provides a full range of web control functions, including: - * View system and information, and network configuration - * Monitor measurements - * Set/Operate ASR-6000 - * Sequence Function/Simulate Function/Edit Waveform - * Data logger function | AF | | | | | | |--------------------|--|-------|-------------------------|--|--------| | AE | | | GPE-4323 | 212W, 4-Channel, Linear DC Power Supply | D68 | | AEL-5002-350-18.75 | 50V/18.75A/1875W AC & DC Electronic Load | D129 | GPE-3060 | 3-channel, 385W linear DC Power Supply | D65 | | AEL-5003-350-28 | 350V/28A/2800W AC & DC Electronic Load | D129 | GPE-6030 | 3-channel, 385W linear DC Power Supply | D65 | | AEL-5004-350-37.5 | 350V/37.5A/3750W AC & DC Electronic Load | D129 | GPP-1326 | Single-Output Programmable DC Power Supply | D58 | | AEL-5006-350-56 | 350V/56A/5600W AC & DC Electronic Load | D129 | GPP-2323 | Dual-Output Programmable DC Power Supply | D58 | | AEL-5008-350-75 | 350V/75A/7500W AC & DC Electronic Load | D129 | GPP-3323 | Three-Output Programmable DC Power Supply | D58 | | AEL-5012-350-112.5 | 350V/112.5A/111250W AC & DC Electronic Load | D129 | GPP-3060 | 385W Triple-channel Programmable DC Power Supply | D50 | | AEL-5015-350-112.5 | 350V/112.5A/15000W AC & DC Electronic Load | D129 | GPP-3610H | 36V/10A Single Channel Programmable DC Power Supply | D54 | | AEL-5019-350-112.5 | 350V/112.5A/18750W AC & DC Electronic Load | D129 | GPP-3650 | 385W Triple-channel Programmable DC Power Supply | D50 | | | | D129 | GPP-4323 | Four-Output Programmable DC Power Supply | D58 | | AEL-5023-350-112.5 | 350V/112.5A/22500W AC & DC Electronic Load | | | | | | AEL-5002-425-18.75 | 425V/18.75A/1875W AC & DC Electronic Load | D129 | GPP-6030 | 385W Triple-channel Programmable DC Power Supply | D50 | | AEL-5003-425-28 | 425V/28A/2800W AC & DC Electronic Load | D129 | GPP-7250 | 72V/5A Single Channel Programmable DC Power Supply | D54 | | AEL-5004-425-37.5 | 425V/37.5A/3750W AC & DC Electronic Load | D129 | GPR-0830HD | 240W Linear DC Power Supply | D71 | | AEL-5006-425-56 | 425V/56A/5600W AC & DC Electronic Load | D129 | GPR-11H30D | 330W Linear DC Power Supply | D71 | | AEL-5008-425-75 | 425V/75A/7500W AC & DC Electronic Load | D129 | GPR-1810HD | 180W Linear DC Power Supply | D72 | | AEL-5012-425-112.5 | 425V/112.5A/11250W AC & DC Electronic Load | D129 | GPR-1820HD | 360W Linear DC Power Supply | D71 | | AEL-5015-425-112.5 | 425V/112.5A/15000W AC & DC Electronic Load | D129 | GPR-3060D | 180W Linear DC Power Supply | D72 | | AEL-5019-425-112.5 | 425V/112.5A/18750W AC & DC Electronic Load | D129 | GPR-30H10D | 300W Linear DC Power Supply | D71 | | AEL-5023-425-112.5 | 425V/112.5A/22500W AC & DC Electronic Load | D129 | GPR-3510HD | 350W Linear DC Power Supply | D71 | | AEL-5003-480-18.75 | 480V/18.75A/2800W AC & DC Electronic Load | D129 | GPR-6030D | 180W Linear DC Power Supply | D72 | | AEL-5004-480-28 | 480V/28A/3750W AC & DC Electronic Load | D129 | GPR-6060D | 360W Linear DC Power Supply | D71 | | | 4001/20A/3730W AC & DC Electronic Load | 0127 | GPR-7550D | 375W Linear DC Power Supply | D71 | | AP | | | GPS-001 | | D139 | | APS-001 | Accessory GPIB Interface Card | D139 | | Accessory Knob, Voltage/Current Protection Knob | | | APS-002 | Accessory RS-232/USB Interface Card | D139 | GPS-1830D | 54W Linear DC Power Supply | D73 | | APS-003 | Accessory Output Voltage Capacity (0 ~ 600Vrms) | D139 | GPS-1850D | 90W Linear DC Power Supply | D73 | | APS-003 | , | D139 | GPS-3030D | 90W Linear DC Power Supply | D73 | | | Accessory Output Frequency Capacity (45~999.9Hz) | | GPS-3030DD | 90W Linear DC Power Supply | D73 | | APS-007 | Accessory RS-232 Interface Card | D139 | GPS-2303 | 180W, 2-Channel, Linear DC Power Supply | D69 | | APS-008 | Accessory Air Inlet Filter | D139 | GPS-3303 | 195W, 3-Channel, Linear DC Power Supply | D69 | | APS-7050 | 500VA Programmable Linear AC Power Source | D93 | GPS-4303 | 200W, 4-Channel, Linear DC Power Supply | D69 | | APS-7100 | 1000VA Programmable Linear AC Power Source | D93 | GPW-001 | Accessory UL/CSA Power Cord, 3000mm | D139 | | APS-7050E | 500VA AC Power Source | D96 | GPW-002 | Accessory VDE Power Cord, 3000mm | D139 | | APS-7100E | 1000VA AC Power Source | D96 | GPW-003 | Accessory PSE Power Cord, 3000mm | D139 | | APS-7200 | 2000VA Programmable Linear AC Power Source | D93 | GPW-005 | Accessory Power Cord, 3000mm | D139 | | APS-7300 | 3000VA Programmable Linear AC Power Source | D93 | GPW-006 | Accessory Power Cord, 3000mm | D139 | | AS | | | GPW-007 | Accessory Power Cord, 3000mm | D139 | | CONTROL . | | | | | D139 | | ASR-001 | Accessory Air Inlet Filter | D139 | GPW-008 | 6RV3 Power Cord; 10AWG/3C, 3m Max Length, , RV5-5*3P, | D139 | | ASR-002 | Accessory External Three
Phase Control Unit | D139 | CDW 011 | RV5-5*3P UL Type | D110 | | ASR-003 | Accessory GPIB Interface Card | D139 | GPW-011 | 6RV5 UL Power Cord; 10AWG/5C, 3m, RV5-5*5P,RV5-5*5P | D139 | | ASR-C003 | Accessory Modbus TCP Feature | D139 | Translation and the St. | UL Type | 020000 | | ASR-004 | Accessory DeviceNet Interface Card | D139 | GPW-012 | 6RVV5 VDE Power Cord; 2.5mm2/5C,3m Max Length, | D139 | | ASR-005 | Accessory CAN BUS Interface Card | D139 | 752.22.00 | RVS3-5*5P,RVS3-5*5P VDE Type | 000000 | | ASR-006 | Accessory External Parallel Cable | D139 | GPW-013 | 6RVT5 PSE Power Cord; 2.0mm2/5C,3m Max Length, | D139 | | ASR-2050 | 500VA Programmable AC/DC Power Source | D91 | | RVS2-5*5P,RVS2-5*5P PSE Type | | | ASR-2100 | 1000VA Programmable AC/DC Power Source | D91 | GPW-014 | 6RV4 UL Power Cord; 10AWG/4C, 3m, RV5-5*4P,RV5-5*4P | D139 | | ASR-2050R | 500VA Programmable AC/DC Power Source for 3U 1/2 | D91 | | UL Type | | | ASK LUSUK | Rack Mount | 0,1 | GPW-015 | 6RVV4 VDE Power Cord; 2.5mm2/4C, 3m Max Length, RVS3-5*4P, | D139 | | ASR-2100R | 1000VA Programmable AC/DC Power Source for 3U 1/2 | D91 | | RVS3-5*4P VDE Type | | | ASK ETOOK | Rack Mount | D , . | | 979-9009 - 398-90009-4-407 | | | ASR-3200 | 2kVA Programmable AC/DC Power Source | D86 | GR | | | | ASR-3300 | 3kVA Programmable AC/DC Power Source | D86 | Transfer of the second | A | D110 | | ASR-3400 | 4kVA Programmable AC/DC Power Source | D86 | GRA-401 | Accessory Rack Adapter Kit, 19", 4U Size | D139 | | | | | GRA-403 | Accessory Rack Adapter Kit, 19", 4U Size | D139 | | ASR-3400HF | 4kVA Programmable AC/DC Power Source | D86 | GRA-407 | Accessory Rack Adapter Kit, 19", 4U Size | D139 | | ASR-6450 | 4.5kVA High-Performance AC/DC Power Supply | D76 | GRA-408 | Accessory Rack Adapter Kit, 19", 4U Size | D139 | | ASR-6600 | 6kVA High-Performance AC/DC Power Supply | D76 | GRA-409 | Accessory Rack Adapter Kit, 19", 4U Size | D139 | | ASR-6450-09 | 9kVA AC/DC Rack Type Power Source | D76 | GRA-410-E | Accessory Rack Mount Kit (EIA), 19", 3U Size | D139 | | ASR-6600-12 | 12kVA AC/DC Rack Type Power Source | D76 | GRA-410-J | Accessory Rack Mount Kit (JIS), 19", 3U Size | D139 | | ASR-6450-13.5 | 13.5kVA AC/DC Rack Type Power Source | D76 | GRA-413-E | Accessory Rack Mount Kit (EIA), 19", 3U Size for PEL-3211 | D139 | | ASR-6600-18 | 8kVA AC/DC Rack Type Power Source | D76 | GRA-413-J | Accessory Rack Mount Kit (JIS), 19", 3U Size for PEL-3211 | D139 | | GE | | | GRA-414-E | Accessory Rack Mount Kit (EIA), 19", 3U Size for | D139 | | | | | SILITATE STATE | PEL-3021/3041/3111 | 2133 | | GET-001 | Accessory Extended Terminal for 30V/80V/160V Models | D139 | GRA-414-J | Accessory Rack Mount Kit (JIS), 19", 3U Size for | D139 | | GET-002 | Accessory Extended Terminal for 250V/800V Models | D139 | | PEL-3021/3041/3111 | | | GET-003 | Accessory Extended Universal Power Socket | D139 | GRA-423 | Accessory Rack Mount Kit, 19", 2U Size | D139 | | GET-004 | Accessory Extended European Power Socket | D139 | GRA-424 | Accessory Rack Mount Kit, 19", 2U Size | D139 | | GET-005 | Accessory Extended European Terminal for 30V/80V/160V Models | D139 | GRA-428 | Accessory Rack Mount Kit, 19 , 20 Size | D139 | | GET-006 | Accessory Universal Extension | D139 | | | | | GP | | | GRA-429 | Accessory Rack Mount Kit, 7U Size | D139 | | 100 miles | | | GRA-430 | Accessory Rack Mount Kit, 9U Size | D139 | | GPC-3060D | 375W, 3-Channel, Linear DC Power Supply | D70 | GRA-431-J | Accessory Rack Mount Kit (JIS) | D139 | | GPC-6030D | 375W, 3-Channel, Linear DC Power Supply | D70 | GRA-431-E | Accessory Rack Mount Kit (EIA) | D139 | | GPD-2303S | 180W, 2-Channel, Programmable Linear DC Power Supply | D60 | GRA-439-J | Accessory Rack Mount Kit (JIS), 19", 4U Size | D139 | | GPD-3303D | 195W, 3-Channel, Programmable Linear DC Power Supply | D60 | GRA-439-E | Accessory Rack Mount Kit (EIA), 19", 4U Size | D139 | | GPD-3303S | 195W, 3-Channel, Programmable Linear DC Power Supply | D60 | GRA-441-J | Accessory Rack Mount Kit (JIS), 19", 4U Size | D139 | | GPD-4303S | 195W, 4-Channel, Programmable Linear DC Power Supply | D60 | GRA-441-E | Accessory Rack Mount Kit (EIA), 19", 4U Size | D139 | | GPE-1326 | 192W, Single Channel, Linear DC Power Supply | D68 | GRA-442-J | Accessory Rack Mount Kit (JIS), 19", 4U Size | D139 | | GPE-1328 | 192W, 2-Channel, Linear DC Power Supply | D68 | GRA-442-E | Accessory Rack Mount Kit (EIA), 19", 4U Size | D139 | | | | | GRA-449-J | Accessory Rack Mount Kit (JIS), 19", 3U Size | D139 | | GPE-3323 | 217W, 3-Channel, Linear DC Power Supply | D68 | | | | | | | | | | | | GRA-449-E | Accessory Rack Mount Kit (EIA), 19", 4U Size | D139 | |--------------------|--|---------------| | GRA-450-J | Accessory Rack Mount Kit (JIS), 19", 3U Size | D139 | | GRA-450-E | Accessory Rack Mount Kit (EIA), 19", 4U Size | D139 | | GRA-451-J | Accessory Rack Mount Kit (JIS), 19", 3U Size | D139 | | GRA-451-E | Accessory Rack Mount Kit (EIA), 19", 4U Size | D139 | | GRJ-1101 | Accessory Module Cable (0.5m) | D139 | | GRM-001 | Accessory Slide Bracket 2pcs/set | D139 | | GS | | P. 100 (1940) | | British and | | | | GSM-20H10 | Source Measure Unit | D37 | | GT | | | | GTL-104A | Accessory Test Lead, U-type to Alligator Test Lead, Max. Current | D129 | | | 10A, 1000mm | | | GTL-120 | Accessory Test Lead, O-type to O-type Test Lead, Max. 40A, 1200mm | D139 | | GTL-121 | Accessory Sense Lead, O-type to free Lead, 1200mm | D139 | | GTL-122 | Accessory Test Lead, U-type to Alligator Test Lead, Max. | D139 | | | Current 40A, 1200mm | | | GTL-123 | Accessory Test Lead, O-type to O-type Test Lead, 1200mm | D139 | | GTL-130 | Accessory Test Leads: 2 x red, 2 x Black, for 250V/800V Models, | D139 | | CT1 124 | 1200mm | D110 | | GTL-134 | Accessory Test Leads for Rear Panel, 1200mm, 10A, 16 AWG | D139 | | GTL-137 | Accessory Output Power wire(load wire_10AWG:50A,
600V/sense wire_16AWG:20A, 600V) | D139 | | GTL-201A | Accessory Ground Lead, Banana to Banana, European | D139 | | GIE-ZVIA | Terminal, 200mm | 0133 | | GTL-203A | Accessory Test Lead, Banana to Alligator, European Terminal, | D139 | | | Max. Current 3A, 1000mm | | | GTL-204A | Accessory Test Lead, Banana to Alligator, European Terminal, | D139 | | | Max. Current 10A, 1000mm | | | GTL-218 | Accessory Test Lead, O-type to O-type Test Lead, Max. 200A, | D139 | | | 1500mm | | | GTL-219 | Accessory Test Lead, O-type to O-type Test Lead, Max. 200A, | D139 | | GTL-220 | 3000mm Accessory Test Lead, O-type to O-type Test Lead, Max. 300A, | D139 | | G1L-220 | 1500mm | D139 | | GTL-221 | Accessory Test Lead, O-type to O-type Test Lead, Max. 300A, | D139 | | 0.222. | 3000mm | D.133 | | GTL-222 | Accessory Test Lead, O-type to O-type Test Lead, Max. 400A, | D139 | | | 1500mm | | | GTL-223 | Accessory Test Lead, O-type to O-type Test Lead, Max. 400A, | D139 | | | 3000mm | | | GTL-232 | Accessory RS-232C Cable, 9-pin, F-F Type, Null Modem,2000mm | D139 | | GTL-238 | Accessory RS-232 Cable, 9-pin, M-F type, 1000mm | D139 | | GTL-240 | Accessory USB Cable, USB 2.0, A-B type (L type), 1200mm | D139 | | GTL-246 | Accessory USB Cable, USB 2.0, A-B type, 1200mm | D139 | | GTL-248 | Accessory GPIB Cable, Double Shielded, 2000mm | D139 | | GTL-249 | Accessory Frame Link Cable, 300mm | D139 | | GTL-255 | Accessory Frame Link Cable, 300mm | D139 | | GTL-258 | Accessory GPIB Cable, 25 pins Micro-D Connector | D139 | | GTL-259 | Accessory RS-232 Cable with DB9 connector to RJ45 | D139 | | GTL-260 | Accessory RS-485 Cable with DB9 connector to RJ45 | D139 | | GTL-261
GTL-262 | Accessory Serial Master Cable+Terminator, 0.5M | D139 | | | Accessory RS-485 Slave cable | D139 | | GU | | | | GUG-001 | Accessory GPIB-USB Adaptor, GPIB to USB Adaptor | D139 | | GUR-001A | Accessory RS232-USB Cable, 300mm | D139 | | GUR-001B | Accessory RS-232 to USB Adapter with #4-40 UNC Rivet Nut | D139 | | PE | | | | PEL-001 | Accessory GPIB Card | D113 | | PEL-002 | Accessory Rack Mount Kit, PEL-2000 Series | D113 | | PEL-003 | Accessory Panel Cover | D113 | | PEL-004 | Accessory GPIB Card | D139 | | PEL-005 | Accessory Connect Cu Plate | D139 | | PEL-005 | Accessory Connect Cu Plate | D139 | | PEL-007 | Accessory Connect Cu Plate | D139 | | PEL-008 | Accessory Connect Cu Plate | D139 | | PEL-009 | Accessory Connect Cu Plate | D139 | | PEL-010 | Accessory Dust Filter | D139 | | PEL-010 | Accessory Load Input Terminal Cover | D139 | | PEL-012 | Accessory Terminal Fittings Kits | D139 | | PEL-012
PEL-013 | Accessory Flexible Terminal Cover | D139 | | PEL-013 | Accessory J1/J2 Protection Plug | D139 | | PEL-014 | Accessory LAN Card | D115 | | PEL-018 | Accessory LAN Card | D139 | | PEL-018 | Accessory CAN Card | D120 | | PEL-022
PEL-023 | Accessory GPIB Card Accessory RS-232 Card | D120 | | PEL-023
PEL-024 | Accessory KS-232 Card
Accessory LAN Card | D120 | | 1 21-024 | necessory EMN Card | D120 | | PEL-025 | Accessory USB Card | D120 | |--|---|---| | PEL-026 | Accessory Hook Ring | D120 | | PEL-027-1~4 | Accessory Rack Mount Kit | D120 | | PEL-028 | Accessory HANDLES, U-shaped Handle (Fixed to the Bracket) | D120 | | PEL-029 | Accessory HANDLES, Rack Accessories | D134 | | PEL-030 | Accessory
GPIB+RS-232 Card | D119 | | PEL-031 | Accessory Rack Mount Kit | D134 | | PEL-032 | Accessory 9923 Current Waveform Generator + RS232 Interface | D134 | | PEL-503-80-50 | 80V/50A/250W DC Electronic Load | D127 | | PEL-504-80-70 | 80V/70A/350W DC Electronic Load | D127 | | PEL-504-500-15
PEL-507-80-140 | 500V/15A/350W DC Electronic Load
80V/140A/700W DC Electronic Load | D127 | | PEL-507-500-30 | 500V/30A/700W DC Electronic Load | D127 | | PEL-2002A(B) | 2-Slot Programmable DC Electronic Load Mainframe | D115 | | PEL-2004A(B) | 4-Slot Programmable DC Electronic Load Mainframe | D115 | | PEL-2020A(B) | 200W, Dual Channel DC Electronic Load Module,
(1~80V, 20A, 100W) x 2 | D115 | | PEL-2030A(B) | 200W, Dual Channel DC Electronic Load Module,
(1~80V, 5A, 30W) & (1~80V, 40A, 250W) | D115 | | PEL-2040A(B) | 350W, Single Channel DC Electronic Load Module,
(1–80V, 70A, 350W) | D115 | | PEL-2041A(B) | 350W, Single Channel DC Electronic Load Module,
(2.5-500V, 10A, 350W) | D115 | | PEL-3021 | 175W Programmable DC Electronic Load | D103 | | PEL-3041 | 350W Programmable DC Electronic Load | D103 | | PEL-3111 | 1050W Programmable DC Electronic Load | D103 | | PEL-3211 | 2100W Booster Unit for PEL-3111 only | D103 | | PEL-3021H | 175W Programmable DC Electronic Load | D103 | | PEL-3041H | 350W Programmable DC Electronic Load | D103 | | PEL-3111H | 1050W Programmable DC Electronic Load | D103 | | PEL-3211H | 2100W Booster Unit for PEL-3111 only | D103 | | PEL-3031E | 150V/60A/300W Programmable Single-channel | D109 | | PEL-3032E | DC Electronic Load
500V/15A/300W Programmable Single-channel | D109 | | PEL-5008C-150-800 | DC Electronic Load | D110 | | PEL-5008C-150-800
PEL-5010C-150-1000 | 150V/800A/8kW High Power DC Electronic Load
150V/1000A/10kW High Power DC Electronic Load | D119 | | PEL-5012C-150-1000 | , | D119 | | PEL-5015C-150-1500 | , , , | D119 | | PEL-5018C-150-1800 | , , , , | D119 | | PEL-5020C-150-2000 | | D119 | | PEL-5024C-150-2000 | , , , | D119 | | PEL-5008C-600-560 | 600V/560A/8kW High Power DC Electronic Load | D119 | | PEL-5010C-600-700 | 600V/700A/10kW High Power DC Electronic Load | D119 | | PEL-5012C-600-840 | 600V/840A/12kW High Power DC Electronic Load | D119 | | PEL-5015C-600-1050 | 600V/1050A/15kW High Power DC Electronic Load | D119 | | PEL-5018C-600-1260 | 600V/1260A/18kW High Power DC Electronic Load | D119 | | PEL-5020C-600-1400 | , , , | D119 | | PEL-5024C-600-1680 | , , | D119 | | PEL-5008C-1200-320 | | D119 | | PEL-5010C-1200-400 | | D119 | | PEL-5012C-1200-480 | | D119 | | PEL-5015C-1200-600 | 1200V/600A/15kW High Power DC Electronic Load | D119 | | PEL-5018C-1200-720
PEL-5020C-1200-800 | 1200V/720A/18kW High Power DC Electronic Load | D119 | | PEL-5020C-1200-800
PEL-5024C-1200-960 | 1200V/800A/20kW High Power DC Electronic Load
1200V/960A/24kW High Power DC Electronic Load | D119 | | PEL-5024C-1200-960
PEL-5004G-150-400 | 150V/400A/4000kW High Power DC Electronic Load | D135 | | PEL-5005G-150-500 | 150V/500A/5000kW High Power DC Electronic Load | D135 | | PEL-5006G-150-600 | 150V/600A/6000kW High Power DC Electronic Load | D135 | | PEL-5004G-600-280 | | | | PEL-5005G-600-350 | | D135 | | | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load | D135 | | | 600V/280A/4000kW High Power DC Electronic Load | | | PEL-5006G-600-420 | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load | D135 | | PEL-5006G-600-420
PEL-5004G-1200-160 | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load
1200V/160A/4000kW High Power DC Electronic Load | D135 | | PEL-5006G-600-420
PEL-5004G-1200-160
PEL-5005G-1200-200
PEL-5006G-1200-240 | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load
1200V/160A/4000kW High Power DC Electronic Load
1200V/200A/5000kW High Power DC Electronic Load | D135
D135
D135 | | PEL-5006G-600-420
PEL-5004G-1200-160
PEL-5005G-1200-200
PEL-5006G-1200-240 | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load
1200V/160A/4000kW High Power DC Electronic Load
1200V/200A/5000kW High Power DC Electronic Load
1200V/240A/6000kW High Power DC Electronic Load | D135
D135
D135
D135
D135 | | PEL-5006G-600-420
PEL-5004G-1200-160
PEL-5005G-1200-200
PEL-5006G-1200-240 | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load
1200V/160A/4000kW High Power DC Electronic Load
1200V/200A/5000kW High Power DC Electronic Load | D135
D135
D135
D135 | | PEL-5006G-600-420 PEL-5004G-1200-160 PEL-5005G-1200-200 PEL-5006G-1200-240 PF PFR-100M | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load
1200V/160A/4000kW High Power DC Electronic Load
1200V/200A/5000kW High Power DC Electronic Load
1200V/240A/6000kW High Power DC Electronic Load | D135
D135
D135
D135
D135 | | PEL-5006G-600-420 PEL-5004G-1200-160 PEL-5005G-1200-200 PEL-5006G-1200-240 PF PFR-100M PFR-100L | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load
1200V/160A/4000kW High Power DC Electronic Load
1200V/200A/5000kW High Power DC Electronic Load
1200V/240A/6000kW High Power DC Electronic Load
1200V/240A/6000kW High Power DC Electronic Load | D135
D135
D135
D135
D135 | | PEL-5006G-600-420 PEL-5004G-1200-160 PEL-5005G-1200-200 PEL-5006G-1200-240 PF PFR-100M PFR-100L | 600V/280A/4000kW High Power DC Electronic Load 600V/350A/5000kW High Power DC Electronic Load 600V/420A/6000kW High Power DC Electronic Load 1200V/160A/4000kW High Power DC Electronic Load 1200V/200A/5000kW High Power DC Electronic Load 1200V/240A/6000kW High Power DC Electronic Load 1200V/240A/6000kW High Power DC Electronic Load Fanless Multi-range DC Power Supply Fanless Multi-range DC Power Supply 207W, 3-Channel, Programmable Linear DC Power Supply | D135
D135
D135
D135
D135 | | PEL-5006G-600-420 PEL-5004G-1200-160 PEL-5005G-1200-200 PEL-5006G-1200-240 PF PFR-100M PFR-100L PP PPE-3323 | 600V/280A/4000kW High Power DC Electronic Load
600V/350A/5000kW High Power DC Electronic Load
600V/420A/6000kW High Power DC Electronic Load
1200V/160A/4000kW High Power DC Electronic Load
1200V/200A/5000kW High Power DC Electronic Load
1200V/240A/6000kW High Power DC Electronic Load
1200V/240A/6000kW High Power DC Electronic Load | D135
D135
D135
D135
D135
D135 | | PEL-5006G-600-420 PEL-5004G-1200-160 PEL-5005G-1200-200 PEL-5006G-1200-240 PF PFR-100M PFR-100L PP PPE-3323 PPH-1503 PPH-1503D | 600V/280A/4000kW High Power DC Electronic Load 600V/350A/5000kW High Power DC Electronic Load 600V/420A/6000kW High Power DC Electronic Load 1200V/160A/4000kW High Power DC Electronic Load 1200V/200A/5000kW High Power DC Electronic Load 1200V/240A/6000kW High Power DC Electronic Load 1200V/240A/6000kW High Power DC Electronic Load Fanless Multi-range DC Power Supply Fanless Multi-range DC Power Supply 207W, 3-Channel, Programmable Linear DC Power Supply 45W Programmable High Precision Linear DC Power Supply | D135
D135
D135
D135
D135
D27
D27
D27 | | PEL-5006G-600-420 PEL-5004G-1200-160 PEL-5005G-1200-200 PF PFR-100M PFR-100L PP PPE-3323 PPH-1503 | 600V/280A/4000kW High Power DC Electronic Load 600V/350A/5000kW High Power DC Electronic Load 600V/320A/6000kW High Power DC Electronic Load 1200V/160A/4000kW High Power DC Electronic Load 1200V/200A/5000kW High Power DC Electronic Load 1200V/240A/6000kW High Power DC Electronic Load 1200V/240A/6000kW High Power DC Electronic Load Fanless Multi-range DC Power Supply Fanless Multi-range DC Power Supply 207W, 3-Channel, Programmable Linear DC Power Supply 45W Programmable High Precision Linear DC Power Supply | D135 D135 D135 D135 D135 D27 D27 D62 D41 D41 | | PPT-3615 | 126W, 3-Channel, Programmable Linear DC Power Supply | D63 | PSW250-4.5 | 360W Multi-Range Programmable Switching DC Power Supply | D15 | |---------------------------|---|----------|------------------------------|--|----------| | PPX-1005 | 10V/5A/50W Programmable High-precision DC Power Supply | D45 | PSW250-9 | 720W Multi-Range Programmable Switching DC Power Supply | D15 | | PPX-2002 | 20V/2A/40W Programmable High-precision DC Power Supply | D45 | PSW30-108 | 1080W Multi-Range Programmable Switching DC Power Supply | D15 | | PPX-2005 | 20V/5A/100W Programmable High-precision DC Power Supply | D45 | PSW30-36 | 360W Multi-Range Programmable Switching DC Power Supply | D15 | | PPX-3601 | 36V/1A/36W Programmable High-precision DC Power Supply | D45 | PSW30-72 | 720W Multi-Range Programmable Switching DC Power Supply | D15 | | PPX-3603 | 36V/3A/108W Programmable High-precision DC Power Supply | D45 | PSW40-27 | 1080W Multi-Range Programmable Switching DC Power Supply | D15 | | PPX-10H01 | 100V/1A/100W Programmable High-precision DC Power Supply | D45 | PSW40-54 | 360W Multi-Range Programmable Switching DC Power Supply | D15 | | PPX-G | Accessory GPIB Interface(Factory Installed) | D45 | PSW40-81 | 720W Multi-Range Programmable Switching DC Power Supply | D15 | | PS | | | PSW-720L11 | 30V/36A*2 720W Multi-Range DC Power Supply | D9 | | rs | | | PSW-720L12 | 30V/36A*1 40V/27A*1 720W
Multi-Range DC Power Supply | D9 | | PSB-001 | Accessory GPIB Card | D31 | PSW-720L14 | 30V/36A*1 80V/13.5A*1 720W Multi-Range DC Power Supply | D9 | | PSB-003 | Accessory Parallel Connection kit (for horizontal installation), | D31 | PSW-720L15 | 30V/36A*1 160V/7.2A*1 720W Multi-Range DC Power Supply | D9 | | | Kit includes: (PSB-007 Joint Kit, Horizontal bus bar x 2 , PSB-005 x1) | | PSW-720L22 | 40V/27A*2 720W Multi-Range DC Power Supply | D9 | | PSB-004 | Accessory Parallel Connection kit (for vertical installation) Kit | D31 | PSW-720L24 | 40V/27A*1 80V/13.5A*1 720W Multi-Range DC Power Supply | D9 | | | includes:(PSB-007 Joint Kit, Verical bus bar x 2, PSB-005x1) | | PSW-720L25 | 40V/27A*1 160V/7.2A*1 720W Multi-Range DC Power Supply | D9 | | PSB-005 | Accessory Parallel Connection Signal Cable | D31 | PSW-720L44 | 80V/13.5A*2 720W Multi-Range DC Power Supply | D9 | | PSB-006
PSB-007 | Accessory Serial Connection Signal Cable | D31 | PSW-720L45 | 80V/13.5A*1 160V/7.2A*1 720W Multi-Range DC Power Supply | D9 | | P3B-007 | Accessory Joint Kit: Includes 4 Joining plates, [M3x6]screws x 4 ; [M3x8]screw x 2 | D31 | PSW-720L55 | 160V/7.2A*2 720W Multi-Range DC Power Supply | D9 | | PSB-008 | Accessory RS232C Cable (PSB-2000 Only) | D31 | PSW-720H66 | 250V/4.5A*2 720W Multi-Range DC Power Supply | D9 | | PSB-2400H | 400W Multi-Range Programmable Switching DC Power Supply | D31 | PSW-720H68 | 250V/4.5A*1 800V/1.44A*1 720W Multi-Range DC Power Supply | D9 | | PSB-2400L | 400W Multi-Range Programmable Switching DC Power Supply | D31 | PSW-720H88 | 800V/1.44A*2 720W Multi-Range DC Power Supply | D9 | | PSB-2400L2 | 800W Multi-Range, 2-Channel, Programmable Switching | D31 | PSW800-1.44 | 360W Multi-Range Programmable Switching DC Power Supply | D15 | | . 35 2 10022 | DC Power Supply | 551 | PSW800-2.88 | 720W Multi-Range Programmable Switching DC Power Supply | D15 | | PSB-2800H | 800W Multi-Range Programmable Switching DC Power Supply | D31 | PSW800-2.88
PSW800-4.32 | 0 0 0 11.7 | D15 | | PSB-2800L | 800W Multi-Range Programmable Switching DC Power Supply | D31 | PSW800-4.32
PSW80-13.5 | 1080W Multi-Range Programmable Switching DC Power Supply | D15 | | PSB-2800LS | 800W Slave (Booster) Unit For Current Extension Only | D31 | PSW80-13.5
PSW80-27 | 360W Multi-Range Programmable Switching DC Power Supply | | | PSH-2018A | 360W Programmable Switching DC Power Supply | D33 | | 720W Multi-Range Programmable Switching DC Power Supply | D15 | | PSH-2018A
PSH-3610A | 360W Programmable Switching DC Power Supply 360W Programmable Switching DC Power Supply | D33 | PSW80-40.5 | 1080W Multi-Range Programmable Switching DC Power Supply | D15 | | PSH-3620A | 720W Programmable Switching DC Power Supply | D33 | PSW-1080L111 | 30V/36A*3 1080W Multi-Range DC Power Supply | D9 | | PSH-3630A | 1080W Programmable Switching D.C. Power Supply | D33 | PSW-1080L112 | 30V/36A*2 40V/27A*1 1080W Multi-Range DC Power Supply | D9 | | | | | PSW-1080L114 | 30V/36A*2 80V/13.5A*1 1080W Multi-Range DC Power Supply | D9 | | PSP-2010 | 200W Programmable Switching DC Power Supply | D34 | PSW-1080L115 | 30V/36A*2 160V/7.2A*1 1080W Multi-Range DC Power Supply | D9 | | PSP-405 | 200W Programmable Switching DC Power Supply | D34 | PSW-1080L122 | 30V/36A*1 40V/27A*2 1080W Multi-Range DC Power Supply | D9 | | PSP-603 | 200W Programmable Switching DC Power Supply | D34 | PSW-1080L124 | 30V/36A*1 40V/27A*1 80V/13.5A*1 1080W Multi-Range | D9 | | PSS-2005 | 100W Programmable Linear DC Power Supply | D61 | | DC Power Supply | | | PSS-3203 | 96W Programmable Linear DC Power Supply | D61 | PSW-1080L125 | 30V/36A*1 40V/27A*1 160V/7.2A 1080W Multi-Range | D9 | | PST-3201 | 96W Triple Output Programmable DC Power Supply | D64 | | DC Power Supply | | | PST-3202 | 158W Triple Output Programmable DC Power Supply | D64 | PSW-1080L144 | 30V/36A*1 80V/13.5A*2 1080W Multi-Range DC Power Supply | D9 | | PSU 6-200 | 1200W Programmable Switching DC Power Supply | D19 | PSW-1080L145 | 30V/36A*1 80V/13.5A*1 160V/7.2A*1 1080W Multi-Range | D9 | | PSU 8-180 | 1440W Programmable Switching DC Power Supply | D19 | | DC Power Supply | | | PSU 12.5-120 | 1500W Programmable Switching DC Power Supply | D19 | PSW-1080L155 | 30V/36A*1 160V/7.2A*2 1080W Multi-Range DC Power Supply | D9 | | PSU 15-100 | 1500W Programmable Switching DC Power Supply | D19 | PSW-1080L222 | 40V/27A*3 1080W Multi-Range DC Power Supply | D9 | | PSU 20-76 | 1520W Programmable Switching DC Power Supply | D19 | PSW-1080L224 | 40V/27A*2 80V/13.5A*1 1080W Multi-Range DC Power Supply | D9 | | PSU 30-50 | 1500W Programmable Switching DC Power Supply | D19 | PSW-1080L225 | 40V/27A*2 160V/7.2A*1 1080W Multi-Range DC Power Supply | D9 | | PSU 40-38 | 1520W Programmable Switching DC Power Supply | D19 | PSW-1080L244 | 40V/27A*1 80V/13.5A*2 1080W Multi-Range DC Power Supply | D9 | | PSU 50-30 | 1500W Programmable Switching DC Power Supply | D19 | PSW-1080L245 | 40V/27A*1 80V/13.5A*1 160V/7.2A*1 1080W Multi-Range | D9 | | PSU 60-25 | 1500W Programmable Switching DC Power Supply | D19 | | DC Power Supply | | | PSU 80-19 | 1520W Programmable Switching DC Power Supply | D19 | PSW-1080L255 | 40V/27A*1 160V/7.2A*2 1080W Multi-Range DC Power Supply | D9 | | PSU 100-15 | 1500W Programmable Switching DC Power Supply | D19 | PSW-1080L444 | 80V/13.5A*3 1080W Multi-Range DC Power Supply | D9 | | PSU 150-10 | 1500W Programmable Switching DC Power Supply | D19 | PSW-1080L445 | | D9 | | PSU 300-5 | 1500W Programmable Switching DC Power Supply | D19 | | 80V/13.5A*2 160V/7.2A*1 1080W Multi-Range DC Power Supply | | | PSU 400-3.8 | 1520W Programmable Switching DC Power Supply | D19 | PSW-1080L455
PSW-1080L555 | 80V/13.5A*1 160V/7.2A*2 1080W Multi-Range DC Power Supply | D9
D9 | | PSU 600-2.6 | 1560W Programmable Switching DC Power Supply | D19 | | 160V/7.2A*3 1080W Multi-Range DC Power Vupply | | | PSU-001 | Accessory Front Panel Filter kit(factory Installed) | D19 | PSW-1080H666 | 250V/4.5A*3 1080W Multi-Range DC Power Supply | D9 | | PSU-01A | Accessory Joins a Vertical Stack of 2 PSU Units Together. | D19 | PSW-1080H668 | 250V/4.5A*2 800V/1.44A*1 1080W Multi-Range DC Power Supply | D9 | | | 2U-Sized Handles x2, Joining Plates x2 | | PSW-1080H688 | 250V/4.5A*1 800V/1.44A*2 1080W Multi-Range DC Power Supply | D9 | | PSU-01B | Accessory Bus Bar for 2 units in Parallel Operation | D19 | PSW-1080H888 | 800V/1.44A*3 1080W Multi-Range DC Power Supply | D9 | | PSU-01C | Accessory Cable for 2 units in Parallel Operation | D19 | PSW-001 | Accessory Accessory Kits | D15 | | PSU-02A | Accessory Joins a Vertical Stack of 3 PSU units Together. | D19 | PSW-002 | Accessory Simple IDC Tool | D15 | | | 3U-sized handles x2, Joining Plates x2 | | PSW-003 | Accessory Contact Removal Tool | D15 | | PSU-02B | Accessory Bus Bar for 3 units in Parallel Operation | D19 | PSW-004 | Accessory Basic Accessory Kit for 30V/80V/160V Models | D15 | | PSU-02C | Accessory Cable for 3 units in Parallel Operation | D19 | PSW-005 | Accessory Series Operation Cable for 2 units(for 30V/80V/160V) | D15 | | PSU-03A | Accessory Joins a Vertical Stack of 4 PSU units Together. | D19 | PSW-006 | Accessory Parallel Operation Cable for 2 units | D15 | | | 4U-sized Handles x2, Joining Plates x2 | | PSW-007 | Accessory Parallel Operation Cable for 3 units | D15 | | PSU-03B | Accessory Bus Bar for 4 units in Parallel Operation | D19 | PSW-008 | Accessory Basic Accessory Kit for 250V/800V Models | D15 | | PSU-03C | Accessory Cable for 4 units in Parallel Operation | D19 | PSW-009 | Accessory Output Terminal Cover for 30V/80V/160V Models | D15 | | PSU-232 | Accessory RS232 Cable with DB9 Connector kit | D19 | PSW-010 | Accessory Large Filter (Type II/III) | D15 | | PSU-485 | Accessory RS485 Cable with DB9 Connector kit | D19 | PSW-011 | Accessory Output Terminal Cover for 250V/800V Models | D15 | | PSU-GPIB | Accessory PSU GPIB Interface Card (Factory Installed) | D19 | PSW-012 | Accessory High Voltage Output Terminal for 250V/800V Model | D15 | | PSU-ISO-I | Accessory Isolated Current Remote Control Card | D19 | SP | | | | | (Factory Installed) | 20 TO 10 | 34 | | | | PSU-ISO-V | Accessory Isolated Voltage Remote Control Card | D19 | SPD-3606 | 375W, 3-Channel, Programmable Switching DC Power Supply | D36 | | | (Factory Installed) | | SPS-1230 | 360W Switching DC Power Supply | D35 | | PSW160-14.4 | 720W Multi-Range Programmable Switching DC Power Supply | D15 | SPS-1820 | 360W Switching DC Power Supply | D35 | | PSW160-21.6 | 1080W Multi-Range Programmable Switching DC Power Supply | D15 | SPS-2415 | 360W Switching DC Power Supply | D35 | | | | D15 | SPS-3610 | 360W Switching DC Power Supply | D35 | | PSW/160.7 2 | | | | | | | PSW160-7.2
PSW250-13.5 | 360W Multi-Range Programmable Switching DC Power Supply
1080W Multi-Range Programmable Switching DC Power Supply | D15 | SPS-606 | 360W Switching DC Power Supply | D35 | Stemming from the design and manufacture demands of electronic industries, GW Instek offers diverse power supply product lines to meet user's demand for a variety of applications. Based on different needs, the product lines can be divided into several categories including DC Power Supply, AC Power Source, DC Electronic Load and Source Measure Unit. For DC Power Supply, the products can be briefly categorized by the following types, Technic, Programmable or Non-programmable, Single or Multiple Outputs, High Precision or Affordable Price, Dual Range and Wide Combinations of Voltage and Current, which can be selected to meet the application requirements. Precision source meter is the latest product offering a four-quadrant power supply, which can accurately utilize voltage or current and measure voltage and/or current at the same time. GW Instek offers more than 100 power supply products, Which are suitable for the requirements of Electronic Assembly Testing, Education, Component Testing, Wireless Product Testing, Burn-in, Battery-Power Product Testing
Automotive, Aerospace industries and so on. #### **PRODUCTS** - Programmable & Single Channel DC Power Supply - Non-Programmable & Single Channel DC Power Supply - · Programmable & Multiple Channel DC Power Supply - Non-Programmable & Multiple Channel DC Power Supply - Source Measure Unit #### GENERAL SELECTION GUIDE OF POWER SUPPLY BY APPLICATION | Series | Education | R&D/ Research Lab | Production Testing | ATE for Production | Burn-IN | Page | |--------------------|-----------|-------------------|--------------------|--------------------|---------|--------| | PSW-Multi Series | | V | V | ٧ | V | D9-14 | | PSW-Series | | ٧ | V | ٧ | V | D15-18 | | PSU-Series | | ٧ | V | ٧ | ٧ | D19-26 | | PFR-Series | | V | | V | | D27-28 | | PSB-2000 Series | | V | V | V | V | D29-32 | | PSH-Series | | V | V | V | V | D33 | | PSP-Series | V | V | | V | | D34 | | SPS-Series | | | V | V | V | D35 | | SPD-3606 | ٧ | V | V | | ٧ | D36 | | GSM-20H10 | V | V | V | V | | D37-40 | | PPH-Series | | V | V | | V | D41-44 | | PPX-Series | | V | V | | V | D45-49 | | GPP-3060/6030/3650 | | V | V | V | V | D50-52 | | GPP-3610H/7250 | | V | V | V | V | D54-57 | | GPP-x323 Series | ٧ | V | V | | V | D58-59 | | GPD-Series | V | V | V | | | D60 | | PSS-Series | | V | V | V | | D61 | | PPE-3323 | V | V | V | V | | D62 | | PPT-Series | V | ٧ | V | V | | D63 | | PST-Series | V | V | V | V | | D64 | | GPE-3060/6030 | V | V | V | | | D65-67 | | GPE-x323 | ٧ | V | V | | | D68 | | GPS-x303 Series | ٧ | V | V | | | D69 | | GPC-Series | V | V | V | | | D70 | | GPR-H Series | | V | V | | V | D71 | | GPR-M Series | | V | V | | V | D72 | | GPS-Series | V | V | V | | | D73 | #### GENERAL SELECTION GUIDE OF DC POWER SUPPLY BY TECHNIC | Technic | Channel | Programmability | Display | Model Series | Page | |--------------|---------|------------------|---------|--|--------| | | 1 | | LED | PSW-Multi Series | D9-14 | | | 1 | | LED | PSW-Series | D15-18 | | | 1 | 1 | LED | PSU-Series | D19-26 | | | 1 | Programable | LED | PFR-Series | D27-28 | | JE 220 A. C. | 1 | | LED | PSB-2400L/PSB-2800L/PSB-2400H/PSB-2800H/PSB-2800LS | D29-32 | | Switching | 1 | | LCD | PSH-Series | D33 | | | 1 | ĺ | LCD | PSP-Series | D34 | | | 1 | Non-Programable | LED | SPS-Series | D35 | | | 2 | Programable | LED | PSB-2400L2 | D29-32 | | | 3 | Non-Programable | LED | SPD-3606 | D36 | | 2 | 1 | | LCD | PPH-1503 | D41-44 | | | 1 | | LCD | GSM-20H10 | D37-40 | | | 1 | Programable | LCD | GPP-1326 | D58-59 | | | 1 | | LCD | PPX-Series | D45-49 | | | 1 | 1 | LCD | PSS-Series | D61 | | | 1 | | LED | GPR-H Series | D71 | | | 1 |] _N p | LED | GPR-M Series | D72 | | | 1 | Non-Programable | LED | GPS-1830D/GPS-1850D/GPS-3030D/GPS-3030DD | D73 | | | 1 | | LCD | GPE-1326 | D68 | | | 2 | | LCD | PPH-1503D/PPH-1506D/PPH-1510D | D41-44 | | | 3 | 1 | LCD | GPP-3060/GPP-6030 | D50-53 | | | 3 | 1 | LCD | GPP-3610H | | | | 3 | 1 | LCD | GPP-7250 | D54-57 | | | 2 | 1 | | GPP-2323 | | | | 3 | 1 | LCD | GPP-3323 | D58-59 | | Linear | 4 | Dunamamahla | | GPP-4323 | | | Linear | 2 | Programable | | GPD-2303S | | | | 3 | 1 | LED | GPD-3303S | D60 | | | 4 | | | GPD-4303S | | | | 3 | ĺ | LED | PPE-3323 | D62 | | | 3 | | LED | PPT-Series | D63 | | | 3 | | LED | PST-3201 | D64 | | | 3 | | LED | PST-3202 | D04 | | | 3 | | LCD | GPE-3060 | DCE 67 | | | 3 | | LCD | GPE-6030 | D65-67 | | | 2 | | | GPE-2323 | | | | 3 | | LCD | GPE-3323 | D68 | | | 4 | Non-Programable | | GPE-4323 | | | | 2 | | | GPS-2303 | | | | 3 | | LED | GPS-3303 | D69 | | | 4 | | | GPS-4303 | | | | 3 | | LED | GPC-Series | D70 | #### GENERAL SELECTION GUIDE OF DC POWER SUPPLY BY CHANNEL | Channel | Programmability | Technic | Display | Model Series | Page | |------------------|-----------------|-----------|---------|--|--------| | | | | LED | PSW-Series | D15-18 | | | | - | LED | PSU-Series | D19-26 | | | | Switching | LED | PFR-Series | D27-28 | | | | Switching | LED | PSB-2400L/PSB-2800L/PSB-2400H/PSB-2800H/PSB-2800LS | D29-32 | | | | | LCD | PSH-Series | D33 | | | Programable | | LCD | PSP-Series | D34 | | | Programable | | LCD | PPH-1503 | D41-44 | | | | | LCD | GSM-20H10 | D37-40 | | Single Channel | | Linear | LCD | GPP-7250/3610H | D54-57 | | | | Linear | LCD | GPP-1326 | D58-59 | | | | | LCD | PPX-Series | D45-49 | | | | (5 | LCD | PSS-Series | D61 | | | | Switching | LED | SPS-Series | D35 | | | Non-Programable | Linear | LCD | GPE-1326 | D68 | | | | | LED | GPR-H Series | D71 | | | | | LED | GPR-M Series | D72 | | | | | LED | GPS-1830D/GPS-1850D/GPS-3030D/GPS-3030DD | D73 | | | | Switching | LED | PSB-2400L2 | D29-32 | | | | | LED | PSW-Multi Series | D9-14 | | | | | LCD | PPH-1503D/PPH-1506D/PPH-1510D | D41-44 | | | | | LCD | GPP-3060/GPP-6030/GPP-3650 | D50-53 | | | Programable | | LCD | GPP-2323/GPP-3323/GPP-4323 | D58-59 | | | Frogramable | Linear | LED | GPD-Series | D60 | | | | Lilleal | LED | PPE-3323 | D62 | | Multiple Channel | | | LED | PPT-Series | D63 | | | | | LED | PST-3201 | D64 | | | | | LED | PST-3202 | D64 | | | | Switching | LED | SPD-3606 | D36 | | | | | LCD | GPE-3060/6030 | D65-67 | | | Non-Programable | Linear | LCD | GPE-2323/GPE-3323/GPE-4323 | D68 | | | | Linear | LED | GPS-x303 Series | D69 | | | | | LED | GPC-Series | D70 | #### PROGRAMMABLE & SINGLE CHANNEL DC POWER SUPPLY | 8 180 1440 FSU 8-180 LED Switching R5-232, R5-485, USB, LAN, Analog Control, (OPI)CPIB 155 100 1500 FSU 8-180 LED Switching R5-232, R5-485, USB, LAN, Analog Control, (OPI)CPIB 155 100 1500 FSU 8-195 LED Switching R5-232, R5-485, USB, LAN, Analog Control, (OPI)CPIB 190 1520 FSU 8-195 LED Switching R5-232, R5-485, USB, LAN, Analog Control, (OPI)CPIB 190 1520 FSU 8-195 LED Switching R5-232, R5-485, USB, LAN, Analog Control, (OPI)CPIB 190 1520 FSU 8-195 LED Switching R5-232, R5-485, USB, LAN, Analog Control, (OPI)CPIB 190 1520 FSU 8-195 LED Switching R5-232, R5-485, USB, LAN, Analog Control, (OPI)CPIB 190 190 190 190 190 190 190 190 190 190 | Voltage(V) | Current(A) | Total Power(W) | Model Name | Display | Technic | Interface | Page | |--|------------|------------|----------------|----------------------------|---------|-----------|---|-------------------| | S | | | | | | | | | | 15 | | | N. W. W. W. | 27 37 37 37 37 37 37 37 37 | | | | | | 30 | 15 | | | | | | | 20000000 | | 80 | 30 | 50 | 1500 | PSU 30-50 | LED | | | D19-26 | | 9 | 50 | 30 | 1500 | PSU 50-30 | LED | Switching | RS-232, RS-485, USB, LAN, Analog Control, (Opt)GPIB | | | 10 | 80 | 19 | 1520 | PSU 80-19 | LED | Switching | RS-232, RS-485, USB, LAN, Analog Control, (Opt)GPIB | | | 17.5 17.0 15.00 PSU 12.5-120 LED Switching S-322, RS-485, LSB, LAN, Analog Control, (Opt)CPIB D19-16 D | 9 | - 5 | 45 | PPH-1503 | LCD | Linear | USBCDC, LAN, GPIB | D41-44 | | 15 | 10 | 5 | 50 | PPX-1005 | LCD | Linear | USBCDC, LAN, RS-232, RS-485, (Opt)GPIB | D45-49 | | 20 | 12.5 | 120 | 1500 | PSU 12.5-120 | LED | Switching | RS-232, RS-485, USB, LAN, Analog Control, (Opt)GPIB | D19-26 | | 20 | 15 | 3 | 45 | PPH-1503 | LCD | Linear | USBCDC, LAN, GPIB | D41-44 | | 20 5 100 PPX-2005 LCD Linear | 20 | 1 | 20 | GSM-20H10 | LCD | Linear | RS-232, USBTMC, LAN, GPIB | D37-40 | | 20 5 100 PSX-2005 LCD Linear LCD Linear LCD Linear LCD Linear LCD Linear LCD | 20 | 2 | 40 | PPX-2002 | LCD | Linear | USBCDC, LAN, RS-232, RS-485, (Opt)GPIB | D45.49 | | 20 | 20 | 5 | 100 | PPX-2005 | LCD | Linear | USBCDC, LAN, RS-232, RS-485, (Opt)GPIB | D45-45 | | 20 | 20 | 5 | 100 | PSS-2005 | LCD | Linear | RS-232, (Opt)GPIB | D61 | | 20 | 20 | | 200 | PSP-2010 | LCD | Switching | RS-232 | D34 | | 30 36 360 PSW 30.36 LED Switching LAN, USB, Analog Control, (Opt)CPIB, RS-232 D15.18 | | | 360 | PSH-2018A | LCD | | | 554 | | 19-18
19-18 19-1 | 20 | | 1520 | PSU 20-76 | LED | Switching | RS-232, RS-485, USB, LAN, Analog Control, (Opt)GPIB | D33 | | 108 108 1080 PSW 30-108 LED Switching LAN, USB, Analog Control, (Opt)GPIB, RS-232 1080 PSS-3203 LCD Linear Linear Linear LAN, USB, Analog Control, (Opt)GPIB, RS-232 105-18 | | | 360 | | LED | Switching | LAN, USB, Analog Control, (Opt)GPIB, RS-232 | | | 32 3 96 PSS-3293 LCD Linear RS-232, (Opt)GPIB D61 | | | | | | | | D15-18 | | 32 | | | | | | | | | | 156 | | | | | | | | D61 | | 36 3 108 PPX.3603 LCD Linear USBCDC, LAN, RS-232, RS-485, LOPS)CPIB D54.57 | | | | | _ | | | D58-59 | | 36 3 108 PPX-3603 LCD Linear USBCDC, RS-232, RS-485, (DPJCPIB D54-57 S45 D54-57 | 11.75.05 | | 150.507 | | | | | D45-49 | | 36 10 360 | | | | | _ | | , | | | 36 20 720 PSH-3620A LCD Switching RS-232, (Opt)CPIB | | | 2,3131,07 | GPP-3610H | | | USBCDC, RS-232, (Opt)LAN, GPIB | D54-57 | | 36 30 1080 PSH-3630A LCD Switching RS-232, (Opt)CPIB | | | | | | | | | | 40 27 360 | | | | | | | | D33 | | 40 54 720 PSW 40-54 LED Switching LAN, USB, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | | | | | 40 81 1080 PSW 40-81 LED Switching LAN, USB, Analog Control, (Opt)GPIB, RS-232 D34 D40 S 200 PSP-405 LCD Switching RS-232, RS-485, USB, LAN, Analog Control, (Opt)GPIB D19-26 D1 | | | | | | | | | | 40 S 200 | | | | | | | | D15-18 | | 100 38 1520 PSU 40-38 LED Switching RS-232, RS-485, USB, LAN, Analog Control, (Opt)GPIB D19-26 | | | | | | | | | | Decomposition Decompositio | | | | | | | | | | Columbridge | | | | | | | | | | RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 | | | 30 /A H / | | | | | | | To To To To To To To To | | | | | | | | | | Society | 1727-172 | | | | | U | | 2015/7/2020 1 | | Solution | | | | | | | | D54-57 | | 80 | | | | | | | | D15-18 | | 80 40.5 1080 PSW 80-40.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB D15-18 | | | | | | | | D20 22 | | 80 80 PSB-2800L LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 80 80 800 PSB-2800LS LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 100 1 100 PPX-10H01 LCD Linear USBCDC, LAN, RS-232, RS-485, (Opt)GPIB D45-49 100 15 1500 PSU 100-15 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 150 10 1500 PSU 150-10 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 160 7.2 360 PSW 160-7.2 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 160 11.4 720 PSW 160-21.6 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 200 0.1 20 GSM-20H10 LCD Linear RS-232, USBTMC, LAN, (Opt)GPIB, RS-232 D27-28 250 2 100 PFR-100M LED | | | | | | | | 4 100 100 100 100 | | 80 80 800 PSB-2800LS LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB 100 1 100 PPX-10H01 LCD Linear USBCDC, LAN, RS-232, RS-485, (Opt)GPIB D45-49 100 15 1500 PSU 100-15 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB 150 10 1500 PSU 150-10 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB 160 7.2 360 PSW 160-7.2 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 160 14.4 720 PSW 160-14.4 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 160 21.6 1080 PSW 160-21.6 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB D37-40 20 GSM-20H10 LCD Linear RS-232, USBTMC, LAN, (Opt)GPIB D37-40 250 2 100 PFR-100M LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D27-28 250 4.5 360 PSW 250-4.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D27-28 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 | | | | | | | | D15-18 | | 100 | | | 175.5.70 | | | | | D29-32 | | 150 | | | | | | | , | D45 40 | | 150 | | | | | | | | D43-43 | | 160 7.2 360 PSW 160-7.2 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 160 14.4 720 PSW 160-14.4 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 160 21.6 1080 PSW 160-21.6 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB D37-40 200 0.1 20 GSM-20H10 LCD Linear RS-232, USBTMC, LAN, (Opt)GPIB D37-40 250 2 100 PFR-100M LED Switching RS-232, RS-485, USBCDC, LAN, (Opt) GPIB, RS-232 D27-28 250 4.5 360 PSW 250-4.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 400 3.8 1520 PSU 300-5 <td></td> <td></td> <td>1779/9/2707</td> <td></td> <td></td> <td></td> <td></td> <td>D19-26</td> | | | 1779/9/2707 | | | | | D19-26 | | 160 14.4 720 PSW 160-14.4 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 160 21.6 1080 PSW 160-21.6 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB D15-18 200 0.1 20 GSM-20H10 LCD Linear RS-232, USBTMC, LAN, (Opt)GPIB D37-40 250 2 100 PFR-100M LED Switching RS-232, RS-485, USBCDC, LAN, (Opt) GPIB, RS-232 D27-28 250 4.5 360 PSW 250-4.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 400 3.8 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 600 2.6 1560 PSU 60 | | | | | _ | | | | | 160 21.6 1080 PSW 160-21.6 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB 200 0.1 20 GSM-20H10 LCD Linear RS-232, USBTMC, LAN, (Opt)GPIB D37-40 250 2 100 PFR-100M LED Switching RS-232, RS-485, USBCDC, LAN, (Opt) GPIB, RS-232 D27-28 250 4.5 360 PSW 250-4.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 300 5 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB 400 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB D15-18 800 3 400 PSB-2400H LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 D1 | | | | | | | | D15-18 | | 200 0.1 20 GSM-20H10 LCD Linear RS-232, USBTMC, LAN, (Opt)GPIB D37-40 250 2 100 PFR-100M LED Switching RS-232, RS-485, USBCDC, LAN, (Opt) GPIB, RS-232 D27-28 250 4.5 360 PSW 250-4.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D27-28 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB,
RS-232 D15-18 300 5 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 600 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 800 1.44 360 | | | | | _ | | | D13-10 | | 250 2 100 PFR-100M LED Switching RS-232, RS-485, USBCDC, LAN, (Opt) GPIB, RS-232 D27-28 250 4.5 360 PSW 250-4.5 LED Switching LAN, USBCDC, Analog Control, (Opt) GPIB, RS-232 D15-18 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt) GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt) GPIB, RS-232 D15-18 300 5 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt) GPIB D19-26 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt) GPIB D19-26 600 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt) GPIB D19-26 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt) GPIB, RS-232 D15-18 800 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>D37-40</td></td<> | | | | | | | | D37-40 | | 250 4.5 360 PSW 250-4.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 300 5 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 600 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 | | | | | _ | | | | | 250 9 720 PSW 250-9 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 300 5 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 600 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB D29-32 800 3 400 PSB-2400H LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 4.32 | | | 1/2/1// | | | | | | | 250 13.5 1080 PSW 250-13.5 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 300 5 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 600 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 3 400 PSB-2400H LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | | | D15-18 | | 300 5 1500 PSU 300-5 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 600 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 3 400 PSB-2400H LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB, RS-232 D29-32 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | - | , | | | 400 3.8 1520 PSU 400-3.8 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 600 2.6 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB D19-26 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 3 400 PSB-2400H LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | | | | | 1560 PSU 600-2.6 LED Switching RS-232, RS-485, USBCDC, LAN, Analog Control, (Opt)GPIB | | | | | | | | D19-26 | | 800 1.44 360 PSW 800-1.44 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 800 3 400 PSB-2400H LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | | | | | 800 2.88 720 PSW 800-2.88 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 800 3 400 PSB-2400H LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | U | | | | 800 3 400 PSB-2400H LED Switching RS-232, USBCDC, Analog Control, (Opt)GPIB D29-32 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | | | D15-18 | | 800 4.32 1080 PSW 800-4.32 LED Switching LAN, USBCDC, Analog Control, (Opt)GPIB, RS-232 D15-18 | | | | | | | | D29-32 | | | | | | | | - | | | | | 800 | 6 | 800 | PSB-2800H | LED | Switching | RS-232, USBCDC, Analog Control, (Opt)GPIB | D29-32 | #### NON-PROGRAMMABLE & SINGLE CHANNEL DC POWER SUPPLY | Voltage(V) | Current(A) | Total Power(W) | Model Name | Display | Technic | Remark | Page | |------------|------------|----------------|------------|---------|-----------|-------------------|------| | 8 | 30 | 240 | GPR-0830HD | LED | Linear | Rear-Panel Output | D71 | | 12 | 30 | 360 | SPS-1230 | LED | Switching | Rear-Panel Output | D35 | | 18 | 3 | 54 | GPS-1830D | LED | Linear | Rear-Panel Output | D73 | | 18 | 5 | 90 | GPS-1850D | LED | Linear | | D/3 | | 18 | 10 | 180 | GPR-1810HD | LED | Linear | Rear-Panel Output | D72 | | 18 | 20 | 360 | SPS-1820 | LED | Switching | Rear-Panel Output | D35 | | 18 | 20 | 360 | GPR-1820HD | LED | Linear | Rear-Panel Output | D71 | | 24 | 15 | 360 | SPS-2415 | LED | Switching | | D35 | | 30 | 3 | 90 | GPS-3030D | LED | Linear | Rear-Panel Output | D.72 | | 30 | 3 | 90 | GPS-3030DD | LED | Linear | | D73 | | 30 | 6 | 180 | GPR-3060D | LED | Linear | Rear-Panel Output | D72 | | 32 | 6 | 192 | GPE-1326 | LCD | Linear | | D68 | | 35 | 10 | 350 | GPR-3510HD | LED | Linear | Rear-Panel Output | D71 | | 36 | 10 | 360 | SPS-3610 | LED | Switching | Rear-Panel Output | D35 | | 60 | 3 | 180 | GPR-6030D | LED | Linear | Rear-Panel Output | D72 | | 60 | 6 | 360 | SPS-606 | LED | Switching | Rear-Panel Output | D35 | | 60 | 6 | 360 | GPR-6060D | LED | Linear | Rear-Panel Output | | | 75 | 5 | 375 | GPR-7550D | LED | Linear | Rear-Panel Output | D71 | | 110 | 3 | 330 | GPR-11H30D | LED | Linear | Rear-Panel Output | D/1 | | 300 | 1 | 300 | GPR-30H10D | LED | Linear | Rear-Panel Output | | #### PROGRAMMABLE & MULTIPLE CHANNEL DC POWER SUPPLY | | /oltage(V) | Current(A) | Power per CH | Total Power(\V/ | Model Name | Channel | Display | Technic | Interface | Page | |------------|-----------------------|--------------|--------------|-----------------|---|---------|---------
--|--|--| | | 15 | 3 | 45 | lotal Fower(w | Model Name | Channel | Display | Technic | Interface | rage | | CH1 | 9 | 5 | 45 | 63 | PPH-1503D | 2 | LCD | Linear | USBTMC, LAN, GPIB | | | CH2 | 12 | 1.5 | 18 | | | | | | 535 A | 1 | | CH1 | 15
9 | 3
5 | 45
45 | 81 | PPH-1506D | 2 | LCD | Linear | USBTMC, LAN, GPIB | 755 52565 7 787 . | | CH2 | 12 | 3 | 36 | 8' | FFH-1300D | | LCD | Linear | OSBI MC, LAN, GFIB | D41-44 | | | 15 | 3 | 45 | | | | | 11 - 11 | 7 | 1 | | CH1 | 9 | 5 | 45 | 81 | PPH-1510D | 2 | LCD | Linear | USBTMC, LAN, GPIB | | | CH2 | 4.5
12 | 10
3 | 45
36 | | | | | II TOUR | | | | CH1 | 18 | 3 | 54 | 20000 | 5 | 75.0 | 1910/0 | 1.654.4 | 254.13.76 | | | CH2 | 18 | 3 | 54 | 138 | PPT-1830 | 3 | LED | Linear | GPIB | D63 | | CH3 | 6
30 | 5 | 30
180 | _ | 1 | | | | | | | CH1 | 30 | 6 | 180 | 385 | GPP-3060 | 3 | LCD | Linear | USBCDC, RS-232, | D50-53 | | CH3 | 1.8/2.5/3.3/5.0 | 5 | 25 | | | | | | (Opt)LAN, GPIB | D30-33 | | CH1 | 30 | 3 | 90 | 180 | GPD-2303S | 2 | LED | Linear | USBCDC | | | CH2
CH1 | 30
30 | 3 | 90
90 | 776-2 | | | | 1537/4 | 201 27 1 | - 1 | | CH2 | 30 | 3 | 90 | 195 | GPD-3303S | 3 | LED | Linear | USBCDC | | | CH3 | 2.5/3.3/5.0 | 3 | 15 | | 100 × 00 × 00 × 00 × 00 × 00 × 00 × 00 | 5757 | 10.7010 | 1 100000 | 40.57,737,8338 | 1000 | | CH1 | 30 | 3 | 90 | | | | | A comment | | D60 | | CH2
CH3 | 30
5 | 3 | 90
15 | 195 | GPD-4303S | 4 | LED | Linear | USBCDC | ******** | | CH4 | 5 | 1 | 5 | | | | | | | | | CH1 | 30 | 3 | 90 | | | _ | | The contracts | | 1 | | CH2 | 30 | 3 | 90 | 195 | GPD-3303D | 3 | LED | Linear | USBCDC | | | CH3 | 2.5/3.3/5.0 | 3 | 15
96 | | CDD CTTT | - | | | USBCDC, RS-232, | | | CH2 | 32 | 3 | 96 | 192 | GPP-2323 | 2 | LCD | Linear | (Opt)LAN, GPIB |] | | CH1 | 32 | 3 | 96 | 222 | CDD 2202 | | 165 | 11 | USBCDC, RS-232, |] | | CH2
CH3 | 32
1.8/2.5/3.3/5.0 | 3
5 | 96
25 | 217 | GPP-3323 | 3 | LCD | Linear | (Opt)LAN, GPIB | DE0 E0 | | CH3 | 32 | 3 | 96 | | | | | | | D58-59 | | CH2 | 32 | 3 | 96 | 212 | GPP-4323 | 4 | LCD | Linear | USBCDC, RS-232, | | | CH3 | 5 | 1 | 5 | -1.2 | G11-4325 | 770 | Leb | Linear | (Opt)LAN, GPIB | | | CH4
CH1 | 15
32 | 3 | 15
96 | 1 | | | | | | | | CH2 | -32 | 3 | 96 | 207 | PPE-3323 | 3 | LED | Linear | RS-232 | D62 | | CH3 | 3.3 / 5 | 3 | 15 | 20000 | 100-100-100 | 187.5 | A347A | III SANCESCO | 33.86.335 87 | 202 | | CH1 | 36 | 1.5 | 54 | 100 | | | | | caus. | 1200000 | | CH2
CH3 | 36
6 | 1.5 | 54
18 | 126 | PPT-3615 | 3 | LED | Linear | GPIB | D63 | | CH1 | 32 | 2 | 64 | | | | | The same parts | | | | CH2 | 32 | 2 | 64 | 158 | PST-3202 | 3 | LED | Linear | RS-232(O), GPIB | | | CH3 | 6 | 5 | 30 | | | | | The state of s | -1 | D64 | | CH1 | 32
32 | 1 | 32
32 | 96 | PST-3201 | 3 | LED | Linear | RS-232(O), GPIB | 50. | | CH3 | 32 | i | 32 | ,,, | 131-3201 | , | LLD | Linear | K3-232(0), GFIB | | | CH1 | 60 | 3 | 180 | 200,000 | AT 2 A 1 LA 1 LA 2 LA 2 LA 2 LA 2 LA 2 LA | | | I Wastell | USBCDC, RS-232, | | | CH2 | 60 | 3 | 180 | 385 | GPP-6030 | 3 | LCD | Linear | (Opt)LAN, GPIB | D50-53 | | CH3 | 1.8/2.5/3.3/5.0
80 | 5
40 | 25
400 | | | | | | RS-232, USB, Analog Control, | | | CH2 | 80 | 40 | 400 | 800 | PSB-2400L2 | 2 | LED | Switching | (Opt)GPIB | D29-32 | | CH1 | 30 | 36 | 360 | 720 | PSW-720L11 | 2 | LED | Switching | LAN, USB, Analog Control, | | | CH2
CH1 | 30
30 | 36
36 | 360
360 | | | | | | (Opt)GPIB, RS-232
LAN, USB, Analog Control, | - I | | CH2 | 40 | 27 | 360 | 720 | PSW-720L12 | 2 | LED | Switching | (Opt)GPIB, RS-232 | | | CH1 | 30 | 36 | 360 | 720 | PSW-720L14 | 2 | LED | Switching | LAN, USB, Analog Control, | 1 1 | | CH2 | 80 | 13.5 | 360 | 720 | 1011720211 | - | | J | (Opt)GPIB, RS-232 | | | CH1 | 30
160 | 36
7.2 | 360
360 | 720 | PSW-720L15 | 2 | LED | Switching | LAN, USB, Analog Control,
(Opt)GPIB, RS-232 | | | CH1 | 40 | 27 | 360 | 720 | PSW-720L22 | 2 | LED | Switching | LAN, USB, Analog Control, | 1 1 | | CH2 | 40 | 27 | 360 | 720 | P3W-/20L22 | 2 | LED | Switching | (Opt)GPIB, RS-232 |] | | CH1 | 40 | 27 | 360 | 720 | PSW-720L24 | 2 | LED | Switching | LAN, USB, Analog Control, | | | CH2
CH1 | 80
40 | 13.5
27 | 360
360 | 705 | DEW TOOLS | | | E. 1. 1.1 | (Opt)GPIB, RS-232
LAN, USB, Analog Control, | | | CH2 | 160 | 7.2 | 360 | 720 | PSW-720L25 | 2 | LED | Switching | (Opt)GPIB, RS-232 | D9-12 | | CH1 | 80 | 13.5 | 360 | 720 | PSW-720L44 | 2 | LED | Switching | LAN, USB, Analog Control, |] | | CH2
CH1 | 80
80 | 13.5
13.5 | 360
360 | | | | 32000 | | (Opt)GPIB, RS-232
LAN, USB, Analog Control, | | | CH2 | 160 | 7.2 | 360 | 720 | PSW-720L45 | 2 | LED | Switching | (Opt)GPIB, RS-232 | | | CH1 | 160 | 7.2 | 360 | 720 | PSW-720L55 | 2 | LED | Switching | LAN, USB, Analog Control, | 1 1 | | CH2 | 160 | 7.2 | 360 | ,20 | . 541-720233 | | | Juncining | (Opt)GPIB, RS-232 | , I | | CH1
CH2 | 250
250 | 4.5
4.5 | 360
360 | 720 | PSW-720H66 | 2 | LED | Switching | LAN, USB, Analog Control,
(Opt)GPIB, RS-232 | | | CH1 | 250 | 4.5 | 360 | 700 | DCW/ 7201100 | _ | LED | Coult - Live | LAN, USB, Analog Control, | 1 1 | | CH2 | 800 | 1.44 | 360 | 720 | PSW-720H68 | 2 | LED | Switching | (Opt)GPIB, RS-232 | , l | | CH1 | 800 | 1.44 | 360 | 720 | PSW-720H88 | 2 | LED | Switching | LAN, USB, Analog Control, | | | CH2
CH1 | 800
30 | 1.44
36 | 360
360 | | | | | | (Opt)GPIB, RS-232 | \vdash | | CH2 | 30 | 36 | 360 | 1080 | PSW-1080L111 | 3 | LED | Switching | LAN, USB, Analog Control, | | | CH3 | 30 | 36 | 360 | | | | | | (Opt)GPIB, RS-232 | Į 1 | | CH1 | 30 | 36 | 360 | 1080 | PSW-1080L112 | 3 | LED | Switching | LAN, USB, Analog Control, | | | CH2
CH3 | 30
40 | 36
27 | 360
360 | 1080 | P3W-1080L112 | , | LED | Switching | (Opt)GPIB, RS-232 | | | CH1 | 30 | 36 | 360 | | .520.3500 | | | | LAN, USB, Analog Control, | 1 | | CH2 | 30 | 36 | 360 | 1080 | PSW-1080L114 | 3 | LED | Switching | (Opt)GPIB, RS-232 | D9-12 | | CH3 | 80 | 13.5 | 360 | | - | _ | | | | | | CH1 | 30
30 | 36
36 | 360
360 | 1080 | PSW-1080L115 | 3 | LED | Switching | LAN, USB, Analog Control, | | | CH3 | 160 | 7.2 | 360 | | | | | 25 | (Opt)GPIB, RS-232 | | | CH1 | 30 | 36 | 360 | | | 640 | | | LAN, USB, Analog Control, |] | | CH2 | 40 | 27
27 | 360 | 1080 | PSW-1080L122 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | CH3 | 40 | 41 | 360 | | | | | | 1 | | | V | oltogo(M) | Current/A) | Dower nor CH | Total Downs/(V/) | Model Name | Classic | Dicalou | - I · | | Dogo | | | | |------------|-----------|------------|--------------|------------------|-------------------|--------------|--------------|-------------------|--|------|-----------|-------------------|-------| | | oltage(V) | | | Total Power(w) | Model Name | Channel | Display | Technic | Interface | Page | | | | | CH1 | 30 | 36 | 360 | | | | | | LAN, USB, Analog Control, | 1 | | | | | CH2 | 40 | 27 | 360 | 1080 | PSW-1080L124 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 80 | 13.5 | 360 | | | 1 | | | (| | | | | | CH1 | 30 | 36 | 360 | | Delvi 10001 105 | | | | LAN, USB, Analog Control, | | | | | | CH2 | 40 | 27 | 360 | 1080 | PSW-1080L125 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 160 | 7.2 | 360 | | | | | | (0)40.10,100.00 | 4 | | | | | CH1 | 30 | 36 | 360 | | | | | | LAN, USB, Analog Control, | | | | | | CH2 | 80 | 13.5 | 360 | 1080 | PSW-1080L144 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 80 | 13.5 | 360 | | | | | | (0)1/01/10/102 | | | | | | CH1 | 30 | 36 | 360 | | | | | | LAN, USB, Analog Control, | | | | | | CH2 | 80 | 13.5 | 360 | 1080 | PSW-1080L145 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 160 | 7.2 | 360 | | | | | | (| | | | | | CH1 | 30 | 36 | 360 | | | | | | LAN, USB, Analog
Control, | | | | | | CH2 | 160 | 7.2 | 360 | 1080 | PSW-1080L155 | 3 | LED | Switching | (Opt)GPIB, RS-232 | l, | | | | | CH3 | 160 | 7.2 | 360 | | | | | | (| | | | | | CH1 | 40 | 27 | 360 | 3000 | DCIV/ 10001 000 | | 150 | C. Archite | LAN, USB, Analog Control, | | | | | | CH2 | 40 | 27 | 360 | 1080 | PSW-1080L222 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 40 | 27 | 360 | 1 | | | | | C. C | 1 | | | | | CH1 | 40 | 27 | 360 | 3000 | DEIV 10001 004 | | 150 | Control to a | LAN, USB, Analog Control, | 1 | | | | | CH2 | 40 | 27 | 360 | 1080 | PSW-1080L224 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 80 | 13.5 | 360 | | | | | | , , , , | - | | | | | CH1 | 40 | 27 | 360 | 3000 | DCIV/ 1000/ 225 | | | C. D. Line | LAN, USB, Analog Control, | | | | | | CH2 | 40 | 27 | 360 | 1080 | PSW-1080L225 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 160 | 7.2 | 360 | 2 | | | | | | | | | | | CH1 | 40 | 27 | 360 | 3000 | DC1V/ 10001 244 | | LED | C. dalahina | LAN, USB, Analog Control, | | | | | | CH2 | 80 | 13.5 | 360 | 1080 | PSW-1080L244 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 80 | 13.5 | 360 | | | | | | (| | | | | | CH1 | 40 | 27 | 360 | 1080 | DCW/ 10901 245 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2 | 80 | 13.5 | 360 | 1080 | PSW-1080L245 | PSW-1080L245 | F3W-1000LZ43 | F3W-1000LZ43 | 3 | LED | Switching | (Opt)GPIB, RS-232 | D9-12 | | CH3 | 160
40 | 7.2 | 360
360 | | | | - | | - | | | | | | | 160 | | 360 | 1080 | PSW-1080L255 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2
CH3 | 160 | 7.2
7.2 | 360 | 1080 | PSW-1080L255 | 3 LED | Switching | (Opt)GPIB, RS-232 | (Opt)GPIB, RS-232 | | | | | | CH3 | 80 | 13.5 | 360 | | | | | | | Ú. | | | | | CH2 | 80 | 13.5 | 360 | 1080 | PSW-1080L444 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2 | 80 | 13.5 | 360 | 1000 | F3W-1000E444 | , | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH1 | 80 | 13.5 | 360 | 2 | | | | | | 1 | | | | | CH2 | 80 | 13.5 | 360 | 1080 | PSW-1080L445 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2 | 160 | 7.2 | 360 | 1000 | F3W-1000L443 | , | LED | Switching | (Opt)GPIB, RS-232 | 4 | | | | | CH1 | 80 | 13.5 | 360 | | | | | | 1 14. | 1 | | | | | CH2 | 160 | 7.2 | 360 | 1080 | PSW-1080L455 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2 | 160 | 7.2 | 360 | 1000 | . 5 # - 10001-433 | | LLD | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 160 | 7.2 | 360 | | | | | | 2 22 2 | | | | | | CH2 | 160 | 7.2 | 360 | 1080 | PSW-1080L555 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2 | 160 | 7.2 | 360 | 1000 | - 5 W-1000E333 | , | LLD | Switching | (Opt)GPIB, RS-232 | | | | | | CH1 | 250 | 4.5 | 360 | | | | | | 15 Total /4 1 | | | | | | CH2 | 250 | 4.5 | 360 | 1080 | PSW-1080H666 | 3 | LED | Switching | LAN, USB, Analog Control, | 4 | | | | | CH3 | 250 | 4.5 | 360 | 1000 | 1341100011000 | | LLD | Jwitching | (Opt)GPIB, RS-232 | | | | | | CH1 | 250 | 4.5 | 360 | | | | 2 | | | | | | | | CH2 | 250 | 4.5 | 360 | 1080 | PSW-1080H668 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2 | 800 | 1.44 | 360 | 1000 | . 5 # 100011000 | , | LLD | Januaring | (Opt)GPIB, RS-232 | | | | | | CH3 | 250 | 4.5 | 360 | | | | | | 4 100 436 | | | | | | CH1 | 800 | 1,44 | 360 | 1080 | PSW-1080H688 | 3 | LED | Switching | LAN, USB, Analog Control, | 1 | | | | | | 800 | 1.44 | 360 | 1000 | F3 W-1000H000 | 3 | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 800 | 1.44 | 360 | | | | 7 | | 00 TATA 0000 1 | | | | | | CH1 | 800 | 1.44 | 360 | 1080 | PSW-1080H888 | 3 | LED | Switching | LAN, USB, Analog Control, | | | | | | CH2 | 800 | 1.44 | 360 | 1000 | 13 W 100011000 | , | LED | Switching | (Opt)GPIB, RS-232 | | | | | | CH3 | 000 | 1.44 | 300 | | | | | | | | | | | #### NON-PROGRAMMABLE & MULTIPLE CHANNEL DC POWER SUPPLY | Vo | oltage(V) | Current(A) | Power per. CH | Total Power(W) | Model Name | Channel | Display | Technic | Page | |-----|-----------------|------------|---------------|---|---|---------|---------|-----------------|----------| | CH1 | 30 | 6 | 180 | | 20045 AV72-VIVE | | 7.4554 | | NO. 2015 | | CH2 | 30 | 6 | 180 | 375 | SPD-3606 | 3 | LED | Switching | D36 | | CH3 | 5 | 3 | 15 | | | | | 4 | (40000) | | CH1 | 30 | 6 | 180 | n | | | · | 7 -41741674 -67 | V. | | CH2 | 30 | 6 | 180 | 385 | GPE-3060 | 3 | LCD | Linear | | | CH3 | 5 | 5 | 25 | | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | | | DCF C7 | | CH1 | 60 | 3 | 180 | | | | | 7 | D65-67 | | CH2 | 60 | 3 | 180 | 385 | GPE-6030 | 3 | LCD | Linear | | | CH3 | 5 | 5 | 25 | | | , | | | | | CH1 | 32 | 3 | 96 | 192 | GPE-2323 | 2 | LCD | Linear | | | CH2 | 32 | 3 | 96 | 172 | GFE-E3E3 | - | 200 | Linear | | | CH1 | 32 | 3 | 96 | | | | 7/2 | 1 150551 | | | CH2 | 32 | 3 | 96 | 217 | GPE-3323 | 3 | LCD | Linear | | | CH3 | 1.8/2.5/3.3/5.0 | 5 | 25 | 0 | | | | | D68 | | CH1 | 32 | 3 | 96 | 212 | GPE-4323 4 | | | Linear | | | CH2 | 32 | 3 | 96 | | | 4 | LCD | | | | CH3 | 5 | 1 | 5 | | | | | | | | CH4 | 15 | 1 | 15 | | | u s | | | | | CH1 | 30 | 3 | 90 | 180 | GPS-2303 | 2 | LED | Linear | | | CH2 | 30 | 3 | 90 | 100 | | 5 5 2 | | | | | CH1 | 30 | 3 | 90 | 2 | GPS-3303 | 3 | LED | Linear | | | CH2 | 30 | 3 | 90 | 195 | | | | | | | CH3 | 5 | 3 | 15 | 9 | | 9 | | | D69 | | CH1 | 30 | 3 | 90 | | | | | T. UPST. | | | CH2 | 30 | 3 | 90 | 200 | GPS-4303 | 4 | LED | Linear | | | CH3 | 2.2 ~ 5.2 | 1 | 5.2 | 200 | 013 4505 | | LLD | Linear | | | CH4 | 8 ~ 15 | 1 | 15 | 7 | 4 | 2 | 1 | | | | CH1 | 30 | 6 | 180 | 100000000000000000000000000000000000000 | 225/85/89 | 3 19 | 30,500 | | | | CH2 | 30 | 6 | 180 | 375 | GPC-3060D | 3 | LED | Linear | | | CH3 | 5 | 3 | 15 | | | | | | D70 | | CH1 | 60 | 3 | 180 | | | , , | | 1 450200 | D/0 | | CH2 | 60 | 3 | 180 | 375 | GPC-6030D | 3 | LED | Linear | | | CH3 | 5 | 3 | 15 | | | | | L Transfer | | #### **Dual-channel/Triple-channel Programmable Switching DC Power Supply** #### **PSW-Multi Series** USB #### **FEATURES** - * Multi-channel: Maximum 720W for Dualchannel Module and Maximum 1080W for Triple-channel Models: The PSW-Multi Series Aslo Features a New Built-in Function That Allows Individualor Synchronizd Output Control of Eachvoltage Module Output Latency Between Channels with the Same Voltage Module is Less Than 0.1ms - * Multiple Voltage Combinations: Low Voltage Combinations Can be Selected From 30V/ 40V/80V/160V; High Voltage Combinations Can be Selected From 250V/800V - * Advanced Web Server: Executes SCPI Commands; Web Controls Through Server; Data Log; Edit Sequence - * CC/CV Priority Mode Selection is Ideal for **Battery and LED Industries** - * Adjustable Rising and Falling Slew Rate - * 720W/1080W Adopt 1/3, 1/2 Rack Mount Frame Designs (Standard EIA/JIS) - * Standard Communications Interfaces: LAN, USB, External Analog Remote Control Terminal - * Optional Communications Interfaces: GPIB-USB Adapter, RS232-USB Cable - * Support LabVIEW Driver GRA-410-J/E Rack Mount Kit (JIS/EIA) For · PSW-Series PSW-Multi Series is a dual-channel or triple-channel wide range output programmable switching DC power supply. The maximum output power can reach 1080W. There are 13 dual-channel models with a rated power of 720W, and 24 triple-channel models with a rated power of 1080W. The rated voltages of low voltage modules are 30V, 40V, 80V, 160V. The rated voltages of high voltage modules are 250V and The CV/CC priority selection of the PSW-Multi Series is a very useful feature for DUT protection. The conventional power supply normally operates under CV mode when the power output is turned on. This could bring a high inrush current to the capacitive load or current-intensive load at the power output-on stage. Taking the I-V curve verification of LED as an example, it becomes a very challenging task to perform this measurement using a conventional power supply. With LED connected to a power supply under CV mode as the initial setting, when the power output is turned on and the voltage rises to the LED forward voltage, the current will suddenly peak up and exceed the preset value of current limit. Upon detecting this high current, the power supply starts the transition from CV mode to CC mode. Though the current becomes stable after the CC mode being activated, the current spike occurred at the CV and CC crossover point may possibly damage the DUT. At the power output-on stage, the PSW-Multi Series is able to operate under CC priority to limit the current spike occurred at the threshold voltage and therefore protects DUT from the inrush current The adjustable slew rate of the PSW-Multi Series allows users to set for either output voltage or output current, a specific rise time from low to high level transition, and a specific fall time from high to low level transition. This facilitates the characteristic verification of a DUT during voltage or current level changes with controllable slew rates. Most manufacturing tests of lighting device or large capacitor during power output-on are associated with the occurrence of high surge current, which can greatly reduce the life time of the DUT. To prevent inrush current from damaging current-intensive devices, a smooth and slow voltage transition during power On-Off can significantly reduce the pike current and protect the device from high current damage. The OVP and OCP are provided with the PSW-Multi Series. Both OVP and OCP levels can be selected, with default level set at 110%, of the rated voltage/current of the power supply. When any of the protection levels is tripped, the power output will be switched off to protect the DUT. The PSW-Multi Series provides USB Host/Device and LAN interfaces as standard, GPIB-USB adapter and RS232-USB cable as optional. The LabVIEW driver and the Data Logging PC software are supported on all the available interfaces. An analog control/monitoring connector
is also available on the rear panel for external control of power On/Off and external monitoring of power output Voltage and Current. #### **DUAL-CHANNEL MODELS ARE AS FOLLOWS** | MODEL | CH1 | CH2 | SIZE | |------------|--------|--------|-------------| | PSW-720L11 | 30.00V | 30.00V | 1/3 Rack 3U | | PSW-720L12 | 30.00V | 40.00V | 1/3 Rack 3U | | PSW-720L14 | 30.00V | 80.00V | 1/3 Rack 3U | | PSW-720L15 | 30.00V | 160.0V | 1/3 Rack 3U | | PSW-720L22 | 40.00V | 40.00V | 1/3 Rack 3U | | PSW-720L24 | 40.00V | 80.00V | 1/3 Rack 3U | | PSW-720L25 | 40.00V | 160.0V | 1/3 Rack 3U | | PSW-720L44 | 80.00V | 80.00V | 1/3 Rack 3U | | PSW-720L45 | 80.00V | 160.0V | 1/3 Rack 3U | | PSW-720L55 | 160.0V | 160.0V | 1/3 Rack 3U | | PSW-720H66 | 250.0V | 250.0V | 1/3 Rack 3U | | PSW-720H68 | 250.0V | 800.0V | 1/3 Rack 3U | | PSW-720H88 | 800.0V | 800.0V | 1/3 Rack 3U | #### TRIPLE-CHANNEL MODELS ARE AS FOLLOWS | MODEL | CH1 | CH2 | CH3 | SIZE | |--------------|--------|--------|--------|-------------| | PSW-1080L111 | 30.00V | 30.00V | 30.00V | 1/2 Rack 3U | | PSW-1080L112 | 30.00V | 30.00V | 40.00V | 1/2 Rack 3U | | PSW-1080L114 | 30.00V | 30.00V | 80.00V | 1/2 Rack 3U | | PSW-1080L115 | 30.00V | 30.00V | 160.0V | 1/2 Rack 3U | | PSW-1080L122 | 30.00V | 40.00V | 40.00V | 1/2 Rack 3U | | PSW-1080L124 | 30.00V | 40.00V | 80.00V | 1/2 Rack 3U | | PSW-1080L125 | 30.00V | 40.00V | 160.0V | 1/2 Rack 3U | | PSW-1080L144 | 30.00V | 80.00V | 80.00V | 1/2 Rack 3U | | PSW-1080L145 | 30.00V | 80.00V | 160.0V | 1/2 Rack 3U | | PSW-1080L155 | 30.00V | 160.0V | 160.0V | 1/2 Rack 3U | | PSW-1080L222 | 40.00V | 40.00V | 40.00V | 1/2 Rack 3U | | PSW-1080L224 | 40.00V | 40.00V | 80.00V | 1/2 Rack 3U | | PSW-1080L225 | 40.00V | 40.00V | 160.0V | 1/2 Rack 3U | | PSW-1080L244 | 40.00V | 80.00V | 80.00V | 1/2 Rack 3U | | PSW-1080L245 | 40.00V | 80.00V | 160.0V | 1/2 Rack 3U | | PSW-1080L255 | 40.00V | 160.0V | 160.0V | 1/2 Rack 3U | | PSW-1080L444 | 80.00V | 80.00V | 80.0V | 1/2 Rack 3U | | PSW-1080L445 | 80.00V | 80.00V | 160.0V | 1/2 Rack 3U | | PSW-1080L455 | 80.00V | 160.0V | 160.0V | 1/2 Rack 3U | | PSW-1080L555 | 160.0V | 160.0V | 160.0V | 1/2 Rack 3U | | PSW-1080H666 | 250.0V | 250.0V | 250.0V | 1/2 Rack 3U | | PSW-1080H668 | 250.0V | 250.0V | 800.0V | 1/2 Rack 3U | | PSW-1080H688 | 250.0V | 800.0V | 800.0V | 1/2 Rack 3U | | PSW-1080H888 | 800.0V | 800.0V | 800.0V | 1/2 Rack 3U | | | // | | | , = | #### Notes: - *1: At 85 ~ 132Vac or 170 ~ 265Vac, constant load. - *2: From No-load to Full-load, constant input voltage. Measured at the sensing point in Remote Sense. - *3: Measure with JEITA RC-9131B (1:1) probe *4: Measurement frequency bandwidth is 10Hz to 20MHz. - *5: Measurement frequency bandwidth is 5Hz to 1MHz. - *6: From 10% to 90% of rated output voltage, with rated resistive load. - *7: From 10% to 90% of rated output voltage, with rated resistive load. *8: Time for output voltage to recover within 0.19% + 10mV of its rated output for a load change from 50 to 100% of its rated output the service of servic input voltage. | SPECIFICATIONS | | | | | | | | | | | |--|---|----------|--|--|--|-------------------------|---|--------------------|--|--| | SPECIFICATIONS Module Type | | | 1 | 2 | 4 | 5 | 6 | 8 | | | | H/L Voltage Classicfication | | - | L | L | L | L | н | Н | | | | Rated output voltage | | V | 30 | 40 | 80 | 160 | 250 | 800 | | | | Rated output current | | A | 36 | 27 | 13.5 | 7.2 | 4.5 | 1.44 | | | | Rated output power | | W | 360 | 360 | 360 | 360 | 360 | 360 | | | | Power ratio Constant Voltage Mode | | /=/ | 3
30-36 | 3
40-27 | 3
80-13.5 | 3.2
160-7.2 | 3.125
250-4.5 | 3.2
800-1.44 | | | | Line regulation (*1) | | mV | 18 | 23 | 43 | 83 | 128 | 403 | | | | Load regulation (°2) | | mV | 20 | 25 | 45 | 85 | 130 | 405 | | | | Ripple and noise (*3) | p-p (*4) | mV | 60 | 60 | 60 | 60 | 80 | 150 | | | | | r.m.s. (45) | mV | 7 | 7 | 7 | 12 | 15 | 30 | | | | Temperature coefficient | | ppm/℃ | | output voltage, after a 3 | | 0.6 | | | | | | Remote snese compensation voltage (single wire) Rise time (*6) | Rated load | V
ms | 0.6
50 | 0.6
50 | 0.6
50 | 0.6 | 100 | 1 150 | | | | Rise time (~0) | No load | ms | 50 | 50 | 50 | 100 | 100 | 150 | | | | Fall time (*7) | Rated load | ms | 50 | 50 | 50 | 100 | 150 | 300 | | | | | No load | ms | 500 | 500 | 500 | 1000 | 1200 | 2000 | | | | Transient response time (*8) | | ms | 1 | 1 | 1 | 2 | 2 | 2 | | | | Constant Current Mode | | | 30-36 | 40-27 | 80-13.5 | 160-7.2 | 250-4.5 | 800-1.44 | | | | Line regulation (*1) Load regulation (*9) | | mA
mA | 41
41 | 32
32 | 18.5
18.5 | 12.2 | 9.5
9.5 | 6.44
6.44 | | | | Ripple and noise | r.m.s. | mA | 72 | 54 | 27 | 15 | 10 | 5 | | | | Temperature coefficient | | ppm/℃ | | output current, after a 3 | | | | | | | | Protection Function | 2 | FF | 30-36 | 40-27 | 80-13.5 | 160-7.2 | 250-4.5 | 800-1.44 | | | | Over voltage protection (OVP) | Setting range | V | 3-33 | 4-44 | 8-88 | 16-176 | 20-275 | 20-880 | | | | | Setting accuracy | | ± (2% of rated outpu | | 100000 | A 20 2 C | | | | | | Over current protection (OCP) | Setting range | A | 3.6-39.6
± (2% of rated outpu | 2.7-29.7 | 1.35-14.85 | 0.72-7.92 | 0.45-4.95 | 0.144-1.584 | | | | Over temperature protection (OTP) | Setting accuracy Operation | | ± (2% of rated output
Turn the output off | as surreint) | | | | | | | | Low AC input protection (AC-FAIL) | Operation | | Turn the output off | | | | | | | | | Power limit (POWER LIMIT) | Operation | | Over power limit. | | | | | | | | | | Value (fixed) | | Approx. 105% of rate | | | | | | | | | Analog Programming and Monitoring | at 22 0C + 5 0C | | 30-36 | 40-27 | 80-13.5 | 160-7.2 | 250-4.5 | 800-1.44 | | | | External voltage control output voltage External voltage control output current | at 23 °C ± 5 °C
at 23 °C ± 5 °C | | | ty: $\pm 0.5\%$ of rated output
ty: $\pm 1\%$ of rated output of | | | | | | | | External voltage control output current External resistor control output voltage | at 23 °C ± 5 °C | | | ty: ±1.5% of rated output ty: ±1.5% of rated output | | | | | | | | External resistor control output current | at 23 °C ± 5 °C | | Accuracy and linearit | ty: ±1.5% of rated outpu | t current. | | | | | | | Output voltage monitor | at 23 °C ± 5 °C | | Accuracy: ±1% | | | | Accuracy: ±2% | | | | | Output current monitor | at 23 °C ± 5 °C | | Accuracy: ±1% | | 4 500 00 | | Accuracy: ±2% | | | | | Shutdown control | | | | with a LOW (0V to 0.5V | | O or chart circuit turn | the output off using a F | IICH W EVAn EVO an | | | | Output on/off control | | | | | | | off using a LOW (0V to | | | | | CV/CC/ALM/PWR ON/OUT ON indicator | | | Photocoupler open collector output; Maximum voltage 30V, maximum sink current 8mA. | | | | | | | | | Front Panel | | | 30-36 | 40-27 | 80-13.5 | 160-7.2 | 250-4.5 | 800-1.44 | | | | Display, 4 digits Voltage accuracy | at 23 °C ± 5 °C; ± (0.1% +
| mV | 20 | 20 | 20 | 100 | 200 | 400 | | | | Current accuracy Indications | at 23 °C ± 5 °C; ± (0.1% + | mA | 40 | 30
CC, VSR, ISR, DLY, RMT, | 20 40 60 80 100 900 | 5 | 5 | 2 | | | | Indications | | | RED LED's: ALM | C, VSR, ISR, DET, RIVIT, | 20, 40, 60, 80, 100, 76W | , w, v, A | | | | | | Buttons | | | | , Set, Test, Lock/Local, F | WR DSPL, Output | | | | | | | Knobs | | | Voltage, Current | , | | | | | | | | USB port | | | Type A USB connect | | | | | | | | | Programming and Measurement (USB, LAN, GPIB) | | | 30-36 | 40-27 | 80-13.5 | 160-7.2 | 250-4.5 | 800-1.44 | | | | Output voltage programming accuracy Output current programming accuracy | at 23 °C ± 5 °C; ± (0.1% +
at 23 °C ± 5 °C; ± (0.1% + | mV
mA | 10
30 | 10
20 | 10
10 | 100 | 200 | 400 | | | | Output current programming accuracy Output voltage programming resolution | at 23 C ± 3 C; ± (0.176 + | mV | 1 | 1 | 2 | 3 | 5 | 14 | | | | Output current programming resolution | | mA | 1 | 1 | 1 | 1 | 1 | 1 | | | | Output voltage measurement accuracy | at 23 °C ± 5 °C; ± (0.1% + | mV | 10 | 10 | 10 | 100 | 200 | 400 | | | | Output current measurement accuracy | at 23 °C ± 5 °C; ± (0.1% + | mA | 30 | 20 | 10 | 5 | 5 | 2 | | | | Output voltage measurement resolution | | mV | 1 | 1 | 2 | 3 | 5 | 14 | | | | Output current measurement resolution | | mA | 30-36 | 1 40.07 | 1 00.33.5 | 1 160-7.2 | 250-4.5 | 800-1.44 | | | | Input Characteristics Efficiency | 100Vac | % | 77 | 40-27
78 | 80-13.5
78 | 79 | 79 | 80 | | | | | 200Vac | % | 79 | 80 | 80 | 81 | 81 | 82 | | | | Input Characteristics | | | | Dual Channel | | | Triple Channel | | | | | Norminal input rating | | | | 0Hz to 60Hz, single pha | se | | 1000 | | | | | Input voltage range | | | 85Vac ~ 265Vac | | | | | | | | | Input frequency range | | | | | | | | | | | | Maximum input current | 100Vac | | 47Hz ~ 63Hz | 10 | | 25 | 15 | | | | | 75 | 100Vac
200Vac | A | 47Hz ~ 63Hz | 10 | | | 15
7.5 | | | | | Inrush current | 100Vac
200Vac | A | 47Hz ~ 63Hz | | | | 15
7.5
Less than 75A | | | | | - 10 mg/s | 200Vac | | | 5 | | | 7.5 | | | | | Inrush current | 200Vac | A | 0.99 | 5
Less than 50A | | 2
2
3 | 7.5
Less than 75A | | | | | Inrush current Maximum input power Power factor | 200Vac | A | 0.99 | 5
Less than 50A | |)
}
} | 7.5
Less than 75A | | | | | Inrush current Maximum input power Power factor Hold-up time | 200Vac | A | 0.99 | 5
Less than 50A
1000 | | | 7.5
Less than 75A
1500 | | | | | Inrush current Maximum input power Power factor | 200Vac | A | 0.99
0.97
20ms or greater | 5
Less than 50A | ISB Class: CDC/Commu | nications Device Class | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities | 200Vac | A | 0.99
0.97
20ms or greater
TypeA: Host, TypeB: | 5
Less than 50A
1000
Dual Channel | | | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB | 200Vac | A | 0.99
0.97
20ms or greater
TypeA: Host, TypeB:
MAC Address, DNS | 5
Less than 50A
1000
Dual Channel
Slave, Speed: 1.1/2.0, U
IP Address, User Passwi
(GPIB to USB Adapter) | | | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions | 200Vac | A | 0.99
0.97
20ms or greater
TypeA: Host, TypeB:
MAC Address, DNS
Optional: GUG-001 | 5
Less than 50A
1000
Dual Channel
Slave, Speed: 1.1/2.0, U
IP Address, User Passw | | | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB Environmental Conditions Operaing temperature | 200Vac | A | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0 °C to 50 °C | 5
Less than 50A
1000
Dual Channel
Slave, Speed: 1.1/2.0, U
IP Address, User Passwi
(GPIB to USB Adapter) | | | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB Environmental Conditions Operaing temperature Storage temperature | 200Vac | A | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C | 5
Less than 50A
1000
Dual Channel
Slave, Speed: 1.1/2.0, U
IP Address, User Passw
(GPIB to USB Adapter)
Dual Channel | | | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB Environmental Conditions Operaing temperature | 200Vac | A | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0 °C to 50 °C | S Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U IP Address, User Passw (GPIB to USB Adapter) Dual Channel | | | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity | 200Vac | A | 0.99
0.97
20ms or greater
TypeA: Host, TypeB:
MAC Address, DNS
Optional: GUG-001
0°C to 50°C
25°C to 70°C
20% to 85% RH; No | S Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U IP Address, User Passw (GPIB to USB Adapter) Dual Channel | | | 7.5
Less than 75A
1500
Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications | 200Vac | A | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0 °C to 50 °C -25 °C to 70 °C 20% to 85% RH; No | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, UP Address, User Passwi (GPIB to USB Adapter) Dual Channel condensation condensation Dual Channel | | | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight | 200Vac 100Vac 200Vac main unit only | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0 °C to 50 °C -25 °C to 70 °C 20% to 85% RH; No | Succession Superior S | | | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions | 200Vac
100Vac
200Vac | A VA | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C 20% to 85% RH; No 90% RH or less; No Maximum 2000m | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U IP Address, User Passwa (GPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 | | | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions Cooling | 200Vac 100Vac 200Vac main unit only | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C 20% to 85% RH; No 90% RH or less; No Maximum 2000m | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, L IP Address, User Passw (CPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 1142 x 124 x 350 y internal fan | ord, Gateway IP Address | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude Ceneral Specifications Weight Dimensions Cooling EMC | 200Vac 100Vac 200Vac main unit only | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0 °C to 50 °C -25 °C to 70 °C 20% to 85% RH; No 90% RH or less; No Maximum 2000m Forced air cooling by Complies with the E | Sucess than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U IP Address, User Passwa (GPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 yinternal fan urropean EMC directive f | ord, Gateway IP Address | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions Cooling | 200Vac 100Vac 200Vac main unit only | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C 20% to 85% RH; No Maximum 2000m Forced air cooling by Complies with the Ei Complies with the Ei | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, L IP Address, User Passw (CPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 1142 x 124 x 350 y internal fan
 ord, Gateway IP Address | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB Environmental Conditions Operaing temperature Storage temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions Cooling EMC Safety | 200Vac 100Vac 200Vac main unit only (WxHxD) | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C 20% to 85% RH; No Maximum 2000m Forced air cooling by Complies with the Ei Complies with the Ei No abnormalities at No abnormalities at | Sucess than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U IP Address, User Passwa (GPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 pi internal fan uropean EMC directive f uropean Low Voltage Di 1500 Vac for 1 minute 3000 Vac for 1 minute | ord, Gateway IP Address or Class A test and mea | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB Environmental Conditions Operaing temperature Storage temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions Cooling EMC Safety | 200Vac 100Vac 200Vac main unit only (WxHxD) Between input and chassis Between input and output | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C 20% to 85% RH; No 90% RH or less; No Maximum 2000m Forced air cooling by Complies with the E Complies with the E No abnormalities at No abnormalities at | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U PR Address, User Passw (GPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 y internal fan uropean EMC directive f uropean EMC directive f uropean Tow Voltage Di 1500 Vac for 1 minute 500 Vdc for 1 minute | ord, Gateway IP Address or Class A test and meas rective and carries the Ci | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPHB Environmental Conditions Operating humidity Storage temperature Operating humidity Altitude General Specifications Weight Dimensions Cooling EMC Safety Withstand voltage | 200Vac 100Vac 200Vac 200Vac main unit only (WxHxD) Between input and chassis Between input and output Between output and chassis | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C 20% to 85°R H; No 90% RH or less; No Maximum 2000m Forced air cooling by Complies with the Ei Complies with the Ei No abnormalities at No abnormalities at No abnormalities at | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U IP Address, User Passw (CPIB to USB Adapter) Dual Channel Condensation Condensation Condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 y internal fan uropean EMC directive f uropean Low Voltage Di 1500 Vac for 1 minute f 500 Vdc for 1 minute f | ord, Gateway IP Address or Class A test and meas rective and carries the Ci | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN GPIB Environmental Conditions Operaing temperature Storage temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions Cooling EMC Safety | 200Vac 100Vac 200Vac main unit only (WxHxD) Between input and chassis Between input and chassis Between input and chassis | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0°C to 50°C -25°C to 70°C 20% to 85% RH; No 90% RH or less; No Maximum 2000m Forced air cooling by Complies with the E Complies with the E No abnormalities at No abnormalities at | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U IP Address, User Passw (GPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 y internal fan uropean EMC directive f uropean Low Voltage Di 1500 Vac for 1 minute 500 Vdc for 1 minute fo 1500 | ord, Gateway IP Address or Class A test and meas rective and carries the Ci | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPHB Environmental Conditions Operating humidity Storage temperature Operating humidity Altitude General Specifications Weight Dimensions Cooling EMC Safety Withstand voltage | 200Vac 100Vac 200Vac main unit only (WxHxD) Between input and chassis Between input and chassis Between input and chassis Between input and output | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0 °C to 50 °C -25 °C to 70 °C 20% to 85% RH; No 90% RH or less; No Maximum 2000m Forced air cooling by Complies with the Ei Complies with the Ei No abnormalities at No abnormalities at No abnormalities at No abnormalities at Sou Vdc, 100 MΩ or 500 Vdc, 100 MΩ or 500 Vdc, 100 MΩ or | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, L IP Address, User Passw (GPIB to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 y internal fan uropean EMC directive furopean Low Voltage Di 1500 Vac for 1 minute for more more more more of 30V, 40V, 80V, 80V, 80V, 80V, 80V, 80V, 80V, 8 | ord, Gateway IP Address or Class A test and meat rective and carries the Ci r 30V, 40V, 80V, 160V m or 250V, 800V models | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | | Inrush current Maximum input power Power factor Hold-up time Interface Capabilities USB LAN CPIB Environmental Conditions Operaing temperature Storage temperature Operating humidity Altitude General Specifications Weight Dimensions Cooling EMC Safety Withstand voltage | 200Vac 100Vac 200Vac main unit only (WxHxD) Between input and chassis Between input and chassis Between input and chassis | A VA kg | 0.99 0.97 20ms or greater TypeA: Host, TypeB: MAC Address, DNS Optional: GUG-001 0 °C to 50 °C -25 °C to 70 °C 20% to 85% RH; No 90% RH or less; No Maximum 2000m Forced air cooling by Complies with the Ei Complies with the Ei No abnormalities at No abnormalities at No abnormalities at No abnormalities at Sou Vdc, 100 MΩ or 500 Vdc, 100 MΩ or 500 Vdc, 100 MΩ or | 5 Less than 50A 1000 Dual Channel Slave, Speed: 1.1/2.0, U Pl Address, User Passav (CP18 to USB Adapter) Dual Channel condensation condensation Dual Channel Approx. 5.4kg 142 x 124 x 350 y internal fan uropean Low Voltage Di 1500 Vac for 1 minute 3000 Vac for 1 minute for 1500 Vdc for 1 minute for more more | ord, Gateway IP Address or Class A test and meat rective and carries the Ci r 30V, 40V, 80V, 160V m or 250V, 800V models | Instrument IP Addres | 7.5 Less than 75A 1500 Triple Channel s, Subnet Mask Triple Channel Triple Channel Approx. 7.7kg | | | | # **Dual-channel/Triple-channel Programmable Switching DC Power Supply** PSW-Multi Series(Three-channel) PSW-Multi Series (Two-channel) PSW-Multi Series (LV) Three-channel Models Rear Panel PSW-Multi Series (HV) Three-channel Models Rear Panel PSW-Multi Series (LV) Two-channel Models Rear Panel PSW-Multi Series (HV) Two-channel Models Rear Panel #### ORDERING INFORMATION | Dual Channel N | nodei | |----------------|---| | PSW-720L11 | 30V/36A*2 720W Multi-Range DC Power Supply | | PSW-720L12 | 30V/36A*1 40V/27A*1 720W Multi-Range DC Power Supply | | PSW-720L14 | 30V/36A*1 80V/13.5A*1 720W Multi-Range DC Power Supply | | PSW-720L15 | 30V/36A*1 160V/7.2A*1 720W Multi-Range DC Power Supply | | PSW-720L22 | 40V/27A*2 720W Multi-Range DC Power Supply | | PSW-720L24 | 40V/27A*1 80V/13.5A*1 720W Multi-Range DC Power Supply | | PSW-720L25 | 40V/27A*1 160V/7.2A*1 720W Multi-Range DC Power Supply | | PSW-720L44 | 80V/13.5A*2 720W Multi-Range DC Power Supply | | PSW-720L45 | 80V/13.5A*1 160V/7.2A*1 720W Multi-Range DC Power Supply | | PSW-720L55 | 160V/7.2A*2 720W Multi-Range DC Power Supply | | PSW-720H66 | 250V/4.5A*2 720W Multi-Range DC Power Supply | | PSW-720H68 | 250V/4.5A*1 800V/1.44A*1 720W Multi-Range DC Power Supply | | PSW-720H88 | 800V/1.44A*2 720W Multi-Range DC Power Supply | | | | #### **Triple Channel Model** | PSW-1080L111 | 30V/36A*3 1080W Multi-Range DC Power Supply | |--------------|---| | PSW-1080L112 | 30V/36A*2 40V/27A*1 1080W Multi-Range DC Power Supply | | PSW-1080L114 | 30V/36A*2 80V/13.5A*1 1080W Multi-Range DC Power Supply | | PSW-1080L115 | 30V/36A*2 160V/7.2A*1 1080W Multi-Range DC Power Supply | | PSW-1080L122 | 30V/36A*1 40V/27A*2 1080W Multi-Range DC Power Supply | | PSW-1080L124 | 30V/36A*1 40V/27A*1 80V/13.5A*1 1080W Multi-Range DC Power Supply | | PSW-1080L125 | 30V/36A*1 40V/27A*1 160V/7.2A 1080W Multi-Range DC Power Supply | | PSW-1080L144 | 30V/36A*1 80V/13.5A*2 1080W Multi-Range DC Power Supply | | PSW-1080L145 | 30V/36A*1 80V/13.5A*1 160V/7.2A*1 1080W Multi-Range DC Power Supply | | PSW-1080L155 | 30V/36A*1 160V/7.2A*2 1080W Multi-Range DC Power Supply | | PSW-1080L222 | 40V/27A*3 1080W Multi-Range DC Power Supply | | PSW-1080L224 | 40V/27A*2 80V/13.5A*1 1080W Multi-Range DC Power Supply | | PSW-1080L225 | 40V/27A*2 160V/7.2A*1 1080W Multi-Range DC Power Supply | |
PSW-1080L244 | 40V/27A*1 80V/13.5A*2 1080W Multi-Range DC Power Supply | | PSW-1080L245 | 40V/27A*1 80V/13.5A*1 160V/7.2A*1 1080W Multi-Range DC Power Supply | | PSW-1080L255 | 40V/27A*1 160V/7.2A*2 1080W Multi-Range DC Power Supply | | PSW-1080L444 | 80V/13.5A*3 1080W Multi-Range DC Power Supply | | PSW-1080L445 | 80V/13.5A*2 160V/7.2A*1 1080W Multi-Range DC Power Supply | | PSW-1080L455 | 80V/13.5A*1 160V/7.2A*2 1080W Multi-Range DC Power Supply | | PSW-1080L555 | 160V/7.2A*3 1080W Multi-Range DC Power Supply | | PSW-1080H666 | 250V/4.5A*3 1080W Multi-Range DC Power Supply | | PSW-1080H668 | 250V/4.5A*2 800V/1.44A*1 1080W Multi-Range DC Power Supply | | PSW-1080H688 | 250V/4.5A*1 800V/1.44A*2 1080W Multi-Range DC Power Supply | | PSW-1080H888 | 800V/1.44A*3 1080W Multi-Range DC Power Supply | | | | Apart from the differences in output type, each unit differs at output channels and voltage. The PSW-720 is dual channel output and PSW-1080 is triple channel output. GUR-001B USB to RS-232 Cable (#4-40 UNC), 3000mm #### ACCESSORIES: Power Cord x1 (Region dependent) | GTL-123 | Test Lead x 1 (30V/40V/80V/160VOne low voltage module for each channel) | |---------|---| | GTL-240 | USB Cable"L" Type x1 | | PSW-004 | Basic Accessories Kit x1 (30V/40V/80V/160V low voltage module) | | PSW-008 | Basic Accessories Kit x1 (250V/800V high voltage module) | | PSW-009 | Output terminal cover (30V/40V/80V/160V low voltage module) | | PSW-011 | Output terminal cover (250V/800V high voltage module) | | PSW-012 | High voltage output terminal (250V/800V high voltage module) | | | | #### **OPTIONAL ACCESSORIES** | P2M-001 | Accessory Kit | |-----------|--| | PSW-002 | Simple IDC Tool | | PSW-003 | Contact Removal Tool | | GUG-001 | GPIB to USB Adaptor | | GRA-410-J | Rack Mount Kit(JIS) | | GRA-410-E | Rack Mount Kit(KIA) | | GET-001 | Extended Terminal with max. 30A (30V/40V/80V/160V low voltage module) | | GET-002 | Extended Terminal with max. 10A (250V/800V high voltage module) | | GET-005 | Extended European Terminal with max. 20A (30V/40V/80V/160V low voltage module) | | GTL-130 | Test Lead: 2x red, 2x black (250V/800V high voltage module) | | GTL-248 | GPIB Cable, 2000mm | | GTL-250 | GPIB Cable, 600mm | | GUR-001A | USB to RS-232 Cable (M3), 3000mm | ## When the power supply is configured that the total output (Current x Voltage output) is less than the rated power output, it functions as a typical Constant Current (CC) and Constant Voltage (CV) power supply. However, when the power supply is configured such that the total output power (Current x Voltage Output) exceeds the rated power output, the effective output is actually limited to the operation area of the unit. #### B. MULTI-CHANNEL Figure 1 Multi-Channel, Dual-channel or triple-channel; the output latency between channels for same voltage module is less than 0.1ms. When using a single-channel power supply for parallel multiple voltage output testing, there are different delays and slew rate settings, resulting in longer voltage output delay times and lack of control. The PSW-Multi Series features a built-in synchronous output control function (F130) that allow Dual-channel or triple-channel; the output latency between channels for same voltage module is less than 0.1ms. It can fulfill diverse testing applications, for example: multi-channel digital device testing, electronic circuit verification, battery charging and discharging testing, and more. Figure 2 When using a single-channel power supply with three units connected in parallel through the backplane for synchronized output, each unit will experience a voltage output latency of approximately 5 to 10 ms. (Figure 1) The waveform of PSW-Multi Series in triple-channel synchronized output mode exhibits voltage output latency times less than 0.1 ms for each channel (with the same voltage model) (Figure 2) ## **Dual-channel/Triple-channel Programmable Switching DC Power Supply** #### ADVANCED WEB SERVER Figure 1 Figure 2 Figure 3 Figure 4 SCPI commands can be issued directly on the browser, examples are as follows: Direct control of PSW-Multi series power supplies on the browser. (Figure 1) Data Log can be performed on the browser. For standard web server, the fastest data log time interval is 1 second. PSW-Multi series also provide paid version (active by option license key), the fastest data log time interval is 0.1 seconds and the data save to USB drive directly. (Figure 2) Sequences can be edited on the browser. (Figure 3) The above advanced web server functions are new functions of PSW-Multi. Currently, there is no plan to update the advanced web server in the existing PSW-Series (Single Channel). (Figure 4) #### D. CV / CC PRIORITY SELECTION The Inrush Current and Surge Voltage occur at LED Forward Voltage(Vf)Under C.V Priority The CC Priority Feature Effectively Limits the Occurrence of Inrush Current and Surge Voltage when the Supplied Voltage Rises to the LED Forward Voltage V-I Characteristic of Diode Using GDS-3354 DSO to Test LED Operation Under CV Priority and **CC** Priority Respectively The PSW-Multi Series provides CC Mode and CV Mode to fit various applications in the general purpose market. To get into critical application niches, however, the power supply needs to provide advanced features to meet the specific requirements. The CC and CV Priority Selection enable the power supply to run under CC priority, rather than normal CV priority, at the output-on stage. #### ADJUSTABLE SLEW RATE The Adjustable Rise Time of the PSW 30V Module The Adjustable Rise Time of the PSW 800V Module **BLEEDER CONTROL** PSW-Multi Series Built-in Bleed Resistor The PSW-Multi Series has adjustable slew rates for the level transition of both Current and Voltage. This gives the PSW-Multi Series power supply the ability to set specific rise time and fall time of the Voltage and Current drawn from the power supply to verify DUT performance during the Voltage/Current level transition. The feature also provides the benefit to slow down the voltage transition at the power output-on to protect DUT from inrush current damage. This is especially useful for the test of heavycurrent-drawn devices like capacitors. The PSW-Multi Series employs a bleed resistor in parallel with the output terminal. Bleed resistor is designed to dissipatch the power from the power supply filter capacitors when power is turned off and the load is disconnected. Without a bleed resistor, power terminal may remain charged on the filter capacitors for some time and be potentially hazardous. In addition, bleed resistor also allows for smoother voltage regulation of the power supply as the bleed resistor acts as a minimum voltage load. The bleed resistance can be turned on or off using the configuration setting. #### G. EXTERNAL ANALOG REMOTE CONTROL External Voltage Control of the Voltage Output DMM 10 Analog connector V MON 0 - 10V 16 Output Terminal External DMM Monitoring of the Output Voltage External Switch Control of the Main Power Shut-down DMM 11 Analog connector External Resistance control of the Voltage Output External Switch Control of the Output On/Off External DMM Monitoring of the Output Current Output Terminal On the rear panel of the PSW-Multi Series power supply, a 26-pin Analog Control connector is available to perform lots of remote control and monitoring functions. The output voltage and current can be set using external voltage or resistance. The power supply output on/off and main power shut-down can also be controlled using external switches. This Analog Control Connector is complied with the Mil 26 pin connector(OMRON XG4 IDC plug) standard. 0→ 10V #### VARIOUS INTERFACES SUPPORT & EXTENDED TERMINAL BOX 0 **GET-001** **GUG-001** GPIB to USB Extended Terminal Adapter (for PSW 30V/40V/80V/160V) GET-002 Extended Terminal (for PSW 250V/800V) (for PSW 30V/40V/80V/160V) **GET-005** #### Rear Panel for PSW-Multi Series The PSW-Multi Series provides USB Host port in the front panel for easy access of stored data, such as test script program. In the rear panel, a USB Device port is available for remote control or I & V data logging of power output through a PC controller. The LAN interface, which meets DHCP standard, is provided as a standard feature of the PSW-Multi Series for system communications and ATE applications. An Extender Terminal box (P/N: GET-001/GET-002/GET-005) is provided as optional accessory to extend the power output form the rear panel to the front side. This extender terminal gives R&D or QC engineers convenience to do the jobs without frequently reaching the output terminal at the rear side of the PSW-Multi Series. #### I. USING THE RACK MOUNT KIT Rack Mount Kit GRA-410-J (JIS) The PSW-Multi Series has an optional Rack Mount Kit (GW Instek part number: [JIS] GRA-410-J, [EIA] GRA-410-E[EIA]) that can be used to hold Rack Mount Kit GRA-410-E (EIA) 6x PSW models, 3x PSW-720 models, 2x PSW-1080 models or a combination of all models (1x PSW, 1x PSW-720 and 1x PSW-1080). ## Programmable Switching DC Power Supply (Multi-Range DC Power Supply) #### **PSW-Series** #### **FEATURES** - * Voltage Rating: 30V/40V/80V/160V/250V/800V, Output Power Rating: 360W~1080W - * Multi-range Voltage & Current Combinations in One Power Supply - * C.V/C.C Priority; Particularly Suitable for the Battery and LED Industry - * Adjustable Slew Rate - ** Series Operation(2 units in Series)for(30V/40V /80V/160V), Parallel Operation(3 units in Parallel) for (30V/40V/80V/160V/250V/800V) - * High Efficiency and High Power Density - * 1/2, 1/3, 1/6 Rack Mount Size Design (EIA/JIS Standard) for 360W, 720W, 1080W - * Standard Interface : LAN, USB, Analog Control Interface - * Optional Interface : GPIB-USB Adaptor, RS232-USB Cable - * LabVIEW Driver PSW 80-40.5 (0~80V, 0~40.5A, 1080W) PSW 80-27 (0~80V, 0~27A, 720W) PSW
80-13.5 (0~80V, 0~13.5A, 360W) The PSW-Series is a single-output multi-range programmable switching DC Power Supply covering a power range up to 1080W. This series of products include eighteen models with the combination of 30V, 40V, 80V, 160V, 250V and 800V rated voltages and 360W, 720W and 1080W maximum output powers. The multi-range feature allows the flexible and efficient configuration of voltage and current within the rated power range. As the PSW-Series can be connected in series for maximum 2 units or in parallel for maximum 3 units, the capability of connecting multiple PSW-Series units for higher voltage or higher current output provides a broad coverage of applications. With the flexibility of multi-range power utilization and series/parallel connection, the PSW-Series significantly reduces the users' cost for various power supply products to accommodate the projects with different power requirements. The C.V/C.C priority selection of the PSW-Series is a very useful feature for DUT protection. The conventional power supply normally operates under C.V mode when the power output is turned on. This could bring a high inrush current to the capacitive load or current-intensive load at the power output-on stage. Taking the I-V curve verification of LED as an example, it becomes a very challenging task to perform this measurement using a conventional power supply. With LED connected to a power supply under C.V mode as the initial setting, when the power output is turned on and the voltage rises to the LED forward voltage, the current will suddenly peak up and exceed the preset value of current limit. Upon detecting this high current, the power supply starts the transition from C.V mode to C.C mode. Though the current becomes stable after the C.C mode being activated, the current spike occurred at the C.V and C.C crossover point may possibly damage the DUT. At the power output-on stage, the PSW-Series is able to operate under C.C priority to limit the current spike occurred at the threshold voltage and therefore protects DUT from the inrush current damage. The adjustable slew rate of the PSW-Series allows users to set for either output voltage or output current, a specific rise time from low to high level transition, and a specific fall time from high to low level transition. This facilitates the characteristic verification of a DUT during voltage or current level changes with controllable slew rates. Most manufacturing tests of lighting device or large capacitor during power output-on are associated with the occurrence of high surge current, which can greatly reduce the life time of the DUT. To prevent inrush current from damaging current-intensive devices, a smooth and slow voltage transition during power On-Off can significantly reduce the spike current and protect the device from high current damage. The OVP and OCP are provided with the PSW-Series. Both OVP and OCP levels can be selected, with default level set at 110%, of the rated voltage/current of the power supply. When any of the protection levels is tripped, the power output will be switched off to protect the DUT. The PSW-Series provides USB Host/Device and LAN interfaces as standard, GPIB-USB adapter and RS232-USB cable as optional. The LabView driver and the Data Logging PC software are supported on all the available interfaces. An analog control/monitoring connector is also available on the rear panel for external control of power On/Off and external monitoring of power output Voltage and Current. #### PARALLEL OPERATION (3 UNITS) | MODEL | SINGLE UNIT | 2 UNITS | 3 UNITS | |--------------|-------------|------------|-------------| | PSW 30-36 | 30V/36A | 30V/72A | 30V/108A | | PSW 30-72 | 30V/72A | 30V/144A | 30V/216A | | PSW 30-108 | 30V/108A | 30V/216A | 30V/324A | | PSW 40-27 | 40V/27A | 40V/54A | 40V/81A | | PSW 40-54 | 40V/54A | 40V/108A | 40V/162A | | PSW 40-81 | 40V/81A | 40V/162A | 40V/243A | | PSW 80-13.5 | 80V/13.5A | 80V/27A | 80V/40.5A | | PSW 80-27 | 80V/27A | 80V/54A | 80V/81A | | PSW 80-40.5 | 80V/40.5A | 80V/81A | 80V/121.5A | | PSW 160-7.2 | 160V/7.2A | 160V/14.4A | 160V/21.6A | | PSW 160-14.4 | 160V/14.4A | 160V/28.8A | 160V/43.2A | | PSW 160-21.6 | 160V/21.6A | 160V/43.2A | 160V/64.8A | | PSW 250-4.5 | 250V/4.5A | 250V/9A | 250V/13.5A | | PSW 250-9 | 250V/9A | 250V/18A | 250V/27A | | PSW 250-13.5 | 250V/13.5A | 250V/27A | 250V/40.5A | | PSW 800-1.44 | 800V/1.44A | 800V/2.88A | 800V/4.32A | | PSW 800-2.88 | 800V/2.88A | 800V/5.76A | 800V/8.64A | | PSW 800-4.32 | 800V/4.32A | 800V/8.64A | 800V/12.96A | #### SERIES OPERATION (2 UNITS) | MODEL | SINGLE UNIT | 2 UNITS | |--------------|-------------|------------| | PSW 30-36 | 30V/36A | 60V/36A | | PSW 30-72 | 30V/72A | 60V/72A | | PSW 30-108 | 30V/108A | 60V/108A | | PSW 40-27 | 40V/27A | 80V/27A | | PSW 40-54 | 40V/54A | 80V/54A | | PSW 40-81 | 40V/81A | 80V/81A | | PSW 80-13.5 | 80V/13.5A | 160V/13.5A | | PSW 80-27 | 80V/27A | 160V/27A | | PSW 80-40.5 | 80V/40.5A | 160V/40.5A | | PSW 160-7.2 | 160V/7.2A | 320V/7.2A | | PSW 160-14.4 | 160V/14.4A | 320V/14.4A | | PSW 160-21.6 | 160V/21.6A | 320V/21.6A | | PSW 250-4.5 | N/A | N/A | | PSW 250-9 | N/A | N/A | | PSW 250-13.5 | N/A | N/A | | PSW 800-1.44 | N/A | N/A | | PSW 800-2.88 | N/A | N/A | | PSW 800-4.32 | N/A | N/A | | SPECIFICATIONS | | | | | | | | | | | |---|---------------------------|--------------------|--------------------|------------------------|-----------------------|---|--------------|---------------|-----------------|--| | SPECIFICATIONS | PSW 30-36 | PSW 30-72 | PSW 30-108 | PSW 40-27 | PSW 40-54 | PSW 40-81 | PSW 80-13.5 | PSW 80-27 | PSW 80-40.5 | | | OUTPUT RATING | 7,7,71,07,7,7,7 | 3 - 33 - 33 - 3 | | 25-75-17-25-75-75- | Total Machine Control | 1011 | | 3.5.00 | 5.5.15.15.15.15 | | | Voltage | 0 ~ 30V | 0 ~ 30V | 0 ~ 30V | 0 ~ 40V | 0 ~ 40V | 0 ~ 40V | 0 ~ 80V | 0 ~ 80V | 0 ~ 80V | | | Current | 0 ~ 36A | 0 ~ 72A | 0 ~ 108A | 0 ~ 27A | 0 ~ 54A | 0~ 81A | 0 ~ 13.5A | 0 ~ 27A | 0 ~ 40.5A | | | Power | 360W | 720W | 1080W | 360W | 720W | 1080W | 360W | 720W | 1080W | | | REGULATION(CV) | | | | | | | | | | | | Load
Line | 20mV | 20mV | 20mV | 25mV | 25mV | 25mV | 45mV | 45mV | 45mV | | | REGULATION(CC) | 18mV | 18mV | 18mV | 23mV | 23mV | 23mV | 43mV | 43mV | 43mV | | | Load | 41mA | 77mA | 113mA | 32mA | 59mA | 86mA | 18.5mA | 32mA | 45.5mA | | | Line | 41mA | 77mA | 113mA | 32mA | 59mA | 86mA | 18.5mA | 32mA | 45.5mA | | | RIPPLE & NOISE (N | loise Bandwidt | h 20MHz; Ripp | le Bandwidth= | IMHz) | | | | | | | | CV p-p | 60mV | 80mV | 100mV | 60mV | 80mV | 100mV | 60mV | 80mV | 100mV | | | CV rms
CC rms | 7mV
72mA | 11mV
144mA | 14mV
216mA | 7mV | 11mV | 14mV | 7mV
27mA | 11mV
54mA | 14mV
81mA | | | PROGRAMMING AC | | 144mA | ZIOTIA | 54mA | 108mA | 162mA | 2711174 | 3411174 | OTHIA | | | Voltage | 0.1% +10mV | 0.1% +10mV | 0.1% +10mV | 0.1%+10mV | 0.1%+10mV | 0.1%+10mV | 0.1% +10mV | 0.1% +10mV | 0.1% +10mV | | | Current | 0.1% + 10mV | 0.1% + 10mV | 0.1% + 100mA | 0.1%+10mV | 0.1%+50mA | 0.1%+80mA | 0.1% + 10mA | 0.1% + 30mA | 0.1% + 40mA | | | MEASUREMENT ACC | | 0.170 1 001181 | 0.170 1 1001181 | | 240.070.70000 | 200000000000000000000000000000000000000 | | | | | | Voltage | 0.1% +10mV | 0.1% +10mV | 0.1% +10mV | 0.1%+10mV | 0.1%+10mV | 0.1%+10mV | 0.1% +10mV | 0.1% +10mV | 0.1% +10mV | | | Current | 0.1% +30mA | 0.1% +60mA | 0.1% +100mA | 0.1%+20mA | 0.1%+50mA | 0.1%+80mA | 0.1% +10mA | 0.1% +30mA | 0.1% +40mA | | | RESPONSE TIME | | | | | | | | | | | | Raise Time | 50ms | | Fall Time(Full Load) | 50ms | | Fall Time(No Load) | 500ms | 500ms | 500ms | 500ms | 500ms | 500ms | 500ms
1ms | 500ms
1ms | 500ms
1ms | | | Load Transient Recover Time
(Load change from 50~100%) | 1ms | 1ms | lms | 1ms | lms | lms | ims | Ims | Ims | | | PROGRAMMING RE | SOLUTION (By | PC Remote Cont | rol Mode) | | | | | | | | | Voltage | 1mV | 1mV | 1mV | 1mV | 1mV | 1mV | 2mV | 2mV | 2mV | | | Current | 1mA | 2mA | 3mA | 1mA | 2mA | 3mA | 1mA | 2mA | 3mA | | | MEASUREMENT RES | OLUTION (By | PC Remote Cont | rol Mode) | | | | | | | | | Voltage | 1mV | 1mV | 1mV | 1mV | 1mV | 1mV | 2mV | 2mV | 2mV | | | Current | 1mA | 2mA | 3mA | 1mA | 2mA | 3mA | 1mA | 2mA | 3mA | | | SERIES AND PARALL | EL CAPABILITY | | | | | | | | | | | Parallel Operation | TO A STREET STREET STREET | including the m | | | | | | | | | | Series Operation | • | including the ma | ster unit | | | | | | | | | PROTECTION FUNC | | | | 17 20000000 | | | | | | | | OVP | 3~33V | 3~33V | 3~33V | 4 ~ 44V | 4 ~ 44V | 4 ~ 44V | 8~88V | 8~88V | 8~88V | | | OCP | 3.6 ~39.6A | 5~79.2A | 5~118.8A | 2.7 ~ 29.7A | 5 ~ 59.4A | 5 ~ 89.1A | 1.35~14.85A | 2.7~29.7A | 4.05~44.55A | | | ОНР | , | lecated internal t | emperatures | | | | | | | | | FRONT PANEL DISP | | | | | | | | | | | | Voltage | 0.1%±20mV | 0.1%±20mV | 0.1%±20mV | 0.1%+20mV
0.1%+30mA | 0.1%+20mV | 0.1%+20mV | 0.1%±20mV | 0.1%±20mV | 0.1%±20mV | | | Current | 0.1%±40mA | 0.1%±70mA | 0.1%±100mA | U.1%+3UMA | 0.1%+60mA | 0.1%+80mA | 0.1%±20mA | 0.1%±40mA | 0.1%±50mA | | | ENVIRONMENT CO | | | | | | | | | | | | Operation Temp | 0°C ~ 50°C | | | | | | | | | | | Storage Temp Operating Humidity | -25°C ~ 70°C | H; No condensat | ion | | | | | | | | | Storage Humidity | | ess; No condensa | | | | | | | | | | READ BACK TEMP C | | | | | | | | | | | | Voltage | | f rated output vo | ltage : after a 30 | minute warm-u | p | | | | | | | Current | | f rated output cu | | | | | | | | | | OTHER | | | | | | | | | | | | Analog Control | Yes | | | | | | | | | | | Interface | | IB-USB(Option) | RS232-USB(Op | tion) | | | | | | | | Fan | | sensing control | 11 | | | | | | | | | POWER SOURCE | | C, 47~63Hz, sin | gle phase | | T | | 1 | Ī* | I | | | DIMENSIONS | | 142(W)x124(H) | 214(W)x124(H) | 71 (W)x124(H) | 142(W)x124(H) | 214(W)x124(H) | | 142(W)x124(H) | 214(W)x124(H) | | | & WEIGHT | x350(D) mm; |
x350(D)mm; | x350(D) mm; | | ye | Approx. 3kg | Approx. 5.3kg | Approx. 7.5kg | Approx. 3kg | Approx. 5.3kg | Approx. 7.5kg | Approx. 3kg | Approx. 5.3kg | Approx. 7.5kg | | PSW-001 PSW-002 PSW-003 PSW-004 PSW-005 PSW-006 PSW-007 # Programmable Switching DC Power Supply (Multi-Range DC Power Supply) | SPECIFICATIONS | | | | | | | | | | |------------------------------------|---|---|------------------------------|------------------------|-----------------------------|-------------------------|------------------------|------------------------|------------------------------| | SI ECII ICATIONS | PSW 160-7.2 | PSW 160-14.4 | PSW 160-21.6 | PSW 250-4.5 | PSW 250-9 | PSW 250-13.5 | PSW 800-1.44 | PSW 800-2.88 | PSW 800-4.3 | | OUTPUT RATING | | | | | | | | | | | Voltage | 0 ~ 160V | 0 ~ 160V | 0 ~ 160V | 0 ~ 250V | 0 ~ 250V | 0 ~ 250V | 0 ~ 800V | 0 ~ 800V | 0 ~ 800V | | Current | 0 ~ 7.2A | 0 ~ 14.4A | 0 ~ 21.6A | 0 ~ 4.5A | 0 ~ 9A | 0 ~ 13.5A | 0 ~ 1.44A | 0 ~ 2.88A | 0 ~ 4.32A | | Power | 360W | 720W | 1080W | 360W | 720W | 1080W | 360W | 720W | 1080W | | REGULATION(CV) | | | | | | | | | | | Load | 85mV | 85mV | 85mV | 130mV | 130mV | 130mV | 405mV | 405mV | 405mV | | Line | 83mV | 83mV | 83mV | 128mV | 128mV | 128mV | 403mV | 403mV | 403mV | | REGULATION(CC) | | | | | | | | | | | Load | 12.2mA | 19.4mA | 26.6mA | 9.5mA | 14mA | 18.5mA | 6.44mA | 7.88mA | 9.32mA | | Line | 12.2mA | 19.4mA | 26.6mA | 9.5mA | 14mA | 18.5mA | 6.44mA | 7.88mA | 9.32mA | | RIPPLE & NOISE (N | | | | | B | | | | | | CV p-p
CV rms | 60mV
12mV | 80mV
15mV | 100mV
20mV | 80mV
15mV | 100mV
15mV | 120mV
15mV | 150mV
30mV | 200mV
30mV | 200mV
30mV | | CC rms | 15mA | 30mA | 45mA | 10mA | 20mA | 30mA | 5mA | 10mA | 15mA | | PROGRAMMING AC | CLIBACY | | | | 201101 | 33.1.2.1 | | | | | | 0.1% +100mV | 0.1% +100mV | 0.1% +100mV | 0.1%+200mV | 0.1%+200mV | 0.1%+200mV | 0.1%+400mV | 0.1%+400mV | 0.1%+400mV | | Voltage
Current | 0.1% + 100mV | 0.1% +100mV
0.1% +15mA | 0.1% +100mV | 0.1%+200HV
0.1%+5mA | 0.1%+200mV
0.1%+10mA | 0.1%+200mV
0.1%+15mA | 0.1%+2mA | 0.1%+4mA | 0.1%+6mA | | MEASUREMENT ACC | | 3, | | | | | | 2 | | | Voltage | 0.1% +100mV | 0.1% +100mV | 0.1% +100mV | 0.1%+200mV | 0.1%+200mV | 0.1%+200mV | 0.1%+400mV | 0.1%+400mV | 0.1%+400mV | | Current | 0.1% +100mV
0.1% +5mA | 0.1% +100mV
0.1% +15mA | 0.1% +100mV
0.1% +20mA | 0.1%+200HV
0.1%+5mA | 0.1%+200mV | 0.1%+200mV
0.1%+15mA | 0.1%+400mV | 0.1%+4mA | 0.1%+400mV | | RESPONSE TIME | 3.170 7311121 | 3.170 7131124 | 21170 .201117 | | | | | | | | | 100ms | 100ms | 100ms | 100ms | 100ms | 100ms | 150ms | 150ms | 150ms | | Raise Time
Fall Time(Full Load) | 100ms | 100ms | 100ms | 150ms | 150ms | 150ms | 300ms | 300ms | 300ms | | Fall Time(No Load) | 1000ms | 1000ms | 1000ms | 1200ms | 1200ms | 1200ms | 2000ms | 2000ms | 2000ms | | Load Transient Recover Time | 2ms | (Load change from 50~100%) | _ | | | | | - | | | | | PROGRAMMING RE | SOLUTION (By | PC Remote Cont | rol Mode) | | | | | | | | Voltage | 3mV | 3mV | 3mV | 5mV | 5mV | 5mV | 14mV | 14mV | 14mV | | Current | 1mA | 2mA | 3mA | 1mA | 1mA | 1mA | 1mA | 1mA | 1mA | | MEASUREMENT RES | OLUTION (By | PC Remote Cont | rol Mode) | | | | | | | | Voltage | 3mV | 3mV | 3mV | 5mV | 5mV | 5mV | 14mV | 14mV | 14mV | | Current | 1mA | 2mA | 3mA | 1mA | 1mA | 1mA | 1mA | 1mA | 1mA | | SERIES AND PARALL | EL CAPABILITY | | | | | | | | | | Parallel Operation | Up to 3 units | including the ma | aster unit | 3 | 3 | 3 | 3 | 3 | 3 | | Series Operation | Up to 2 units i | ncluding the ma | ster unit | N/A | N/A | N/A | N/A | N/A | N/A | | PROTECTION FUNC | TION | | | | | | | | | | OVP | 16~176V | 16~176V | 16~176V | 20~275V | 20~275V | 20~275V | 20~880V | 20~880V | 20~880V | | OCP | 0.72~7.92A | 1.44~15.84A | 2.16~23.76A | 0.45~4.95A | 0.9~9.9A | 1.35~14.85A | 0.144~1.584A | 0.288~3.168A | 0.432~4.752 | | OHP | Activated by e | lecated internal t | emperatures | | 7 | | | Y | | | FRONT PANEL DISP | | 7212007 0007 0007 0007 | | | | | | | | | Voltage | 0.1%±100mV | 0.1%±100mV | 0.1%±100mV | 0.1%±200mV | 0.1%±200mV | 0.1%±200mV | 0.1%±400mV | 0.1%±400mV | 0.1%±400mV | | Current | 0.1%±100mV
0.1%±5mA | 0.1%±100mV | 0.1%±100mV | 0.1%±200mV
0.1%±5mA | 0.1%±200mV
0.1%±10mA | 0.1%±200mV
0.1%±20mA | 0.1%±400mV
0.1%±2mA | 0.1%±400mV
0.1%±4mA | 0.1%±400mV
0.1%±6mA | | ENVIRONMENT CO | | 200000000000000000000000000000000000000 | | | | | | | | | | 20.300000000000000000000000000000000000 | | | | | | | | | | Operation Temp | 0°C ~ 50°C | | | | | | | | | | Storage Temp
Operating Humidity | -25°C ~ 70°C | H; No condensat | ion | | | | | | | | Storage Humidity | | ss; No condensa | | | | | | | | | READ BACK TEMP C | | | | | | | | | | | Voltage | Total Control of the | rated output vol | tage : after a 20 | minute warm | 2 | | | | | | Current | | rated output voi | | | | | | | | | OTHER | _00ppiii/ C 0i | output cu | | wate waitif-u | F | | | | | | 17.7.7.9.9.1.7.00.199.10.039.00.1 | Yes | | | | | | | | | | Analog Control
Interface | na 100 Billiana menangan ang an | B-USB(Option)/ | RS232-LISRION | tion) | | | | | | | Fan | | sensing control | эгэг озы(ор | | | | | | | | POWER SOURCE | | C, 47~63Hz, sin | gle phase | | | | | | | | | 202310000000000000 | | | 71.010~124/10 | 142010-1240 | 214(W)x124(H) | 71 (W)x124(H) | 142(W)x124(H) | 214040-12441 | | DIMENSIONS
& WEIGHT | 71 (W)x124(H)
x350(D) mm; | 142(W)x124(H)
x350(D) mm; | 214(W)x124(H)
x350(D) mm; | x350(D) mm; | 142(W)x124(H)
x350(D)mm; | x350(D) mm; | x350(D) mm; | x350(D) mm; | 214(W)x124(H)
x350(D) mm; | | & WEIGHT | Approx. 3kg | Approx. 5.3kg | Approx. 7.5kg | Approx. 3kg | Approx. 5.3kg | Approx. 7.5kg | Approx. 3kg | Approx. 5.3kg | Approx. 7.5kg | | | LL | 6 | LL | | | | | | | PSW-008 PSW-009 PSW-010 PSW-011 PSW-012 **PSW-Series** #### ORDERING INFORMATION | PSW 30-36 | (0~30V/0~36A/360W) Multi-Range DC Power Supply | |--------------|--| | PSW 30-72 | (0~30V/0~72A/720W) Multi-Range DC Power Supply | | PSW 30-108 | (0~30V/0~108A/1080W) Multi-Range DC Power Supply | | PSW 40-27 | (0~40V/0~27A/360W) Multi-Range DC Power Supply | | PSW 40-54 | (0~40V/0~54A/720W) Multi-Range DC Power Supply | | PSW 40-81 | (0~40V/0~81A/1080W) Multi-Range DC Power Supply | | PSW 80-13.5 | (0~80V/0~13.5A/360W) Multi-Range DC Power Supply | | PSW 80-27 | (0~80V/0~27A/720W) Multi-Range DC Power Supply | | PSW 80-40.5 | (0~80V/0~40.5A/1080W) Multi-Range DC Power Supply | | PSW 160-7.2 | (0~160V/0~7.2A/360W) Multi-Range DC Power Supply | | PSW 160-14.4 | (0~160V/0~14.4A/720W) Multi-Range DC Power Supply | | PSW 160-21.6 | (0~160V/0~21.6A/1080W) Multi-Range DC Power Supply | | PSW 250-4.5 | (0~250V/0~4.5A/360W) Multi-Range DC Power Supply | | PSW 250-9 | (0~250V/0~9A/720W) Multi-Range DC Power Supply | | PSW 250-13.5 | (0~250V/0~13.5A/1080W) Multi-Range DC Power Supply | | PSW 800-1.44 | (0~800V/0~1.44A/360W) Multi-Range DC Power Supply | | PSW 800-2.88 | (0~800V/0~2.88A/720W) Multi-Range DC Power Supply | | PSW 800-4.32 | (0~800V/0~4.32A/1080W) Multi-Range DC Power Supply | | | | #### ACCESSORIES: PSW-012 GTL-123 Test Lead x 1 (for PSW 30V/40V/80V/160V), Power Cord x 1 (Region dependent), GTL-240 USB Cable " L " Type x 1, PSW-004 Basic Accessories Kit x 1 (for PSW 30V/40V/80V/160V), Includes : M4 Terminal screws and washers x 2, Air Filter x 1, Analog control protection dummy x 1, Analog control lock lever x 1, M8 terminal bolts, nuts and washers x 2 PSW-004 Basic Accessories Kit x1 (30V/40V/80V/160V low voltage module) PSW-008 Basic Accessories Kit for PSW 250V/800V models PSW-009 Output Terminal Cover for 30V/40V/80V/160V models Output Terminal Cover for 250V/800V models High Voltage Output Terminal for 250V/800V model PSW-011 #### **OPTIONAL ACCESSORIES** | PSW-001 | Accessory Kit | PSW-010 | Large filter (Type II/III) |
---------|--|------------|--------------------------------------| | | Simple IDC Tool | GTL-248 | GPIB Cable, Double Shielded, 2000mm | | PSW-003 | Contact Removal Tool | GTL-250 | GPIB Cable, Double Shielded, 600mm | | PSW-005 | Cable for 2 Units of PSW-Series in Series | GUR-001A | USB to RS-232 Cable, 300mm(H3) | | | Mode Connection (for PSW 30V/40V/80V/160V) | GUR-001B | RS-232 to USB Adapter with #4-40 UNC | | PSW-006 | Cable for 2 Units of PSW-Series in Parallel Mode | | Rivet Nut | | | Connection | GUG-001 | GPIB to USB Adaptor | | PSW-007 | Cable for 3 Units of PSW-Series in Parallel Mode | GRA-410-J | Rack Mount Kit (JIS) | | | Connection | GRA-410-E | Rack Mount Kit (EIA) | | GET-001 | Extended Terminal with max. 30A(for PSW 30V/40V | //80V/160V | | | GET-002 | Extended Terminal with max. 10A (for PSW 250V/8 | 00V) | | | GET-005 | Extended European Terminal with max. 20A (for P. | SW 30V/40V | //80V/160V) | | GTL-130 | Test lead: 2 x red, 2 x black(for PSW 250V/800V) | | | #### PSW-Series (LV) Rear Panel PSW-Series (HV) Rear Panel GRA-410-J/E Rack Mount Kit (JIS/EIA) For : PSW-Series GTL-130 Test lead, 1200mm, 18AWG, UL 3239 (for PSW 250V/800V) GUR-001A USB to RS-232 Cable (for PSW-Series, 300mm) GUG-001 GPIB to USB Adapter (for GDS-3000Series, PSW-Series) **GET-001** Extended Terminal (for PSW 30V/40V/80V/160V) **GET-002** Extended Terminal (for PSW 250V/800V) #### **PSU-Series** #### **FEATURES** - * Voltage Output : 6V/8V/12.5V/15V/20V/30V/40V/ 50V/60V/80V/100V/150V/300V/400V/600V - * Power Output: 1200W ~ 1560W - * C.V/C.C Priority Mode - * Adjustable Voltage/Current Rise and Fall Time - * Series/Parallel Connection: Max. 2 units (Models Under 300V)/4 units of The Same Model - * High Efficiency and High Power Density - * 1U Height and 19"Rack Mount Size - * Three sets of Preset Function - * Bleeder Control Function - * Internal Resistance Function - * Panel Lock Function - * Protection : OVP, OCP, OHP, UVL, AC Fail, FAN Fail - * Standard : USB, LAN, RS-232, RS-485, Analog Control - * Option : GPIB, Isolated Analog Interface (Voltage Control/Current Control) GW Instek PSU-Series, a DC power supply with high power density design, is 1U in height and compatible with 19" Rack Mount Size. The series is suitable for test system installation or system integration by flexibly selecting models for the integration into the existing test system. The PSU-Series, featuring superior voltage and current control functions, comprises fifteen models with output voltage/current ranging from 6V/200A to 600V/2.6A. The Series is suitable for different test conditions and DUTs, including electronic components testing, micro resistors, relays, shunt resistors, 12V/24V/48V battery simulation, and automotive electronic device testing. The PSU-HV series is ideal for the primary input of DC/DC converter and servomotor production application. PSU is often integrated into component test systems such as aging test equipment for capacitors; 600V DC bias applications; aging test equipment for diode; semiconductor production equipment; automotive electronics; and ECU for V8 engine or V12 engine, etc. Utilizing same model units of the PSU-Series to conduct series and parallel connections can increase total output power, total current or total voltage. The wide voltage and current output ranges of the PSU-Series can fully satisfy various voltage and current measurement requirements. The PSU-Series is a single power output DC programmable power supply, which outputs 1200W to 1560W. The PSU-Series provides maximum 2 units in series connection (models under 300V) to achieve maximum 600V or 4 units in parallel connection to obtain maximum 800A and the maximum output power of 6.24 kilowatts. The PSU-Series allows settings for CC priority or CV priority. Under CC or CV mode, users can adjust slew rate for output voltage or current based upon test requirements. There are two kinds of slew rate settings: high speed priority and slew rate priority. High speed priority sets slew rate at the maximum speed to reach CC or CV mode. Slew rate priority allows users to set slew rate for CC or CV mode in order to control rise or fall slew rate. Slew rate priority mode is ideal for motor tests by adjusting the rise time of output voltage to protect DUT from being damaged by inrush current occurred at turn-on. Comparing with other 1U power supplies available in the market, PSU supports a most complete array of interfaces, including USB, LAN, RS-232, RS-485, analog control interface, GPIB (option), isolated analog interface (voltage control), and isolated analog interface (current control). Via the multi-drop mode, PSU will not need any switch/hub and GPIB cable for remote control and slave unit augmentation when using LAN, USB or GPIB. This feature can help users save costs on augmentation equipment for connecting slave while using LAN or USB. The PSU-Series provides users with flexible settings of High/Low Level or Trigger input/Trigger output signals with pulse width of $1\sim60$ ms. Trigger input controls PSU to output or upload preset voltage, current and memory parameters. While outputting or uploading preset voltage, current and memory parameters PSU can produce corresponding Trigger output signals. #### **PSU-Series Model Selection Table** | 1.5kW 1U High | 6-200 | 8-180 | 12.5-120 | | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | |---------------|----------|----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-------------|-------------| | Voltage | 6.000 V | 8.000 V | 12.50 V | 15.00 V | 20.00 V | 30.00 V | 40.00 V | 50.00 V | 60.00 V | 80.00 V | 100.0 V | 150.0 V | 300.0 V | 400.0 V | 600.0 V | | Current | 200.0 A | 180.0 A | 120.0 A | 100.0 A | 76.00 A | 50.00 A | 38.00 A | 30.0 A | 25.00 A | 19.00 A | 15.00 A | 10.00 A | 5.000 A | 3.800 A | 2.600 A | | Power | 1200 W | 1440 W | 1500 W | 1500 W | 1520 W | 1500 W | 1520 W | 1500 W | 1500 W | 1520 W | 1500 W | 1500 W | 1500 W | 1520 W | 1560 W | | 3kW 2U High | 6-400(B) | 8-360(B) | 12.5-240(B) | 15-200(B) | 20-152(B) | 30-100(B) | 40-76(B) | 50-60(B) | 60-50(B) | 80-38(B) | 100-30(B) | 150-20(B) | 300-10(B) | 400-7.6(B) | 600-5.2(B) | | Voltage | 6.000 V | 8.000 V | 12.50 V | 15.00 V | 20.00 V | 30.00 V | 40.00 V | 50.00 V | 60.00 V | 80.00 V | 100.0 V | 150.0 V | 300.0 V | 400.0 V | 600.0 V | | Current | 400.0 A | 360.0 A | 240.0 A | 200.0 A | 152.0 A | 100.0 A | 76.00 A | 60.00 A | 50.00 A | 38.00 A | 30.00 A | 20.00 A | 10.00 A | 7.600 A | 5.200 A | | Power | 2400 W | 2880 W | 3000 W | 3000 W | 3040 W | 3000 W | 3040 W | 3000 W | 3000 W | 3040 W | 3000 W | 3000 W | 3000 W | 3040 W | 3120 W | | | 6-600(B) | 8-540(B) | 12.5-360(B) | 15-300(B) | 20-228(B) | 30-150(B) | 40-114(B) | 50-90(B) | 60-75 (B) | 80-57(B) | 100-45(B) | 150-30(B) | 300-15(B) | 400-11.4(B) | 600-7.8(B) | | | 6-600(C) | 8-540(C) | 12.5-360(C) | 15-300(C) | 20-228(C) | 30-150(C) | 40-114(C) | 50-90(C) | 60-75 (C) | 80-57(C) | 100-45(C) | 150-30(C) | 300-15(C) | 400-11.4(C) | 600-7.8(C) | | | 6-600(D) | 8-540(D) | 12.5-360(D) | 15-300(D) | 20-228(D) | 30-150(D) | 40-114(D) | 50-90(D) | 60-75(D) | 80-57(D) | 100-45(D) | 150-30(D) | 300-15(D) | 400-11.4(D) | 600-7.8(D) | | Voltage | 6.000 V | 8.000 V | 12.50 V | 15.00 V | 20.00 V | 30.00 V | 40.00 V | 50.00 V | 60.00 V | 80.00 V | 100.0 V | 150.0 V | 300.0 V | 400.0 V | 600.0 V | | Current | 600.0 A | 540.0 A | 360.0 A | 300.0 A | 228.0 A | 150.0 A | 114.0 A | 90.0 A | 75.00 A | 57.00 A | 45.00 A | 30.00 A | 15.00 A | 11.40 A | 7.800 A | | Power | 3600 W | 4320 W | 4500 W | 4500 W | 4560 W | 4500 W | 4560 W | 4500 W | 4500 W | 4560 W | 4500 W | 4500 W | 4500 W | 4560 W | 4680 W | | | 6-800(B) | 8-720(B) | 12.5-480(B) | 15-400(B) | 20-304(B) | 30-200(B) | | 50-120(B) | 60-100(B) | 80-76(B) | 100-60(B) | 150-40(B) | 300-20(B) | 400-15.2(B) | 600-10.4(B) | | | 6-800(C) | 8-720(C) | 12.5-480(C) | 15-400(C) | 20-304(C) | 30-200(C) | 40-152(C) | 50-120(C) | 60-100(C) | 80-76(C) | 100-60(C) | 150-40(C) | 300-20(C) | 400-15.2(C) | 600-10.4(C) | | 40 High | 6-800(D) | 8-720(D) | 12.5-480(D) | 15-400(D) | 20-304(D) | 30-200(D) | 40-152(D) | 50-120(D) | 60-100(D) | 80-76(D) | 100-60(D) | 150-40(D) | 300-20(D) | 400-15.2(D) | 600-10.4(D) | | Voltage | 6.000 V | 8.000 V | 12.50 V | 15.00 V | 20.00 V | 30.00 V | 40.00 V | 50.00 V | 60.00 V | 80.00 V | 100.0 V | 150.0 V | 300.0 V | 400.0 V | 600.0 V | | Current | 800.0 A | 720.0 A | 480.0 A | 400.0 A | 304.0 A | 200.0 A | 152.0 A | 120.0 A | 100.0 A | 76.0 A | 60.00 A | 40.00 A | 20.00 A | 15.20 A | 10.40 A | | Power | 4800 W | 5760 W | 6000 W | 6000 W | 6080 W | 6000 W | 6080 W | 6000 W | 6000 W | 6080 W | 6000 W | 6000 W | 6000 W | 6080 W | 6240 W | Note: B: Input voltage 170–265VAC, single phase; C: Input voltage 180–253VAC, three-phase three-wire; D: Input voltage 360–440VAC, three-phase four-wire; No CE certificate. | SPECIFICATIONS | | | | | | | | | | | | | | | | | | |--|--|--------------|---|---|--|-------------------------------|---------------------------------|----------------|-------------------------------|----------------|----------------|-------------|--|----------------|---------------|----------------|-------------| | Model | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Rated output voltage (*1) | | V | 6 | 8 | 12.5 | 15 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 150 | 300 | 400 | 600 | |
Rated output current (*2) | | A | 200 | 180 | 120 | 100 | 76 | 50 | 38 | 30 | 25 | 19 | 15 | 10 | 5 | 3.8 | 2.6 | | Rated output power | | w | 1200 | 1440 | 1500 | 1500 | 1520 | 1500 | 1520 | 1500 | 1500 | 1520 | 1500 | 1500 | 1500 | 1520 | 1560 | | Constant Voltage Mode | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Line regulation (*3) | | mV | 2.6 | 2.8 | 3.25 | 3.5 | 4 | 5 | 6 | 7 | 8 | 10 | 12 | 17 | 32 | 42 | 62 | | Load regulation (°4) | | mV | 2.6 | 2.8 | 3.25 | 3.5 | 4 | 5 | 6 | 7 | 8 | 10 | 12 | 17 | 32 | 42 | 62 | | Ripple and noise (*5) | p-p (*6) | mV
mV | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 80 | 80 | 100 | 150 | 200 | 300 | | rippie and noise (~5) | | | 8 | 8 | 00 | 8 | 8 | 8 | 8 | 8 | | 8 | 8 | | | 40 | | | T | r.m.s. (¢7) | mV | - | | 0 | | 0 | | | | 8 | | 0 | 10 | 25 | 40 | 60 | | Temperature coefficient | | ppm/°C | 100ppm/℃ | atter a 30 m | inute warm-u | | | | | | | | | | | | | | Remote snese compensation voltage (single wire) | | V | | 1 | 310 | - 1 | 1 | 1.5 | 2 | 2 | 3 | 4 | 5 | 5 | - 5 | 5 | 5 | | Rise time (*8) | Rated load | ms | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | - 11.0 | No load | ms | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | Fall time (*9) | Rated load | ms | 10 | 50 | 50 | 50 | 50 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | | No load | ms | 500 | 600 | 700 | 700 | 800 | 900 | 1000 | 1100 | 1100 | 1200 | 1500 | 2000 | 2500 | 3000 | 4000 | | Transient response time (*10) | | ms | 1.5 | 1.5 | 1 | 1 | 1 | . 1 | . 1 | . 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | Constant Current Mode | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Line regulation (*3) | | mA | 22 | 20 | 14 | 12 | 9.6 | 7 | 5.8 | 5 | 4.5 | 3.9 | 3.5 | 3 | 2.5 | 2.38 | 2.26 | | Load regulation (°11) | 1 | mA | 45 | 41 | 29 | 25 | 20.2 | 15 | 12.6 | 11 | 10 | 8.8 | 8 | 7 | 6 | 5.76 | 5.52 | | Ripple and noise (*12) | r.m.s. | mA | 400 | 360 | 240 | 200 | 152 | 125 | 95 | 85 | 75 | 57 | 45 | 35 | 25 | 17 | 12 | | Temperature coefficient | | ppm/°C | 100ppm/°C | | inute warm-u | | | | | | | | | | | | 1 2 | | Protection Function | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Over voltage protection (OVP) | Setting range | ٧ | 0.6 - 6.6 | 0.8-8.8 | 1.25 - 13.75 | 1.5 - 16.5 | 2 - 22 | 3 - 33 | 4 - 44 | 5 - 55 | 5 - 66 | 5 - 88 | 5 - 110 | 5 - 165 | 5 - 330 | 5 - 440 | 5 - 660 | | 5 NO.9 NO.0 CO | Setting accuracy | mV | 60 | 80 | 125 | 150 | 200 | 300 | 400 | 500 | 600 | 800 | 1000 | 1500 | 3000 | 4000 | 6000 | | Over current protection (OCP) | Setting range | A | 5 - 220 | 5-198 | 5 - 132 | 5 - 110 | 5 - 83.6 | 5 - 55 | 3.8 - 41.8 | 3 - 33 | 2.5 - 27.5 | 1.9 - 20.9 | 1.5 - 16.5 | 1 - 11 | 0.5 - 5.5 | 0.38 - 4.18 | 0.26 - 2.86 | | | Setting accuracy | mA | 4000 | 3600 | 2400 | 2000 | 1520 | 1000 | 760 | 600 | 500 | 380 | 300 | 200 | 100 | 76 | 52 | | Under voltage limit (UVL) | Setting range | | 0 - 6.3 | 0 - 8.4 | 0 - 13.12 | 0 - 15.75 | 0 - 21 | 0 - 31.5 | 0 - 42 | 0 - 52.5 | 0 - 63 | 0 - 84 | 0 - 105 | 0 - 157.5 | 0 - 315 | 0 - 420 | 0 - 630 | | Over temperature protection (OHP) | Operation | | Turn the ou | | | | | | | | | | | | | | | | Incorrect sensing connection protection (SENSE) | Operation | | Turn the ou | | | | | | | | | | | | | | | | Low AC input protection (AC-FAIL) | Operation | | Turn the ou | | | | | | | | | | | | | | | | Shutdown (SD) | Operation | | Turn the ou | | | | | | | | | | | | | | 2 | | Power limit (POWER LIMIT) | Operation | | Over power | - | | | | | | | | | | | | | | | Analog Programming and Monitoring | оренинен | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | External voltage control output voltage | | 1.50 | | | 0.5% of rated | | | 20.30 | 10-30 | 30.30 | 30-23 | 30-13 | .00/13 | .50 10 | 2003 | .00 3.0 | 230 2.0 | | External voltage control output voltage External voltage control output current | _ | | | | 1% of rated o | | | | | | | | | | | | 2 | | | _ | | | | 1% of rated o | | | | | | | | | | | | | | External resistor control output voltage | | | - | | | | | | | | | | | | | | | | External resistor control output current | | - | | | 1.5% of rated | output curre | nt. | | | | | | | | | | | | Output voltage monitor | | | Accuracy: ± | | | | | | | | | | | | | | | | Output current monitor | | | Accuracy: ± | | 1.0111.1011. | 0.00 | | | | | | | | | | | | | Shutdown control | 1 | 7 | | | a LOW (0V t | | | | | | | | | | | | | | Output on/off control | | | | | Turn the out | | | | | | | | 5V) or open | circuit. | | | | | 1 (C) (C) | - | _ | | | g a HIGH (4.5 | | | urn the outpo | it off using a | LOW (UV to t | 0.5V) or short | -circuit. | | | | | | | Alarm clear control | | | | | (0V to 0.5V) | | | | | | | | | | | | | | CV/CC/ALM/PWR ON/OUT ON indicator | | _ | | | ctor output; N | | | | | | | | | | | | | | Trigger out | | | | | ut = 0.8V; mi | | | | | | | | | | | | - | | Trigger in | | | | | t voltage = 0.8 | | | | | | | | | | | | | | Front Panel | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Display, 4 digits Voltage accuracy | 0.1% + | mV | 12 | 16 | 25 | 30 | 40 | 60 | 80 | 100 | 120 | 160 | 200 | 300 | 600 | 800 | 1200 | | Current accuracy | 0.2% + | mA | 600 | 540 | 360 | 300 | 228 | 150 | 114 | 90 | 75 | 57 | 45 | 30 | 15 | 11.4 | 7.8 | | Indications | | | | | , A, VSR, ISR | | | | | RED LED's: A | LM, ERR | | | | | | | | Buttons | | | Lock/Local(| (Unlock), PRO | OT(ALM_CLR |), Function (M | M1), Test(M2) |), Set(M3), S | nift, Output | | | | | | | | | | Knobs | | 3 | Voltage, Cu | rrent | | | | | | | | | | | | | 8 | | USB port | | 2.000 | Type A USB | connector | | | | | | | | | | | | | | | Programming and Measurement (RS-232/485, USB | , LAN, GPIB) | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Output voltage programming accuracy | 0.05% + | mV | 3 | 4 | 6.25 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 75 | 150 | 200 | 300 | | Output current programming accuracy | 0.2% + | mA | 200 | 180 | 120 | 100 | 76 | 50 | 38 | 30 | 25 | 19 | 15 | 10 | 5 | 3.8 | 2.6 | | Output voltage programming resolution | | mV | 0.2 | 0.27 | 0.4 | 0.5 | 0.7 | 1 | 1.3 | 1,7 | 2 | 2.7 | 3.4 | 5.2 | 10.2 | 13.6 | 20.4 | | Output current programming resolution | | mA | 6 | 6 | 4 | 3.3 | 2.5 | 1.7 | 1.2 | 1 | 0.8 | 0.65 | 0.5 | 0.34 | 0.19 | 0.13 | 0.09 | | Output voltage measurement accuracy | 0.1% + | mV | 6 | 8 | 12.5 | 15 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 150 | 300 | 400 | 600 | | Output current measurement accuracy | 0.2% + | mA | 400 | 360 | 240 | 200 | 152 | 100 | 76 | 60 | 50 | 38 | 30 | 20 | 10 | 7.6 | 5.2 | | Output current measurement accuracy Output voltage measurement resolution | | mV | 0.2 | 0.27 | 0.4 | 0.5 | 0.7 | 1 | 1.3 | 1.7 | 2 | 2.7 | 3.4 | 5.2 | 10.2 | 13.6 | 20.4 | | Output voltage measurement resolution Output current measurement resolution | | mA | 6 | 6 | 4 | 3.3 | 2.5 | 1.7 | 1.3 | 1.7 | 0.8 | 0.65 | 0.5 | 0.34 | 0.19 | 0.13 | 0.09 | | | | PSU | 6-200 | - | | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | | 100-15 | | | 400-3.8 | | | Input Characteristics | | P50 | | 8-180 | 12.5-120
~ 60Hz, single | | 20-76 | 30-30 | 40-38 | 30-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Norminal input rating | 1 | - | 85Vac - 265 | | - oursz, singi | - priase | | | | | | | | | | | | | Input voltage range | 1 | | 47Hz ~ 63H | 22.22 | | | | | | | | | | | | | 0 | | Imput frequency range | 100% - 10000 | . | | 16. | | | | | | | | | | | | | | | Maximum input current | 100Vac / 200Vac | A | 21 / 11 | 0.4 | | | | | | | | | | | | | - | | Inrush current | | | Less than 5 | UA | | | | | | | | | | | | | 9 | | Maximum input power | | VA | 2000 | | | | | | | | | | | | | | | | Power factor | 100Vac / 200Vac | | 0.99 / 0.98 | | | | | | | | | | | | | | | | Efficiency (*13) | 100Vac / 200Vac | % | 76.5 / 79 | 78/81 | 82 / 85 | 82 / 85 | 83 / 86 | 83 / 86 | 84 / 87 | 84 / 87 | 84 / 87 | 84 / 87 | 84 / 87 | 84 / 87 | 84 / 87 | 84 / 87 | 84 / 87 | | Hold-up time | | | 20ms or gre | | | | | | | | | | | | | | | | Interface Capabilities | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | USB | 5 | | | | ve, Speed: 1.1 | | | | | | y** | 7 | | 7 8 | 7 | × - | · 5 | | LAN | | | | | ddress, User | | | dress, Instrur | nent IP Addre | ss, Subnet M | task | | | | | | | | RS-232 / RS-485 | | | Complies w | ith the EIA23 | 2D / EIA485 S | Specifications | | | | | | | | | | | - 10 | | GPIB (Factory Option) | | | SCPI - 1993 | | compliant inte | | 55 | .V | · 20 - 1 - 1 - 1 - 1 | 18 | al . | | 0 | 9 - | 2 2 2 | | a 1, 8 | | Isolated Analog Control Interface (Factory Option) | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Voltage Control | | | | | gnals for prog | | | | | | | | | | | | | | Current Control | 2 | | | | signals for pr | | | | | ls. | | | | | | | | | Environmental Conditions | | PSU | 6-200 | | 12.5-120 | | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | Operaing temperature | | | 0.C-20.C | | | | | | | | | | | | | | | | Storage temperature | 1 | | -25 °C ~ 70 | | | | | | | | | | | | | | 9 | | Operating humidity | _ | 1 | | RH; No con | densation | | | | | | | | | | | | | | | | | | less; No con | | | | | | | | | | |
 | | | Storage humidity Altitude | _ | _ | Maximum 2 | | ore transition | | | | | | | | | | | | | | | | PSU | 6-200 | 8-180 | 12.5-120 | 15-100 | 20-76 | 30-50 | 40-38 | 50-30 | 60-25 | 80-19 | 100-15 | 150-10 | 300-5 | 400-3.8 | 600-2.6 | | General Specifications | mala | | | | 12.5-120 | 15-100 | 20-76 | 30-30 | 40-38 | 30-30 | 60-25 | 80-19 | 100-15 | 130-10 | 300-3 | 400-3.8 | 600-2.6 | | Weight | main unit only | kg | Less than 8 | | | | | | | | | | | | | | | | | (W×H×D) | mm | 423 × 43.6 > | | 1.5 | | | | | | | | | | | | | | Dimensions | | | | | | | | | | | | | | | | | - 39 | | Cooling | | | Forced air c | | | | | | | | | | | | | | | | Cooling
EMC | | | Complies w | ith the Europ | ean EMC dire | | | | | | | | | | | | | | Cooling
EMC
Safety | | | Complies w | ith the Europ
ith the Europ | ean EMC dire
ean Low Volt | age Directive | 73/23/EEC a | nd carries th | e CE-marking. | i e | | | | | | | | | Cooling
EMC
Safety
Withstand voltage | | | Complies w
Complies w
AC to Chass | ith the Europ
ith the Europ
sis : 1500Vac | ean EMC dire
ean Low Volt
/1min; AC to | age Directive
Output termi | 73/23/EEC a
nal : 3000Vac | nd carries th | e CE-marking.
≤150V; Outpi | ut terminal to | | 00Vdc/1min; | 150 <vout≦< td=""><td>600; Output te</td><td>erminal to Cl</td><td>nassis : 1500V</td><td>/dc/1min</td></vout≦<> | 600; Output te | erminal to Cl | nassis : 1500V | /dc/1min | | Cooling
EMC
Safety | | | Complies w
Complies w
AC to Chass | ith the Europ
ith the Europ
sis : 1500Vac | ean EMC dire
ean Low Volt | age Directive
Output termi | 73/23/EEC a
nal : 3000Vac | nd carries th | e CE-marking.
≤150V; Outpi | ut terminal to | | 00Vdc/1min; | 150 <vout≦< td=""><td>600; Output te</td><td>erminal to Cl</td><td>nassis : 1500V</td><td>/dc/1min</td></vout≦<> | 600; Output te | erminal to Cl | nassis : 1500V | /dc/1min | - Notes: (*1) Minimum voltage is guaranteed to maximum 0.2% of the rated output voltage. (*2) Minimum current is guaranteed to maximum 0.4% of the rated output current. (*2) All SP 132Vac or 170 265Vac, constant load. (*3) At SP 132Vac or 170 265Vac, constant load. (*4) From No-load to Full-load, constant input voltage. Measured at the sensing point in Remote Sense. (*5) Measurement frequency bandwidth is 10Hz 20MHz. (*6) Measurement frequency bandwidth is 10Hz 20MHz. (*7) Measurement frequency bandwidth is 10Hz 1MHz. (*8) From 10% 90% of rated output voltage, with rated resistive load. (*9) From 90% 10% of rated output voltage, with rated resistive load. (*10) Time for output voltage to recover within 0.5% of its rated output for a load change from 10 90% of its rated output current. Voltage set point from 10% 100% of rated output. - (*11) For load voltage change, equal to the unit voltage rating, constant input voltage. (*12) For 6V 20V model the ripple is measured at 2V rated output voltage and full output current. For other models, the ripple is measured at 10 100% output voltage and full output current. (*14) If install the front panel filter kit, the temperature is guaranteed to 40° C. | SPECIFIC ALICINS | | | | | | | | | | | | | | | | | | |--|----------------------|---|--|--
--|--|---|---|--|---|---|--|---|---|---|---|---| | SPECIFICATIONS | | PSU | 6-400 | 8-360 | 12.5-240 | 15-200 | 20-152 | 30-100 | 40-76 | 50-60 | 60-50 | 80-38 | 100-30 | 150-20 | 300-10 | 400-7.6 | 600-5.2 | | Rated output voltage (*1) | | V | 6 | 8 | 12.5-240 | 15-200 | 20-132 | 30-100 | 40-76 | 50 | 60 | 80 | 100-30 | 150-20 | 300-10 | 400-7.6 | 600 | | Rated output current (*2) | | A | 400 | 360 | 240 | 200 | 152 | 100 | 76 | 60 | 50 | 38 | 30 | 20 | 10 | 7.6 | 5.2 | | Rated output power | | w | 2400 | 2880 | 3000 | 3000 | 3040 | 3000 | 3040 | 3000 | 3000 | 3040 | 3000 | 3000 | 3000 | 3040 | 3120 | | Constant Voltage Mode | | PSU | 6-400 | 8-360 | 12.5-240 | 15-200 | 20-152 | 30-100 | 40-76 | 50-60 | 60-50 | 80-38 | 100-30 | 150-20 | 300-10 | 400-7.6 | 600-5.2 | | Line regulation (*3) | | mV | | ted output vo | | 13-200 | 20-132 | 30-100 | 40-70 | 30.00 | 00-30 | 00-30 | 100-50 | 130-20 | 300-10 | 400-7.0 | 000-3.2 | | Load regulation (*4) | | mV | | ted output vo | | | | | | | | | | | | | - | | | 00 | mV
mV | | 75 | | 71 | 75 | 20 | 75 | 75 | 71 | 100 | 100 | 120 | 300 | 300 | 500 | | Ripple and noise (*5) | p-p (*6) | | 75 | | 75 | 75 | 75 | 75 | 75 | 77.50 | 75 | 10000 | 100 | 120 | | | | | | r.m.s. (*7) | mV | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 15 | 15 | 25 | 35 | 35 | 120 | | Temperature coefficient | | ppm/°C | | | inute warm-up | | | | - | 1 10 | 507.00 | | 100 | | | | _ | | Temperature stability | | | | | | | | | | line, load & te | mp. | | | | | | | | Warm-up drift | | | Less than 0. | .05% of rated | output voltag | ge +ZmV ove | r 30 minutes | | | | | | | | | | | | Remote snese compensation voltage (single wire) | | V | 1 | 1 | 1 | 1 | 1 | 1.5 | 2 | 2 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | | Rise time (*8) | No load | ms | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | Fall time (±9) | Rated load | ms | 10 | 50 | 50 | 50 | 50 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | | No load | ms | 500 | 600 | 700 | 700 | 800 | 900 | 1000 | 1100 | 1100 | 1200 | 1500 | 2000 | 2500 | 3000 | 4000 | | Transient response time (*10) | | ms | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Constant Current Mode | | PSU | 6-400 | 8-360 | 12.5-240 | 15-200 | 20-152 | 30-100 | 40-76 | 50-60 | 60-50 | 80-38 | 100-30 | 150-20 | 300-10 | 400-7.6 | 600-5.2 | | Line regulation (+3) | - | mA | 0.05% of ra | ted output cu | irrent | | >1 3 | 5 S | - | k (5) | | 1. | 10 | <u> </u> | | 0 6 | | | Load regulation (*11) | | mA | | ed output cur | | | 28.0. | 505 3010 | | | | 1% of rated | output currer | nt | | | | | Load regulation thermal drift | | c v.i | Less than 0. | .1% of rated | output curren | t over 30 mir | utes followin | g load change | 2. | | 10000 | .0 (2).0 (2) | | | er odube e | 53 - N/A | | | Ripple and noise (*12) | r.m.s. | mA | 850 | 800 | 650 | 590 | 520 | 290 | 185 | 137 | 107 | 85 | 69 | 58 | 30 | 20 | 15 | | Temperature coefficient | | ppm/°C | 100ppm/°C | after a 30 m | inute warm-up |) | v | - 1 | 1 | A C | | - 1 | V | | | | - 17 | | Temperature stability | ģ. | | 0.05% of ra | ted output cu | irrent over 8h | rs interval fol | lowing 30 mi | nutes warm-u | p. Constant | ine, load & te | тр. | | | | | | | | Warm-up drift | | X | 6-15V mod | el : Less than | 0.5% rated o | utput current | t over 30 min | utes following | power on ; | 20-600V mod | el : Less than | 0.25% rated | output currer | nt over 30 mir | nutes followin | ng power on. | | | Protection Function | | PSU | 6-400 | 8-360 | 12.5-240 | 15-200 | 20-152 | 30-100 | 40-76 | 50-60 | 60-50 | 80-38 | 100-30 | 150-20 | 300-10 | 400-7.6 | 600-5.2 | | Over voltage protection (OVP) | Setting range | V | 0.6 - 6.6 | 0.8-8.8 | 1.25 - 13.75 | 1.5 - 16.5 | 2 - 22 | 3 - 33 | 4 - 44 | 5 - 55 | 5 - 66 | 5 - 88 | 5 - 110 | 5 - 165 | 5 - 330 | 5 - 440 | 5 - 660 | | | Setting accuracy | mV | 60 | 80 | 125 | 150 | 200 | 300 | 400 | 500 | 600 | 800 | 1000 | 1500 | 3000 | 4000 | 6000 | | Over current protection (OCP) | Setting range | A | 5 - 440 | 5-396 | 5 - 262 | 5 - 220 | 5 - 167.2 | 5 - 110 | 5 - 83.6 | 5 - 66 | 5 - 55 | 3.8 - 41.8 | 3 - 33 | 2 - 22 | 1 - 11 | 0.76 - 8.36 | 0.52 - 5.72 | | | Setting accuracy | A | - 8 | 7.2 | 4.8 | 4 | 3.04 | 2 | 1.52 | 1.2 | 1 | 0.76 | 0.6 | 0.4 | 0.2 | 0.152 | 0.104 | | Under voltage limit (UVL) | Setting range | | 0 - 6.3 | 0 - 8.4 | 0 - 13.12 | 0 - 15.75 | 0 - 21 | 0 - 31.5 | 0 - 42 | 0 - 52.5 | 0 - 63 | 0 - 84 | 0 - 105 | 0 - 157.5 | 0 - 315 | 0 - 420 | 0 - 630 | | Over temperature protection (OHP) | Operation | ~ | Turn the ou | | | | | | | | | - 77 | | | | | | | Incorrect sensing connection protection (SENSE) | Operation | 7. | Turn the ou | | | | | | | | | | | | | | - | | Low AC input protection (AC-FAIL) | Operation | | Turn the ou | | | | | | | | | | | | | | - | | Shutdown (SD) | Operation | | Turn the ou | | | | | | | | | | | | | | - | | Power limit (POWER LIMIT) | Operation | | Over power | | | | | | | | | | | | | | - | | TOWN HIME (TOWN CHAIT) | Value (fixed) | | | % of rated o | utnut nower | | | | | | | | | | | | - | | Front Panel | value (lixeu) | PSU | 6-400 | 8-360 | 12.5-240 | 15-200 | 20-152 | 30-100 | 40-76 | 50-60 | 60-50 | 80-38 | 100-30 | 150-20 | 300-10 | 400-7.6 | 600-5.2 | | Display, 4 digits Voltage accuracy | 0.1% + | mV | 12 | 16 | 25 | 30 | 40 | 60 | 80 | 100 | 120 | 160 | 200 | 300 | 600 | 800 | 1200 | | Current accuracy | 0.2% + | mA | 1200 | 1080 | 720 | 600 | 456 | 300 | 228 | 180 | 150 | 114 | 90 | 60 | 30 | 22.8 | 15.6 | | Indications | U.E./U + | IIIA | | | | | | | | ED LED's: AL | | | 20 | - 00 | | 22.0 | 13.0 | | Buttons | 7 | 7 | | | OT(ALM_CLR) | | | | | ED EED 3. ME | in, Lini | | | | | | | | Knobs | | 2 | Voltage, Cu | | JI (MEMILCEN | , runction(s | nij, reselwiz | , seelwist, si | in, Output | | | | | | | | - | | USB port | | 15 | Type A USB | | | | | | | | | | | | | | - | | Programming and Measurement (RS-232/485, USB | LAN CRIP | PSU | 6-400 | 8-360 | 12.5-240 | 15-200 | 20-152 | 30-100 | 40-76 | 50-60 | 60-50 | 80-38 | 100-30 | 150-20 | 300-10 | 400-7.6 | 600-5.2 | | | 0.05% + | mV | 3 | 4 | 6.25 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 75 | 150 | 200 | 300 | | Output voltage programming accuracy | 0.2% + | | | 4 | 0.23 | | 10 | | 20 | | | | | 13 | | | 5.2 | | Output current programming accuracy | | | | 260 | 240 | 200 | 152 | | 76 | | | | | 20 | | | | | | 0.2% + | mA | 400 | 360 | 240 | 200 | 152 | 100 | 76 | 60 | 50 | 38 | 30 | 20 | 10 | 7.6 | | | Output voltage programming resolution | 0.2% + | mV | 0.2 | 0.27 | 0.4 | 0.5 | 0.7 | 1 / | 1.3 | 1.7 | 2 | 2.7 | 3.4 | 5.2 | 10
10.2 | 13.6 | 20.4 | | Output voltage programming resolution Output current programming resolution | | mV
mA | 0.2
12 | 0.27
12 | 0.4
8 | 0.5
6.6 | 0.7
5 | 3.4 | 1.3
2.4 | 1.7 | 2 | 2.7 | 3.4 | 5.2
0.68 | 10
10.2
0.38 | 13.6
0.26 | 20.4
0.18 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy | 0.1% + | mV
mA
mV | 0.2
12
6 | 0.27
12
8 | 0.4
8
12.5 | 0.5
6.6
15 | 0.7
5
20 | 3.4
30 |
1.3
2.4
40 | 1.7
2
50 | 2
1.6
60 | 2.7
1.3
80 | 3.4
1
100 | 5.2
0.68
150 | 10
10.2
0.38
300 | 13.6
0.26
400 | 20.4
0.18
600 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output current measurement accuracy | | mV
mA
mV
mA | 0.2
12
6
800 | 0.27
12
8
720 | 0.4
8
12.5
480 | 0.5
6.6
15
400 | 0.7
5
20
304 | 1
3.4
30
200 | 1.3
2.4
40
152 | 1.7
2
50
120 | 2
1.6
60
100 | 2.7
1.3
80
76 | 3.4
1
100
60 | 5.2
0.68
150
40 | 10
10.2
0.38
300
20 | 13.6
0.26
400
15.2 | 20.4
0.18
600
10.4 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output current measurement accuracy Output current measurement resolution | 0.1% + | mV
mA
mV
mA
mV | 0.2
12
6
800
0.2 | 0.27
12
8
720
0.27 | 0.4
8
12.5
480
0.4 | 0.5
6.6
15
400
0.5 | 0.7
5
20
304
0.7 | 1
3.4
30
200 | 1.3
2.4
40
152
1.3 | 1.7
2
50
120 | 2
1.6
60
100
2 | 2.7
1.3
80
76
2.7 | 3.4
1
100 | 5.2
0.68
150
40
5.2 | 10
10.2
0.38
300
20
10.2 | 13.6
0.26
400
15.2
13.6 | 20.4
0.18
600
10.4
20.4 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output current measurement accuracy Output current measurement resolution Output current measurement resolution | 0.1% + | mV
mA
mV
mA
mV | 0.2
12
6
800
0.2 | 0.27
12
8
720
0.27
12 | 0.4
8
12.5
480
0.4
8 | 0.5
6.6
15
400
0.5
6.6 | 0.7
5
20
304
0.7
5 | 1
3.4
30
200
1
3.4 | 1.3
2.4
40
152
1.3
2.4 | 1.7
2
50
120
1.7
2 | 2
1.6
60
100
2
1.6 | 2.7
1.3
80
76
2.7
1.3 | 3.4
1
100
60
3.4 | 5.2
0.68
150
40
5.2
0.68 | 10
10.2
0.38
300
20
10.2
0.38 | 13.6
0.26
400
15.2
13.6
0.26 | 20.4
0.18
600
10.4
20.4
0.18 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output current measurement accuracy Output current measurement resolution Output current measurement resolution Input Characteristics | 0.1% + | mV
mA
mV
mA
mV | 0.2
12
6
800
0.2
12
6-400 | 0.27
12
8
720
0.27
12
8-360 | 0.4
8
12.5
480
0.4
8
12.5-240 | 0.5
6.6
15
400
0.5 | 0.7
5
20
304
0.7 | 1
3.4
30
200 | 1.3
2.4
40
152
1.3 | 1.7
2
50
120 | 2
1.6
60
100
2 | 2.7
1.3
80
76
2.7 | 3.4
1
100
60 | 5.2
0.68
150
40
5.2 | 10
10.2
0.38
300
20
10.2 | 13.6
0.26
400
15.2
13.6 | 20.4
0.18
600
10.4
20.4 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output current measurement accuracy Output voltage measurement resolution Output current measurement resolution Input Characteristics Norminal input rating | 0.1% + | mV
mA
mV
mA
mV | 0.2
12
6
800
0.2
12
6-400
B type: 1P2 | 0.27
12
8
720
0.27
12
8-360
W 200V mod | 0.4
8
12.5
480
0.4
8
12.5-240 | 0.5
6.6
15
400
0.5
6.6 | 0.7
5
20
304
0.7
5 | 1
3.4
30
200
1
3.4 | 1.3
2.4
40
152
1.3
2.4 | 1.7
2
50
120
1.7
2 | 2
1.6
60
100
2
1.6 | 2.7
1.3
80
76
2.7
1.3 | 3.4
1
100
60
3.4 | 5.2
0.68
150
40
5.2
0.68 | 10
10.2
0.38
300
20
10.2
0.38 | 13.6
0.26
400
15.2
13.6
0.26 | 20.4
0.18
600
10.4
20.4
0.18 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output current measurement accuracy Output voltage measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input voltage range | 0.1% + | mV
mA
mV
mA
mV | 0.2
12
6
800
0.2
12
6-400
8 type: 1P2
B type: 1P2 | 0.27
12
8
720
0.27
12
8-360
W 200V mod | 0.4
8
12.5
480
0.4
8
12.5-240 | 0.5
6.6
15
400
0.5
6.6 | 0.7
5
20
304
0.7
5 | 1
3.4
30
200
1
3.4 | 1.3
2.4
40
152
1.3
2.4 | 1.7
2
50
120
1.7
2 | 2
1.6
60
100
2
1.6 | 2.7
1.3
80
76
2.7
1.3 | 3.4
1
100
60
3.4 | 5.2
0.68
150
40
5.2
0.68 | 10
10.2
0.38
300
20
10.2
0.38 | 13.6
0.26
400
15.2
13.6
0.26 | 20.4
0.18
600
10.4
20.4
0.18 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output voltage measurement resolution Output current measurement resolution input Characteristics Norminal input rating Input voltage range Input frequency range | 0.1% + 0.2% + | mV
mA
mV
mA
mV
mA
PSU | 0.2
12
6
800
0.2
12
6-400
B type: 1P2
B type: 1P2
47Hz ~ 63H | 0.27
12
8
720
0.27
12
8-360
W 200V mod
W 170 ~ 265 | 0.4
8
12.5
480
0.4
8
12.5-240 | 0.5
6.6
15
400
0.5
6.6 | 0.7
5
20
304
0.7
5 | 1
3.4
30
200
1
3.4 | 1.3
2.4
40
152
1.3
2.4 | 1.7
2
50
120
1.7
2 | 2
1.6
60
100
2
1.6 | 2.7
1.3
80
76
2.7
1.3 | 3.4
1
100
60
3.4 | 5.2
0.68
150
40
5.2
0.68 | 10
10.2
0.38
300
20
10.2
0.38 | 13.6
0.26
400
15.2
13.6
0.26 | 20.4
0.18
600
10.4
20.4
0.18 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output current measurement accuracy Output current measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input voltage range Input voltage range Input fearurery range Maximum input current | 0.1% + | mV
mA
mV
mA
mV | 0.2
12
6
800
0.2
12
6-400
8 type: 1P2
8 type: 1P2
47Hz – 63H
8 type: 22A | 0.27
12
8
720
0.27
12
8-360
W 200V mod
W 170 ~ 265 | 0.4
8
12.5
480
0.4
8
12.5-240
lels | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5
20
304
0.7
5 | 1
3.4
30
200
1
3.4 | 1.3
2.4
40
152
1.3
2.4 | 1.7
2
50
120
1.7
2 | 2
1.6
60
100
2
1.6 | 2.7
1.3
80
76
2.7
1.3 | 3.4
1
100
60
3.4 | 5.2
0.68
150
40
5.2
0.68 | 10
10.2
0.38
300
20
10.2
0.38 | 13.6
0.26
400
15.2
13.6
0.26 | 20.4
0.18
600
10.4
20.4
0.18 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current | 0.1% + 0.2% + 200Vac | mV
mA
mV
mA
mV
mA
PSU | 0.2
12
6
800
0.2
12
6-400
8 type: 1P2
8 type: 1P2
47Hz - 63H
8 type: 22A
8 type: 1P2 | 0.27
12
8
720
0.27
12
8-360
W 200V mod
W 170 ~ 265 | 0.4
8
12.5
480
0.4
8
12.5-240 | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5
20
304
0.7
5 | 1
3.4
30
200
1
3.4 | 1.3
2.4
40
152
1.3
2.4 | 1.7
2
50
120
1.7
2 | 2
1.6
60
100
2
1.6 | 2.7
1.3
80
76
2.7
1.3 | 3.4
1
100
60
3.4 | 5.2
0.68
150
40
5.2
0.68 | 10
10.2
0.38
300
20
10.2
0.38 | 13.6
0.26
400
15.2
13.6
0.26 | 20.4
0.18
600
10.4
20.4
0.18 | | Output voltage programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output current measurement resolution Input voltage measurement resolution Input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor | 0.1% + 0.2% + | mV
mA
mV
mA
mV
mA
PSU | 0.2
12
6
800
0.2
12
6-400
B type: 1P2
B type: 1P2
47Hz - 63H
B type: 22A
B type: 1P2
0.98 @1 Ph | 0.27
12
8
720
0.27
12
8-360
W 200V mod
W 170 ~ 265
Iz
W 200V mod
ase 200Vac | 0.4
8
12.5
480
0.4
8
12.5-240
lels
Vac | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5
20
304
0.7
5
20-152 | 1
3.4
30
200
1
3.4
30-100 | 1.3
2.4
40
152
1.3
2.4
40-76 | 1.7
2
50
120
1.7
2
50-60 | 2
1.6
60
100
2
1.6
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement
resolution Output voltage measurement resolution Input Characteristics Norminal input rating Input voltage range Input requency range Maximum input current Inrush current Inrush current Efficiency (*13) | 0.1% + 0.2% + 200Vac | mV
mA
mV
mA
mV
mA
PSU | 0.2
12
6
800
0.2
12
6-400
B type: 1P2
47Hz ~ 63H
B type: 22A
B type: 1P2
0.98 @1 Ph | 0.27
12
8
720
0.27
12
8-360
W 200V mod
ase 200Vac
81 | 0.4
8
12.5
480
0.4
8
12.5-240
lels | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5
20
304
0.7
5 | 1
3.4
30
200
1
3.4 | 1.3
2.4
40
152
1.3
2.4 | 1.7
2
50
120
1.7
2 | 2
1.6
60
100
2
1.6 | 2.7
1.3
80
76
2.7
1.3 | 3.4
1
100
60
3.4 | 5.2
0.68
150
40
5.2
0.68 | 10
10.2
0.38
300
20
10.2
0.38 | 13.6
0.26
400
15.2
13.6
0.26 | 20.4
0.18
600
10.4
20.4
0.18 | | Output voltage programming resolution Output current programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Input characteristics Norminal input rating Input voltage range Input requency range Maximum input current Inrush current Power factor Efficiency (?13) Hold-up time | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 47Hz ~ 63H B type: 22A B type: 22A 9 type: 29 0.98 @1 Ph 78.5 20ms or gree | 0.27
12
8
720
0.27
12
8-360
W 200V mod
W 170 ~ 265
iz
W 200V mod
ase 200Vac | 0.4
8
12.5
480
0.4
8
12.5-240
iels
Vac | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5
20
304
0.7
5
20-152 | 1
3.4
30
200
1
3.4
30-100 | 1.3
2.4
40
152
1.3
2.4
40-76 | 1.7
2
50
120
1.7
2
50-60 | 2
1.6
60
100
2
1.6
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output current measurement resolution Output current measurement resolution input Characteristics Norminal input rating Input voltage range Input woltage range Input must current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities | 0.1% + 0.2% + 200Vac | mV
mA
mV
mA
mV
mA
PSU | 0.2 12 6 800 0.2 12 6-400 B type : 1P2 47Hz ~ 63H B type : 1P2 47Hz ~ 63H 78.5 20ms or gre 6-400 | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 ~ 2655 Iz W 200V ac 81 acter 8-360 | 0.4
8
12.5
480
0.4
8
12.5-240
lels
Vac | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5
20
304
0.7
5
20-152 | 1
3.4
30
200
1
3.4
30-100 | 1.3
2.4
40
152
1.3
2.4
40-76 | 1.7
2
50
120
1.7
2
50-60 | 2
1.6
60
100
2
1.6
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output uvoltage measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input though range Input requency range Maximum input current Inrush current Inrush current Efficiency (*13) Hold-up time Interface Capabilities USB | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 B type: 1P2 6 type: 1P2 0.98 @1 Ph 78.5 20ms or gre 6-400 TypeA: Hos | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 ~ 265 iz W 200V ac 81 aster 8-360 st, Type8 : Sla | 0.4 8 12.5 480 0.4 8 12.5-240 els Vac 12.5-240 els Less than 85 | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5 20
304 0.7
5 20-152 | 1
3.4
30
200
1
3.4
30-100 | 1.3
2.4
40
152
1.3
2.4
40-76 | 1.7
2
50
120
1.7
2
50-60 | 2
1.6
60
100
2
1.6
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input voltage range Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 47Hz - 63H B type: 22A 8 type: 22A 20ms or gre 6-400 TypeA: Hoto MAC Addre | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 ~ 265 Iz W 200V ac 81 sater 8-360 8, t, TypeB: Sis, SN, SIPA | 0.4 8 12.5 480 0.4 8 12.5-240 els Less than 85 12.5-240 ddress, User i | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5 20
304
0.7
5 20-152 | 1
3.4
30
200
1
3.4
30-100 | 1.3
2.4
40
152
1.3
2.4
40-76 | 1.7
2
50
120
1.7
2
50-60 | 2
1.6
60
100
2
1.6
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB USB LAN RS-232 / RS-485 | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU | 0.2 12 6 800 0.2 12 6-400 8 type: 1P2 47Hz ~ 63H 8 type: 22A 8 type: 22A 5 type: 1P2 0.98 @1 Th 78.5 20ms or gre 6-400 TypeA: Hot MAC Addrec Complies w | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 ~ 265 Iz W 200V mod ase 200Vac ase 200Vac 8-360 8-360 st, TypeB : Sla sts, TypeB : Sla | 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac 85 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 | 0.5
6.6
15
400
0.5
6.6
15-200 | 0.7
5 20
304
0.7
5 20-152 | 1
3.4
30
200
1
3.4
30-100 | 1.3
2.4
40
152
1.3
2.4
40-76 | 1.7
2
50
120
1.7
2
50-60 | 2
1.6
60
100
2
1.6
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output current measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input voltage range Input requency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 8 type: 1P2 998@1 Ph 78.5 20ms or gre 6-400 TypeA: Hot MAC Adder w SCPI - 1993 | 0.27 12 8 720 0.27 12 8-360 W 200V mod ase 200Vac 81 sater 8-360 it, TypeB : Slass, DNS IP A ith the EIA23, IEEE 488.2 | 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac lels Less than 85 12.5-240 ave, Speed: 1. ddress, User 120 / EIABS 5 compliant internal in | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5
20
304
0.7
5
20-152
86
20-152
ass : CDC (Cdateway IP Addes | 3.4
30
200
1
3.4
30-100
86
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 | 1.7
2
50
120
1.7
2
50-60
87
87 | 2
1.6
60
100
2
1.6
60-50
87 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output current programming resolution Output current measurement accuracy Output current measurement accuracy Output current measurement resolution Output current measurement resolution Input
characteristics Norminal input rating Input thating Input requency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) Environmental Conditions | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 6-400 B type: 2P2 B type: 2P2 0.98 @1 Ph 78.5 20ms or gre 6-400 TypeA: Hoto MAC Addre Complies w SCPI - 1993 6-400 | 0.27 12 8 720 0.27 12 8-360 W 200V mod w 170 ~ 265 iz W 200V ac 81 sater 8-360 st, TypeB : Sls | 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac 85 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5 20
304
0.7
5 20-152 | 1
3.4
30
200
1
3.4
30-100 | 1.3
2.4
40
152
1.3
2.4
40-76 | 1.7
2
50
120
1.7
2
50-60 | 2
1.6
60
100
2
1.6
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Input voltage measurement resolution Input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB USB USB CAN RS-232 / RS-485 CPIB (Factory Option) Environmental Conditions Operaing temperature | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 8 type: 1P2 8 type: 1P2 98 @ 1Ph 78.5 20ms or gre 6-400 TypeA: Hot MAC Addrec Complies w SCPI-1993 6-400 0°C - 50°C | 0.27 12 8 720 0.27 12 8 720 0.27 12 8-360 W 200V mod w 170 ~ 265 iz W 200V mod ase 200Vac 81 sater 8-360 tit, TypeB : Sli tit | 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac lels Less than 85 12.5-240 ave, Speed: 1. ddress, User 120 / EIABS 5 compliant internal in | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5
20
304
0.7
5
20-152
86
20-152
ass : CDC (Cdateway IP Addes | 3.4
30
200
1
3.4
30-100
86
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 | 1.7
2
50
120
1.7
2
50-60
87
87 | 2
1.6
60
100
2
1.6
60-50
87 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output current programming resolution Output current measurement accuracy Output current measurement accuracy Output current measurement resolution Output current measurement resolution Input characteristics Norminal input rating Input thating Input requency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) Environmental Conditions | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A | 0.2 12 6 800 0.2 12 6-400 8 type: 1P2 47Hz - 63H 8 type: 1P2 7HHz - 63H 0.98 @1 Ph 78.5 20ms or gre 6-400 TypeA: Hot MAC Addre Complies w SCPI - 1993 6-400 0 'C - 50' C -25' C - 70' -25' C - 70' -25' C - 70' -25' C - 70' | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 - 265 W 200V mod ase 200Vac 81 atter 8-360 ut, TypeB : Sid stypeB stype | 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac lels Less than 85 12.5-240 leve, Speed: 1. ddress, User 20 / EIA485 compliant inte | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5
20
304
0.7
5
20-152
86
20-152
ass : CDC (Cdateway IP Addes | 3.4
30
200
1
3.4
30-100
86
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 | 1.7
2
50
120
1.7
2
50-60
87
87 | 2
1.6
60
100
2
1.6
60-50
87 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output uottage measurement resolution Output current measurement resolution Input characteristics Norminal input rating Input thating Input thating Input fequency range Maximum input current Inrush current Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) Environmental Conditions Operating temperature Storage temperature Operating humidity | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 6-400 B type: 1P2 8 type: 2PA 17Hz - 631 B type: 2PA 17Hz - 631 MAC Addre Complies w SCPI - 1993 6-400 0 'C - 50' C 25' C - 70' 20% ~ 85% | 0.27 12 8 720 0.27 12 8-360 W 200V mod w 170 - 265's 12 8-360 W 200V mod se 200Vac 81 8-360 tt, TypeB: Sl, ss, DNS IP A th the EIA23 IEEE 488.2 (8-360 (*14) CRH; No con: | 0.4 8 12.5 480 0.4 8 12.5-240 els Less than 85 12.5-240 ave, Speed: 1. ddress, User 12.5-240 densation | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5
20
304
0.7
5
20-152
86
20-152
ass : CDC (Cdateway IP Addes | 3.4
30
200
1
3.4
30-100
86
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 | 1.7
2
50
120
1.7
2
50-60
87
87 | 2
1.6
60
100
2
1.6
60-50
87 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Output current measurement resolution input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-222 / RS-485 GPIB (Factory Option) Environmental Conditions Operaing temperature Storage temperature | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A | 0.2 12 6 800 0.2 12 12 6 400 B type: 1P2 8 type: 1P2 47Hz - 631 8 type: 22A 8 type: 22A 8 type: 1P2 0.98 @1 Ph 78.5 20ms or gre 6-400 TypeA: Hoto MAC Addre Complies w SCPI - 1993 6-400 0 'C - 50' C 25' C - 70' 20% ~ 85% 90% RH or | 0.27 12 8 720 0.27 12 8 8-360 W 200V mod W 170 ~ 265 Iz W 200V mod ase 200Vac 81 sater 8-360 tit, TypeB: Sla sss, DNS IP A tith the IA23 (*14) C C RH; No coniless; No con | 0.4 8 12.5 480 0.4 8 12.5-240 els Less than 85 12.5-240 ave, Speed: 1. ddress, User 12.5-240 densation | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5
20
304
0.7
5
20-152
86
20-152
ass : CDC (Cdateway IP Addes | 3.4
30
200
1
3.4
30-100
86
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 | 1.7
2
50
120
1.7
2
50-60
87
87 | 2
1.6
60
100
2
1.6
60-50
87 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output uottage measurement resolution Output current measurement resolution Input characteristics Norminal input rating Input thating Input thating Input fequency range Maximum input current Inrush current Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) Environmental Conditions Operating temperature Storage temperature Operating humidity | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 6-400 B type: 1P2 8 type: 2PA 17Hz - 631 B type: 2PA 17Hz - 631 MAC Addre Complies w SCPI - 1993 6-400 0 'C - 50' C 25' C - 70' 20% ~ 85% | 0.27 12 8 720 0.27 12 8 8-360 W 200V mod W 170 ~ 265 Iz W 200V mod ase 200Vac 81 sater 8-360 tit, TypeB: Sla sss, DNS IP A tith the IA23 (*14) C C RH; No coniless; No con | 0.4 8 12.5 480 0.4 8 12.5-240 els Less than 85 12.5-240 ave, Speed: 1. ddress, User 12.5-240 densation | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5
20
304
0.7
5
20-152
86
20-152
ass : CDC (Cdateway IP Addes | 3.4
30
200
1
3.4
30-100
86
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 | 1.7
2
50
120
1.7
2
50-60
87
87 | 2
1.6
60
100
2
1.6
60-50
87 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20
 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output current measurement resolution Input voltage measurement resolution Input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A | 0.2 12 6 800 0.2 12 12 6 400 B type: 1P2 8 type: 1P2 47Hz - 631 8 type: 22A 8 type: 1P2 78.5 20ms or gre 6-400 TypeA: Hoto MAC Addre Complies w SCPI - 1993 6-400 0 'C - 50' C 25' C - 70' 20% - 85% 90% RH or | 0.27 12 8 720 0.27 12 8 8-360 W 200V mod W 170 ~ 265 Iz W 200V mod ase 200Vac 81 sater 8-360 tit, TypeB: Sla sss, DNS IP A tith the IA23 (*14) C C RH; No coniless; No con | 0.4 8 12.5 480 0.4 8 12.5-240 els Less than 85 12.5-240 ave, Speed: 1. ddress, User 12.5-240 densation | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 USB C Password, G Specifications | 0.7
5
20
304
0.7
5
20-152
86
20-152
ass : CDC (Cdateway IP Addes | 3.4
30
200
1
3.4
30-100
86
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 | 1.7
2
50
120
1.7
2
50-60
87
87 | 2
1.6
60
100
2
1.6
60-50
87 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30 | 5.2
0.68
150
40
5.2
0.68
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Output current measurement resolution input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) Environmental Conditions Operaing temperature Storage temperature Storage temperature Storage humidity Altitude | 0.1% + 0.2% + 200Vac | mV mA mV mA mV mA PSU A PSU PSU | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 47Hz - 63H 8 type: 1P2 47Hz - 63H 0.98 @1 Fh 78.5 20ms or gre 6-400 TypeA: Hot MAC Addre Complies w SCPI - 1993 6-400 0' C - 50' C - 70' 20% ~ 85% 90% RH or Maximum 2 | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 ~ 265 Iz V 200V mod ase 200Vac 81 atter 8-360 it, TypeB: Sla ith the ElA23 , IEEE 488.2 8-360 (*14) C RH; No com less; No com 0000m 8-360 | 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac lels Less than 85 12.5-240 ave, Speed: 1. ddress, User 12.5-240 ddress, User 12.5-240 ddress discontinuation densation densation | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 172.0, USB C Password, G pecifications rface 15-200 | 0.7 5 20 304 0.7 5 20-152 86 20-152 20-152 20-152 | 3.4
30
200
1
3.4
3.4
30-100
86
30-100
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 40-76 40-76 40-76 | 1.7
2
50
120
1.7
2
50-60
87
50-60
87 | 2
1.6
60
100
2
1.6
60-50
87
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30
87 | 5.2
0.68
150
40
5.2
0.68
150-20
87
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6
87
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output current measurement resolution Output uvoltage measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input thoutage range Input frequency range Maximum input current Innush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 CPIB (Factory Option) Environmental Conditions Operating temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications | 0.1% +
0.2% + | mV mA mV mA mV mA mV mA PSU A PSU PSU | 0.2 12 6 800 0.2 12 6-400 8 type: 1P2 6-400 8 type: 1P2 8 type: 1P2 78.5 20ms or gre 6-400 TypeA: Hoto MAC Addre Complies w SCPI - 1993 6-400 0 'C - 50' C 25' C - 70' 20% - 85% 90% RH or Maximum 2 6-400 | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 - 265 Iz V 200V mod Set 200V mod It 7 - 265 | 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac lels Less than 85 12.5-240 ave, Speed: 1. ddress, User 12.5-240 ddress, User 12.5-240 ddress discontinuation densation densation | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 172.0, USB C Password, G pecifications rface 15-200 | 0.7 5 20 304 0.7 5 20-152 86 20-152 20-152 20-152 | 3.4
30
200
1
3.4
3.4
30-100
86
30-100
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 40-76 40-76 40-76 | 1.7
2
50
120
1.7
2
50-60
87
50-60
87 | 2
1.6
60
100
2
1.6
60-50
87
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30
87 | 5.2
0.68
150
40
5.2
0.68
150-20
87
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6
87
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Output current measurement resolution Input characteristics Norminal input rating Input toltage range Input toltage range Input requery range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) Environmental Conditions Operating temperature Storage temperature Storage temperature Operating humidity Storage humidity Albitude General Specifications Weight | 0.1% + 0.2% + | mV mA mV mA mV mA mV mA PSU A PSU PSU PSU | 0.2 12 6 800 0.2 12 6-400 B type: 1P2 47Hz - 63F 8 type: 1P2 47Hz - 63F 8 type: 22A 5 type: 22A 5 type: 22A 0.98 @1 Fh 78.5 20ms or gre 6-400 TypeA: Hot MAC Addre Complies w SCPI - 1993 6-400 0'C - 50' C - 50' 0'C - 50' C - 70' 20% ~ 85% 90% RH or Maximum 2 6-400 Maximu | 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 - 265 Iz V 200V mod Set 200V mod It 7 - 265 | 0.4 8 12.5 480 0.4 8 12.5-240 8 12.5-240 8 12.5-240 8 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 12.5-240 | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 172.0, USB C Password, G pecifications rface 15-200 | 0.7 5 20 304 0.7 5 20-152 86 20-152 20-152 20-152 | 3.4
30
200
1
3.4
3.4
30-100
86
30-100
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 40-76 40-76 40-76 | 1.7
2
50
120
1.7
2
50-60
87
50-60
87 | 2
1.6
60
100
2
1.6
60-50
87
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38 | 3.4
1
100
60
3.4
1
100-30
87 | 5.2
0.68
150
40
5.2
0.68
150-20
87
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6
87
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage measurement resolution Output current measurement resolution Output current measurement resolution input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 CPIB (Factory Option) Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions | 0.1% + 0.2% + | mV mA mV mA mV mA mV mA PSU A PSU PSU PSU | 0.2 12 6 800 0.2 12 6-400 8 type: 1P2 6-400 8 type: 1P2 6-800 8 type: 1P2 0.98 @1 Fh 78.5 20ms or gre 6-400 TypeA: Hos MAC Addre Complies w SCPI-1993 6-400 0'C -50 'C 25' C -70' 20% ~ 85% 90% RH or Maximum 2 6-400 Less than 2 423 x 87.2 -2 Forced air c | 0.27 12 8 720 0.27 12 8 720 0.27 12 8-360 W 200V mod W 170 - 265 Iz W 200V mod ase 200Vac 81 atter 8-360 It, TypeB : Sla ster 8-360 (*14) (*14) C C RH; No con less; No con 000m 8-360 0kg 8-360 0kg colling by int | 0.4 8 12.5 480 0.4 8 12.5 480 0.4 8 12.5-240 lels Vac 12.5-240 lels Less than 85 12.5-240 lels Less than | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 1/2.0, USB C Password, G, G pecifications refrace 15-200 | 86 20-152 86 20-152 20-152 | 86
30-100
30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 40-76 40-76 40-76 | 1.7
2
50
120
1.7
2
50-60
87
50-60
87 | 2
1.6
60
100
2
1.6
60-50
87
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38
87
80-38 | 3.4
1
100
60
3.4
1
100-30
87 | 5.2
0.68
150
40
5.2
0.68
150-20
87
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6
87
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2
87
600-5.2 | | Output voltage programming resolution Output current programming resolution Output voltage measurement accuracy Output voltage measurement accuracy Output voltage
measurement resolution Output current measurement resolution Output current measurement resolution Input Characteristics Norminal input rating Input voltage range Input frequency range Maximum input current Inrush current Power factor Efficiency (*13) Hold-up time Interface Capabilities USB LAN RS-232 / RS-485 GPIB (Factory Option) Environmental Conditions Operaing temperature Storage temperature Operating humidity Storage humidity Altitude General Specifications Weight Dimensions Cooling | 0.1% + 0.2% + | mV mA mV mA mV mA mV mA PSU A PSU PSU PSU | 0.2 12 6 800 0.2 12 6-400 8 type: 1P2 6-400 8 type: 1P2 8 type: 2PA 8 type: 2PA 8 type: 1P2 0.98 @1 Ph 78.5 20ms or gre 6-400 TypeA: Hoto MAC Addre Complies w SCPI - 1993 6-400 0 'C - 50' C -25' C - 70' 20% ~ 8% R or gre 6-400 Less than 24 423 x 87.2 s 6-600 Less than 24 423 x 87.2 s | 0.27 12 8 720 0.27 12 8 8 720 0.27 12 8-360 W 200V mod with 172 20 8-360 W 172 8-360 W 200V mod with 172 8-360 W 172 8-360 R 172 8-360 (*14) C RH; No concless; No concoom 8-360 0kg 447.2 | 0.4 8 12.5 480 0.4 8 12.5-240 lels Less than 85 12.5-240 lels Less than 85 12.5-240 lels Less than | 0.5 6.6 15 400 0.5 6.6 15-200 100A. 85 15-200 15-200 15-200 15-200 15-200 15-200 | 0.7 5 20 304 0.7 5 20 304 0.7 5 20-152 86 20-152 20-152 20-152 | 1 3.4 30 200 1 3.4 30-100 86 30-100 30-100 30-100 30-100 | 1.3 2.4 40 152 1.3 2.4 40-76 87 40-76 87 40-76 40-76 40-76 | 1.7 2 50 120 1.7 2 50-60 87 50-60 50-60 | 2
1.6
60
100
2
1.6
60-50
87
60-50 | 2.7
1.3
80
76
2.7
1.3
80-38
87
80-38 | 3.4
1
100
60
3.4
1
100-30
87 | 5.2
0.68
150
40
5.2
0.68
150-20
87
150-20 | 10
10.2
0.38
300
20
10.2
0.38
300-10 | 13.6
0.26
400
15.2
13.6
0.26
400-7.6
87
400-7.6 | 20.4
0.18
600
10.4
20.4
0.18
600-5.2
87
600-5.2 | - Notes: (*1) Minimum voltage is guaranteed to maximum 0.2% of the rated output voltage. (*2) Minimum current is guaranteed to maximum 0.4% of the rated output current. (*3) Single phase 200V models: 170 265Vac. (*4) From No-load to Full-load, constant input voltage, Measured at the sensing point in Remote Sense. (*5) Measured at rated output voltage and current with JEITA RC-9131B probe. (*6) Measurement frequency bandwidth is 19Hz 20MHz. (*7) Measurement frequency bandwidth is 19Hz 1MHz. (*8) From 10% 90% of rated output voltage, with rated resistive load. (*9) From 90% 10% of rated output voltage, with rated resistive load. (*9) From 90% 10% of rated output voltage, with rated resistive load. (*10) Time for output voltage or recover within 25% of firs rated output for a load change from 50 to 100% of its rated output current. Voltage set point from 10% 100% of rated output. (*11) For load voltage change, equal to the unit voltage rating, constant input voltage. (*12) For 6V 20V model the ripple is measured at 2V rated output voltage and full output current. For other models, the ripple is measured at 10 100% output voltage and full output current. (*13) At rated output power. | SPECIFICATIONS | | | | | | | | | | | | | | | | | | |---|------------------|--|-------------|----------------|--------------------------------|----------------|----------------|----------------|---------------|----------------|--------------|--------------|---|----------------|--------------|--------------|-------------| | Model | | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Rated output voltage (°1) | | V | 6 | 8 | 12.5 | 15 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 150 | 300 | 400 | 600 | | Rated output current (*2) | | A | 600 | 540 | 360 | 300 | 228 | 150 | 114 | 90 | 75 | 57 | 45 | 30 | 15 | 11.4 | 7.8 | | Rated output power | | w | 3600 | 4320 | 4500 | 4500 | 4560 | 4500 | 4560 | 4500 | 4500 | 4560 | 4500 | 4500 | 4500 | 4560 | 4680 | | Constant Voltage Mode | | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Line regulation (*3) | | mV | 0.01% of ra | ted output vo | oltage +2mV | | | | | | | | | | | | | | Load regulation (°4) | | mV | | ted output vo | | | | | | | | | | | | | | | Ripple and noise (*5) | p-p (*6) | mV | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 100 | 100 | 120 | 300 | 300 | 500 | | | r.m.s. (*7) | mV | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 15 | 15 | 25 | 35 | 35 | 120 | | Temperature coefficient | 1 | ppm/'C | _ | _ | inute warm-up | | | | | | | | | | | | | | Temperature stability | | ppiny C | | | oltage over 8h | | lowing 30 mi | nutes warm-i | p. Constant I | ine. load & te | mp. | | | | | | | | Warm-up drift | | | | | output volta | | | | | | | | | | | | - | | Remote snese compensation voltage (single wire) | | v | 1 | 1 | 1 | 1 | 1 | 1.5 | 2 | 2 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | | Rise time (*8) | No load | ms | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | Fall time (*9) | Rated load | ms | 10 | 50 | 50 | 50 | 50 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | raii time (-5) | No load | ms | 500 | 600 | 700 | 700 | 800 | 900 | 1000 | 1100 | 1100 | 1200 | 1500 | 2000 | 2500 | 3000 | 4000 | | Transfert response time (970) | NO IORG | _ | 300 | 3 | 3 | 700 | 3 | 300 | 3 | 3 | 3 | 3 | 1300 | 3 | 3 | 3 | 3 | | Transient response time (*10) | | ms
PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | | - | , | _ | 100 45 | | 300-15 | | 600-7.8 | | Constant Current Mode | | _ | | | | | | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Line regulation (*3) | | mA | | ed output cur | | ted output cu | irrent | | | | | I and Co. 1 | | | | | _ | | Load regulation (*11) | - | mA | | ed output cur | | | | | | | | 1% of rated | output curre | nt | | | | | Load regulation thermal drift | | - | | | output curren | | | | | | | | | | - | | | | Ripple and noise (*12) | r.m.s. | mA | 1400 | 1315 | 1060 | 987 | 900 | 472 | 275 | 191 | 138 | 110 | 92 | 81 | 30 | 20 | 15 | | Temperature coefficient | 1 | ppm/°C | | | inute warm-u | | | | | | | | * | 1 | · · · | | | | Temperature stability | | · 7 | | | rrent over 8h | | | | | ine, load & te | mp. | | | | | | 5 | | Warm-up drift | | | | | 0.5% rated o | | | | | 2 | | | | | | | | | A | | Dett | | | an 0.25% rate | | | | | | 60.75 | 90.53 | 100 45 | 150.20 | 200.15 | 400.13.4 | 600.7.0 | | Protection Function | e.ut | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Over voltage protection (OVP) | Setting range | V | 0.6 - 6.6 | 0.8-8.8 | 1.25 - 13.75 | | 2 - 22 | 3 - 33 | 4 - 44 | 5 - 55 | 5 - 66 | 5 - 88 | 5 - 110 | 5 - 165 | 5 - 330 | 5 - 440 | 5 - 660 | | | Setting accuracy | mV | 60 | 80 | 125 | 150 | 200 | 300 | 400 | 500 | 600 | 800 | 1000 | 1500 | 3000 | 4000 | 6000 | | Over current protection (OCP) | Setting range | A | 5 - 660 | 5-594 | 5 - 396 | 5 - 330 | 5 - 250.8 | 5 - 165 | 5 - 125.4 | 5 - 99 | 5 - 82.5 | 5 - 62.7 | 4.5 - 49.5 | 3 - 33 | 1.5 - 16.5 | 1.14 - 12.54 | 0.78 - 8.58 | | | Setting accuracy | A | 12 | 10.8 | 7.2 | 6 | 4.56 | 3 | 2.28 | 1.8 | 1.5 | 1.04 | 0.9 | 0.6 | 0.3 | 0.228 | 0.156 | | Under voltage limit (UVL) | Setting range | | 0 - 6.3 | 0 - 8.4 | 0 - 13.12 | 0 - 15.75 | 0 - 21 | 0 - 31.5 | 0 - 42 | 0 - 52.5 | 0 - 63 | 0 - 84 | 0 - 105 | 0 - 157.5 | 0 - 315 | 0 - 420 | 0 - 630 | | Over temperature protection (OHP) | Operation | | Turn the ou | | | | | | | | | | | | | | | | Incorrect sensing connection protection (SENSE) | Operation | | Turn the ou | | | | | | | | | | | | | | | | Low AC input protection (AC-FAIL) | Operation | | Turn the ou | tput off. | | | | | | | | | | | | | | | Shutdown (SD) | Operation | 1 | Turn the ou | tput off. | | | | | | | | | | | | | 9 | | Power limit (POWER LIMIT) | Operation | | Over power | limit. | | | | | | | | | | | | | | | | Value (fixed) | 0.0000 | Approx. 105 | 5% of rated o | utput power | | | | | | | | | | | | 20.000.000 | | Front Panel | | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Display, 4 digits Voltage accuracy | 0.1% + | mV | 12 | 16 | 25 | 30 | 40 | 60 | 80 | 100 | 120 | 160 | 200 | 300 | 600 | 800 | 1200 | | Current accuracy | 0.2% + | mA | 1800 | 1620 | 1080 | 900 | 684 | 450 | 342 | 270 | 225 | 171 | 135 | 90 | 45 | 34.2 | 23.4 | | Indications | | | GREEN LED | D's: CV, CC, \ | , A, VSR, ISR | DLY, RMT, I | LAN, M1, M2 | , M3, RUN, C | utput ON; R | ED LED's: Al | M, ERR | | | | | | | | Buttons | | | Lock/Local | (Unlock), PRO | OT(ALM_CLR |), Function (M | /1), Test(M2) | , Set(M3), Sh | ift, Output | | | | | | | | | | Knobs | | | Voltage, Cu | rrent | 12 100 | 100 | . 1000 | | 72 70 | | | | | | | | | | USB port | | - 1 | Type A USB | connector | | | | | | | | | | | | | 8 | | Programming and Measurement (RS-232/485, US | B, LAN, GPIB) | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Output voltage programming accuracy | 0.05% + | mV | 3 | 4 | 6.25 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 75 | 150 | 200 | 300 | | Output current programming accuracy | 0.2% + | mA | 600 | 540 | 360 | 300 | 228 | 150 | 114 | 90 | 75 | 57 | 45 | 30 | 15 | 11.4 | 7.8 | | Output voltage programming resolution | | mV | 0.2 | 0.27 | 0.4 | 0.5 | 0.7 | 1 | 1.3 | 1.7 | 2 | 2.7 | 3.4 | 5.2 | 10.2 | 13.6 | 20.4 | | Output current programming resolution | | mA | 18 | 18 | 12 | 9.9 | 7.5 | 5.1 | 3.6 | 3 | 2.4 | 1.95 | 1.5 | 1.02 | 0.57 | 0.39 | 0.27 | | Output voltage measurement accuracy | 0.1%
+ | mV | 6 | 8 | 12.5 | 15 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 150 | 300 | 400 | 600 | | Output current measurement accuracy | 0.2% + | mA | 1200 | 1080 | 720 | 600 | 456 | 300 | 228 | 180 | 150 | 114 | 90 | 60 | 30 | 22.8 | 15.6 | | Output voltage measurement resolution | | mV | 0.2 | 0.27 | 0.4 | 0.5 | 0.7 | 1 | 1.3 | 1.7 | 2 | 2.7 | 3.4 | 5.2 | 10.2 | 13.6 | 20.4 | | Output current measurement resolution | - | mA | 18 | 18 | 12 | 9.9 | 7.5 | 5.1 | 3.6 | 3 | 2.4 | 1.95 | 1.5 | 1.02 | 0.57 | 0.39 | 0.27 | | Input Characteristics | | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | - | | 130 | | | iels, C type : 3 | | | | | 30-30 | 00-73 | 00-37 | 100-43 | 150-30 | 300-13 | 400/11.4 | 000-7.0 | | Norminal input rating
Input voltage range | 1 | | | | Vac, C type : 3 | | | | | | | | | | | | | | | + | | 47Hz - 63H | | ruc, c type : 3 | JW 100~Z | Jorac, D typ | J. +W 300 | THOTAL | | | | | | | | | | Input frequency range | 200Vac / 400Vc- | Α. | _ | | M . D | ٨ | | | | | | | | | | | | | Maximum input current | 200Vac / 400Vac | A | | | A · D type 11 | | 1 20214/ 202 | Laurado III - | .L 1004 - | h 1 3000 | 40001 - 7 1 | Laurett - FO | | | | | | | Inrush current Power factor | 2000/22 / 4000/ | | | | lels Less than
0.95 @ 3 Pha | | | r inodél Less | man 100A; D | type - 3P4W | +uuv model | Less than 50 | M. | | | | | | L. 2007 14/2011 10/4 | 200Vac / 400Vac | 01 | - | | _ | ase 200/400V | _ | | - 62 | 0.7 | 0.7 | 6.2 | 67 | 6.2 | 67 | 0.7 | 0.7 | | Efficiency (°13) | 1 | % | 78.5 | 81 | 85 | 85 | 86 | 86 | 87 | 6/ | 87 | 87 | 6/ | 6/ | 6/ | 8/ | 8/ | | Hold-up time | | Dett | 20ms or gro | | 12 5 266 | 15 300 | 20.220 | 20.150 | 40.334 | E0.00 | 60.75 | 90.53 | 100 15 | 150.70 | 200.15 | 400.33.4 | 600.7.0 | | Interface Capabilities | | PSU | 6-600 | 8-540 | 12.5-360 | | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | USB | - | | | | ive, Speed: 1.1 | | | | | | | | | | | | | | LAN | 4 | - | | | ddress, User | | | iress, Instrun | ent IP Addre | ss, Subnet M | ask | | | | | | | | RS-232 / RS-485 | 1 | _ | - | | 2D / EIA485 | | s :? | | | | | | | | | | | | GPIB (Factory Option) | | | | | compliant inte | | | | 10.77 | *** | 40 | | | 100.00 | *** | | 400 | | Environmental Conditions | | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Operaing temperature | | | 0°C~50°C | | | | | | | | | | | | | | | | Storage temperature | | | -25 °C ~ 70 | | | | | | | | | | | | | | 2.0 | | Operating humidity | | | | RH; No con | | | | | | | | | | | | | | | Storage humidity | | | | less; No con | densation | | | | | | | | | | | | | | Altitude | | 1 | Maximum 2 | 2000m | | | | | | | | | | | | | - 3 | | General Specifications | | PSU | 6-600 | 8-540 | 12.5-360 | 15-300 | 20-228 | 30-150 | 40-114 | 50-90 | 60-75 | 80-57 | 100-45 | 150-30 | 300-15 | 400-11.4 | 600-7.8 | | Weight | main unit only | kg | Less than 2 | 8.7kg | | | | | | | | | | | | | - 5 | | Dimensions | (W×H×D) | mm | 423 × 130.8 | × 447.2 | | | | | | | | | | | | | | | Cooling | 1 1 | | | cooling by int | ernal fan. | | | | | | | | | | | | | | Withstand voltage | | - > | | | | Output termi | inal : 3000Vac | /1min: Vout | ≤150V:Outni | rt terminal to | Chassis:1000 | 0Vdc/1min: 1 | 50 <vout≤60< td=""><td>00; Output ter</td><td>minal to Cha</td><td>ssis:1500Vdc</td><td>/1min</td></vout≤60<> | 00; Output ter | minal to Cha | ssis:1500Vdc | /1min | | | | | 1 | | | | | | | | | | | | 10 4118 | | | | Insulation resistance | | - 3 | Chassis and | d output term | ninal: chassis: | and AC innut | : AC innut an | d output tern | ninal: 100Mcs | | | | | | | | | - Notes: (*1) Minimum voltage is guaranteed to maximum 0.2% of the rated output voltage. (*2) Minimum current is guaranteed to maximum 0.4% of the rated output current. (*3) Single phase 200V models: 170-265Vac. There phase 200V models: 180-253Vac. Three phase 400V models: 360-440Vac. (*4) From No-load to Full-load, constant input voltage. Measured at the sensing point in Remote Sense. (*5) Measured at rated output voltage and current with JETRA RC-9131B probe (*6) Measurement frequency bandwidth is 10Hz ~ 20MHz. (*7) Measurement frequency bandwidth is 19Hz ~ 1MHz. (*8) From 10% ~ 90% of rated output voltage, with rated resistive load. (*9) From 90% ~ 10% of rated output voltage, with rated resistive load. (*9) From 90% of rated output voltage, with rated resistive load. (*10) Time for output voltage or recover within 25% of firs rated output for a load change from 50 ~ 100% of its rated output current. Voltage set point from 10% ~ 100% of rated output. (*11) For load voltage change, equal to the unit voltage rating, constant input voltage. (*12) For 6V ~ 20V model the ripple is measured at 2V ~ rated output voltage and full output current. For other models, the ripple is measured at 10 ~ 100% output voltage and full output current. (*13) Single phase and three phase 200V models : at 200Vac input voltage. Three phase 400V models : at 400Vac input voltage. At rated output power. | Marie Mari | SPECIFICATIONS | | | | | | | | | | | | | | | | | | |--|---|-----------------|--------|----------------|----------------|---------------|---------------|-----------------|---------------|--------------|-----------------|-------------|------------------|---|---------------|-------------|--------------|--------------| | Mart of the protecting Property Proper | | | Den | 6 900 | 9.720 | 125.490 | 15.400 | 20.304 | 30.200 | 40.152 | 50.120 | 60.100 | 90.76 | 100.60 | 150.40 | 300.20 | 400.15.2 | 600-10.4 | | Mart September | | | | _ | | | | | | | | | | | | | | | | Manufacture | | | | _ | | | | | | | | | | | | | | 600 | | Commerciation Property Commerciate Pro | | | | | | | | | | | | | | | _ | | | 10.4 | | Companies (P) | | | | | | | | | | | | | | | | | | 6240 | | Comment Commen | Constant Voltage Mode | 1 | PSU | | | | 15-400 | 20-304 | 30-200 | 40-152 | 50-120 | 60-100 | 80-76 | 100-60 | 150-40 | 300-20 | 400-15.2 | 600-10.4 | | Page | Line regulation (*3) | | mV | 0.01% of ra | ted output vo | oltage +2mV | | | | | | | | | | | | | | Comparison configuration Comparison Co | Load regulation (°4) | | mV | 0.01% of ra | ted output vo | oltage +5mV | | | | | | | | | | | | | | Comparison configuration Comparison Co | | p-p (*6) | mV | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 100 | 100 | 120 | 300 | 300 | 500 | | Communication Communicatio | ,,, | | | | 10 | 10 | | | | | | | | | | | | 120 | | Segret content analogs | Temperature coefficient | | | | | | | | | | | | | | | | | 120 | | Semination content prolific pring front | | | ppm/ C | | | | | laudaa 20 mi | nuter waren | n Constant | line level 8 to | | | | | | | | | Figure Part | | - | | | | | | | | | irre, ioau & te | mp. | | | | | | | | Marchan PR | | | | Less than 0 | .05% of rated | output volta | ge +2mV ove | r 30 minutes | | | | | | _ | | | | | | Find Security Find | | | ٧ | 1 | 1 | 1 | 1 | 1 | | | | | | - | - | 5 | , | 5 | | Contact Composition (**P\$) | Rise time (*8) | No load | ms | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | Transfer region (17) me me 1 3 3 3 3 3 3 3 3 3 | Fall time (*9) | Rated load | ms | 10 | 50 | 50 | 50 | 50 | 80 | 80 | 80 | 80 | 150 | 150 | 150 | 150 | 200 | 250 | | Content Personal Pe | | No load | ms | 500 | 600 | 700 | 700 | 800 | 900 | 1000 | 1100 | 1100 | 1200 | 1500 | 2000 | 2500 | 3000 | 4000 | | Content Personal Pe | Transient response time (°10) | | ms | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Care angionise (1%) | | | | 6.800 | _ | 12 5.480 | 15,400 | | _ | 40.152 | 50,120 |
60-100 | 80.76 | 100-60 | | 300-20 | 400.15.2 | 600-10.4 | | March Part | | | | | | | 13-400 | | | | 30-120 | 00-100 | 80-70 | 100-00 | 130-40 | 300-20 | 400-13.2 | 000-10.4 | | Mary purple and solide Mary Mar | | | | | | | | 0.03% Of fa | tea output cu | irrent | | | | | | | | | | Page Control one Type | | | mA | | | | | | | | | | 1% of rated | output curre | nt | | | | | Emperative californics Sperit Support College Support Support College Support | Load regulation thermal drift | | | Less than 0 | .1% of rated | output curren | t over 30 mir | nutes followin | g load chang | e. | | | | | | | | | | Control position pos | Ripple and noise (*12) | r.m.s. | mA | 2000 | 1900 | 1500 | 1390 | 1250 | 650 | 365 | 245 | 170 | 140 | 116 | 104 | 30 | 20 | 15 | | Company contacts Company contacts Company contact | Temperature coefficient | 2 | ppm/°C | 100ppm/°C | after a 30 m | inute warm-u | р | 14 | | | 3 | 100 | 507 12 | 000 | 25 | 8 | :24 | 0.0 | | Section Continue | | 5 | 9 | | | | | llowing 30 mi | nutes warm-L | p. Constant | line, load & te | mp. | | | | | | 1.7 | | Without Profession 150-000 150-0 | Procession Pro | warm-up drift | | | | | | | | | | n. | | | | | | | e. i. | | Deverlation (DVP) Setting ready V O.6 to 8 at 8 123 131 13 15 15 20 20 30 40 20 50 50 50 50 50 50 5 | Protection Function | | PSU | | | | | | | | | 60-100 | 80-76 | 100-60 | 150-40 | 300-20 | 400-15.2 | 600-10.4 | | Sering secretion (DCPT) Sering ranger A 5 80 5 72 5 5 8 5 6 5 6 5 6 5 6 6 6 | | Setting range | | | | | | | | | | | | | | | | 5 - 660 | | Description of CPT Setting records A | | | - | | _ | | | | | | | | | | | | | 6000 | | Method systems (MA) | Over support protection (OCD) | | | | | | | | | | | | | | | | | 1.04 - 11.44 | | More respection (OHP) Operation Operatio | Over current protection (OCP) | | | | | | | | | | | | | | | | | | | Description Operation Operation Time the cologic of | | | A | | | | | | | | | | | | | | | 0.208 | | Exercised connection protection (EASALS) Operation Turn the output off. | 0 1 / | | | | | 0 - 13.12 | 0 - 15.75 | 0 - 21 | 0 - 31.5 | 0 - 42 | 0 - 52.5 | 0 - 63 | 0 - 84 | 0 - 105 | 0 - 157.5 | 0 - 315 | 0 - 420 | 0 - 630 | | Control (POWER LIM!) | Over temperature protection (OHP) | Operation | | Turn the ou | tput off. | | | | | | 11715-111 | | . 1 25-15-11-7-1 | 10 4 17 44 | | | | | | Shadow Coperation Coperation Corner in (Post 1911) | Incorrect sensing connection protection (SENSE) | Operation | | Turn the ou | tput off. | | | | | | | | | | | | | | | Over power limit. Value (Field) (F | Low AC input protection (AC-FAIL) | Operation | | Turn the ou | tput off. | | | | | | | | | | | | | | | Over power limit. Value (Field) (F | Shutdown (SD) | Operation | | Turn the ou | tput off. | | | | | | | | | | | | | | | Page | Power limit (POWER LIMIT) | | | | | | | | | | | | | | | | | | | First First First 6-800 8-720 12.5-40 15-40 15-20 20.00 40.152 50.120 60-100 80.76 10.040 10.00 20.00 60-100 10.00 | | | | _ | | utnut noven | | | | | | | | | | | | | | Despite Marga excursion 2014 Mrs | F+ PI | value (lixeu) | DCII | | _ | - | 15 400 | 20.204 | 30.300 | 40.153 | F0.120 | CO 100 | 00.76 | 100.00 | 350.40 | 200.20 | 400 15 2 | 600 30 4 | | Comment accuracy Q2% + | | | | | | | | | | | | | | | | | | 600-10.4 | | CARENILED'S CV, CC, VA, VSS, LSS, DV, RMT, LAM, MI, QV, MS, RUN, Output ONE, REQ ELD'S -LAM, ERR | | | | | | | | | | | | | | | | | | 1200 | | Lock Lock Lock Lock Lock Lock Lock FROTFAIL CLR , Function (M1), Test (M2), Set (M1), Set (M1), Set (M1), Set (M1), Set (M1), Set (M1), Set (M2), Set (M1), Set (M2), Set (M1), Set (M2), Set (M1), Set (M1), Set (M2), Set (M1), Set (M2), Set (M1), Set (M2), Set (M1), Set (M2), Set (M2), Set (M1), Set (M2), | Current accuracy | 0.2% + | mA | | | | | | | | | | 228 | 180 | 120 | 60 | 45.6 | 31.2 | | Voltage Current Cu | | | | | | | | | | | RED LED's: Al | LM, ERR | | | | | | | | Post Programming and Measurement (25-217/45s, VSB, LMA, CMB) | Buttons | | | Lock/Local(| Unlock), PRO | DT(ALM_CLR |), Function(N | И1), Test(M2) | , Set(M3), Sh | rift, Output | | | | | | | | | | Pegumining and Measurement (RS-231/45, USB, LNA, CPR) PSU 6-500 8-720 12-5480 15-400 20-304 30-200 40-152 30-120 60-100 80-76 10-40 30-60 30-20 40-152 50-120 | Knobs | E . | 3 | Voltage, Cu | rrent | | | | | | | | | | | | | | | Post | USB port | 2 | i i | Type A USB | connector | 59 A | | v., | | | | | | - 6 | 577 | 25. | 0 | (// L | | Output current programming accuracy 0.29% + m/4 3 | | LAN, GPIB) | PSU | 6-800 | 8-720 | 12.5-480 | 15-400 | 20-304 | 30-200 | 40-152 | 50-120 | 60-100 | 80-76 | 100-60 | 150-40 | 300-20 | 400-15.2 | 600-10.4 | | Output voltage measurement accuracy resolution m/M r | | | | _ | | | | | | | | | | | | | | 300 | | Designation my | | | | - | | | | | | | | | | | | | | 10.4 | | Dutput current programming resolution | | 0.275 + | | | | - | | | 200 | | | | | _ | | | | | | Dutyst voltage measurement accuracy 0.1% + mV 6 8 12.5 15 20 30 40 50 60 80 100 150 300 400 60 60 60 60 60 80 100 150 100 40 60 60 60 60 60 60 | | 2 | _ | | | _ | | | 1 | | | | | | | | | 20.4 | | Output corrent measurement resolution | | | | | | | | | | | | | | | | | | 0.36 | | Cutput voltage measurement resolution | | | | - | | | _ | | | | | | | | | | | 600 | | Culput current measurement resolution | Output current measurement accuracy | 0.2% + | mA | 1600 | 1440 | 960 | 800 | 608 | 400 | 304 | 240 | 200 | 152 | 120 | 80 | 40 | 30.4 | 20.8 | | Description Compute Characteristics
PSU 6-800 8-720 12.5-480 15-400 2.0-304 30-200 40-152 50-120 60-100 80-76 100-60 150-40 300-20 40-15.2 60 | Output voltage measurement resolution | 1 | mV | 0.2 | 0.27 | 0.4 | 0.5 | 0.7 | 1 | 1.3 | 1.7 | 2 | 2.7 | 3.4 | 5.2 | 10.2 | 13.6 | 20.4 | | Input Characteristics | | | mA | 24 | 24 | 16 | 13.2 | 10 | 6.8 | 4.8 | 4 | 3.2 | 2.6 | 2 | | 0.76 | 0.52 | 0.36 | | Norminal input rating | | | | | | | | | | | 50-120 | | | | | | | 600-10.4 | | B Sype : 1PXW 170 - 265Vac, C type : 3P3W 180 - 253Vac, D type : 3P4W 360 - 440Vac | Input frequency range | | - | | | | | | | | | | | | | | | | | | Maximum input current 200Vac / 400Vac A B type: 14A, C type: 29A, D type 22A Brush current B type: 15P2W 200V model Less than 200A; C type: 3P3W 200V model Less than 100A; D type: 3P4W 400V model Less than 100A. | | 2 | | | | | | | H 900 | | | | | | | | | | | Interfact | | 2001/ / 1001/- | | | | D turn 224 | | | | | | | | | | | | | | Power factor 200Vac / 400Vac 0.98 @1 Phase 200Vac / 0.95 @ 3 Phase 200/400Vac Efficiency (°13) % 78.5 81 85 85 86 86 87 87 87 87 87 87 | | zoovac / 400vac | A | | | | | | | | | | | | | | | | | ## Efficiency (*13) | 2,345,345,345,45 | | 2 | | | | | | / model Less | than 100A; [| type: 3P4W | 400V model | Less than 10 | OA. | | | | | | Note Compose | | 200Vac / 400Vac | | 0.98 @1 Ph | | | ase 200/400\ | _ | | | | | | | | | | | | Interface Capabilities | Efficiency (°13) | | % | 78.5 | 81 | 85 | 85 | 86 | 86 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | | Interface Capabilities | Hold-up time | | 3 | 20ms or gre | ater | | | 20 | | | | 94 | 100 | 200 | 100 | 17 | | KS | | TypeA: Host, TypeB: Slave, Speed: 1.1/2.0, USB Class: CDC(Communications Device Class) | | | PSU | | | 12.5-480 | 15-400 | 20-304 | 30-200 | 40-152 | 50-120 | 60-100 | 80-76 | 100-60 | 150-40 | 300-20 | 400-15.2 | 600-10.4 | | MAC Address, DNS IP Address, User Password, Gateway IP Address, Instrument IP Address, Subnet Mask R5-232 R5-485 Complies with the EIA232D / EIA485 Specifications | RS-232 / RS-485 Complies with the EIA232D / EIA485 Specifications CPI8 (Factory Option) | | | | | | | | | | | | ask | | | | | | | | SCPI - 1993, IEEE 488.2 compliant interface | | | - | _ | | | | | , cas, mairan | | Judinet IVI | work . | | | | | | | | Environmental Conditions PSU 6-800 8-720 12.5-480 15-400 20-304 30-200 40-152 50-120 60-100 80-76 100-60 150-40 300-20 400-15.2 600 Operating temperature 0 0 C - 50 C (*14) Storage temperature 2.25 C - 70 C Operating humidity 2.26 S - 85% RH; No condensation Storage humidity 9/05 RH or less; No condensation Altitude Maximum 2000m Weight main unit only kg Less than 37.4kg Less than 37.4kg Minimum 2000m Weight main unit only kg Less than 37.4kg Minimum 2000m 2 | | - | | | | | | • | | | | | | | | | | | | Operating temperature | Storage temperature | | | PSU | | | 12.5-480 | 15-400 | 20-304 | 30-200 | 40-152 | 50-120 | 60-100 | 80-76 | 100-60 | 150-40 | 300-20 | 400-15.2 | 600-10.4 | | Operating humidity 20% - 85% RH; No condensation 90% RH or less; | Operaing temperature | | | 0°C~50°C | (*14) | | | | | | | | | | | | | | | Operating humidity 20% - 85% RH; No condensation | Storage temperature | | | -25 °C - 70 | С | | | | | | | | | | | | | | | Storage humidity | | - | - | | | densation | | | | | | | | | | | | | | Altitude Maximum 2000m Foregraf Specifications PSU 6.800 8.720 12.5-480 15-400 20-304 30-200 40-152 50-120 60-100 80-76 100-60 150-40 300-20 400-15.2 600 60-100 60-100 60-76 100-60 150-40 300-20 400-15.2 600 60-100 60-100 60-76 100-60 150-40 300-20 400-15.2 600 60-100 60-76 100-60 150-40 300-20 400-15.2 600 60-100 60-76 100-60 150-40 300-20 400-15.2 600 60-100 60-76 100-60 150-40 300-20 400-15.2 600 60-76 100-60 150-40 300-20 400-15.2 600 60-76 100-60 150-40 300-20 400-15.2 600 60-76 100-60 150-40 300-20 400-15.2 600 60-76 100-60 150-40 300-20 400-15.2 600 60-76 100-60 150-40 300-20 400-15.2 600 60-76 100-60 150-40 150 | PSU 6-800 8-720 12.5-480 15-400 20-304 30-200 40-152 50-120 60-100 80-76 100-60 150-40 300-20 400-15.2 600 Weight main unit only kg Less than 37.4 kg | Weight main unit only kg Less than 37.4 kg Dimensions (WxHxD) mm 423 x 174.4 x 447.2 Cooling Forced air cooling by internal fan. Withstand voltage AC to Chassis: 1500Vac/Tmin; AC to Output terminal: 3000Vac/Tmin; Yout ≤150V; Output terminal to Chassis:1000Vdc/Tmin; 150-Vout ≤600; Output terminal to Chassis:1500Vdc/Tmin; Yout ≤150V; Output terminal to Chassis:1000Vdc/Tmin; ≤150Vdc/Tmin; ≤150Vdc | | | Dell | | | 12 5 400 | 15 400 | 20.204 | 30.300 | 40.353 | 50 120 | 60.100 | 90.76 | 100.60 | 150 40 | 300.30 | 400.15.0 | 600 30 4 | | Dimensions (WxHxD) mm 423 x 174.4 x 447.2 Cooling Forced air cooling by internal fan. Withstand voltage AC to Chassis : 1500Vac/Tmin; AC to Output terminal : 3000Vac/Tmin; Yout ≤ 150V; Output terminal to Chassis:1000Vdc/Tmin; 150-Vout ≤ 600; Output terminal to Chassis:1500Vdc/Tmin; | | | | | | 12.5-480 | 15-400 | 20-304 | 30-200 | 40-152 | 50-120 | 60-100 | 80-76 | 100-60 | 150-40 | 300-20 | 400-15.2 | 600-10.4 | | Cooling Forced air cooling by internal fan. Withstand voltage AC to Chassis : 1500Vac/Tmin; AC to Output terminal : 3000Vac/Tmin; Yout ≤ 150V; Output terminal to Chassis:1000Vdc/Tmin; 150-Vout ≤ 600; Output terminal to Chassis:1500Vdc/Tmin; | Withstand voltage AC to Chassis: 1500Vac/Irmin; AC to Output terminal: 3000Vac/Irmin; Vout ≤150V; Output terminal to Chassis:1000Vdc/Irmin; 150-Vout ≤600; Output terminal to Chassis:1500Vdc/Irmin | Dimensions | (W×H×D) | mm | | | | | | | | | | | | | | | | | Withstand voltage AC to Chassis: 1500Vac/Tmin; AC to Output terminal: 3000Vac/Tmin; Vout≤150V; Output terminal to Chassis:1000Vdc/Tmin; 150-Vout≤600; Output terminal to Chassis:1500Vdc/Tmin | Cooling | 8 | 4 - | Forced air c | coling by int | ernal fan. | Output termi | inal : 3000Vac | /1min: Vout | ≤150V: Outr | out terminal to | Chassis:100 | 0Vdc/1min: | 150 <vout≤6< td=""><td>00; Output te</td><td>minal to Ch</td><td>assis:1500Vd</td><td>c/1min</td></vout≤6<> | 00; Output te | minal to Ch | assis:1500Vd | c/1min | | | | | | | | | | | | | | | sep minds | | carpor to | | | ., | | answer are and a second | | | | erinasis affic | - output sell! | | | , - ve input an | - susper rem | | more for | .0007 | | | | | | | - Notes: (*1) Minimum voltage is guaranteed to maximum 0.2% of the rated output voltage. (*2) Minimum current is guaranteed to maximum 0.4% of the rated output current. (*3) Single phase 2007 models: 170 265 Vac. Three phase 2007 models: 180 253 Vac. Three phase 4007 models : 360 440 Vac. (*4) From No-load to Full-load, constant input voltage. Measured at the sensing point in Remote Sense. (*5) Measurement frequency bandwidth is 10-lz. 20M Hz. (*6) Measurement frequency bandwidth is 10-lz. 20M Hz. (*8) From 10% 90% of rated output voltage, with rated resistive load. (*9) From 90% 10% of rated output voltage, with rated resistive load. (*10) Time for output voltage to recover within 2% of its rated output voltage for output voltage to recover within 2% of its rated output voltage. (*11) For load voltage change, equal to the unit voltage rating, constant input voltage. (*12) For 6v 20v model the ripple is measured at 2V rated output voltage. (*13) Single phase and three phase 200V models: at 200Vac input voltage. Three phase 400V models: at 400Vac input voltage. At rated output power. (*14) If install the front panel filter kit, the temperature is guaranteed to 40° C. 1U Handle & Bracket PSU-3kW PSU-4.5kW PSU-6kW | 9 | | ORDERING | INFORMATIO | N | | |---
--|--|---|---|--| | PSU 6-20
PSU 8-18
PSU 12.5
PSU 15-1
PSU 20-7
PSU 30-5
PSU 40-3
PSU 50-3 | 80 1440W
5-120 1500W
100 1500W
76 1520W
50 1500W
38 1520W | Programmable Switching DC Power Supply | PSU 60-25
PSU 80-19
PSU 100-15
PSU 150-10
PSU 300-5
PSU 400-3.8
PSU 600-2.6 | 1520W
1500W
1500W
1500W
1520W | Programmable Switching DC Power Supply | | 1U Handle | minal cover x 1, An
e(RoHS), 1U Bracke | nalog connector plug kit x 1, Output terminal M8 bolt set(
et(LEFT, RoHS), 1U Bracket (RIGHT,RoHS), Power Cord(1 | | | | | PSU-01B
PSU-01C
PSU-02B
PSU-02C
PSU-03B
PSU-03C
PSU-232
PSU-232
PSU-01A
PSU-01A
PSU-02A
PSU-03A
PSU-15O-I | Cable for 2 units in p
Bus Bar for 3 units in
Cable for 3 units in
Bus Bar for 4 units in
RS232 Cable with DB
RS485 Cable with DB
Front panel filter kit(
Joins a vertical state)
Joins a vertical state of the | n parallel operation (Applies to models ≤60 volts) parallel connection n parallel operation (Applies to models ≤60 volts) parallel connection n parallel operation (Applies to models ≤60 volts) parallel connection 9 connector kit 9 connector kit | plates x2 | GTL-246
GTL-258
GTL-259
GTL-260
GTL-261
GRM-001
PSU-GPIB
GPW-001
GPW-002
GPW-003 | USB Cable, USB 2.0A-B Type Cable, 4P GPIB Cable, 2000mm RS-232 Cable with DB9 connector to RJ45 RS-485 Cable with Db9 connector to RJ45 Serial Master Cable+Terminator, 0.5M RS-485 Slave cable Slide bracket 2pcs/set ,PSU option GPIB Interface card (factory option) UL/CSA power cord 3m ,PSU option VDE power cord 3m ,PSU option PSE power cord 3m ,PSU option | | Driver | LabView Driver | | | | | #### SERIES/PARALLEL OPERATION AND HIGH POWER DENSITY | Series
Connection | 1 unit | 2 units | |----------------------|--------|---------| | Height of sets | 10 | 2U | | PSU 6-200 | 6V | 12V | | j | 200A | 200A | | PSU 8-180 | 8V | 16V | | | 180A | 180A | | PSU 12.5-120 | 12.5V | 25V | | | 120A | 120A | | PSU 15-100 | 15V | 30V | | | 100A | 100A | | PSU 20-76 | 20V | 40V | | | 76A | 76A | | PSU 30-50 | 30V | 60V | | | 50A | 50A | | PSU 40-38 | 40V | 80V | | , | 38A | 38A | | PSU 50-30 | 50V | 100V | | | 30A | 30A | | PSU 60-25 | 60V | 120V | | | 25A | 25A | | PSU 80-19 | 80V | 160V | | | 19A | 19A | | PSU 100-15 | 100V | 200V | | | 15A | 15A | | PSU 150-10 | 150V | 300V | | 8 | 10A | 10A | | PSU 300-5 | 300V | 600V | | | 5A | 5A | | PSU 400-3.8 | 400V | NA | | | 3.8A | NA | | PSU 600-2.6 | 600V | NA | | | 2.6A | NA | | Series
Parallel | 1 unit | 2 units | 3 units | 4 units | |--------------------|--------|---------|---------|---------| | Height of sets | 10 | 2U | 3U | 4U | | PSU 6-200 | 6V | 6V | 6V | 6V | | | 200A | 400A | 600A | 800A | | PSU 8-180 | 8V | 8V | 8V | 8V | | | 180A | 360A | 540A | 720A | | PSU 12.5-120 | 12.5V | 12.5V | 12.5V | 12.5V | | | 120A | 240A | 360A | 480A | | PSU 15-100 | 15V | 15V | 15V | 15V | | | 100A | 200A | 300A | 400A | | PSU 20-76 | 20V | 20V | 20V | 20V | | | 76A | 152A | 228A | 304A | | PSU 30-50 | 30V | 30V | 30V | 30V | | | 50A | 100A | 150A | 200A | | PSU 40-38 | 40V | 40V | 40V | 40V | | | 38A | 76A | 114A | 152A | | PSU 50-30 | 50V | 50V | 50V | 50V | | | 30A | 60A | 90A | 120A | | PSU 60-25 | 60V | 60V | 60V | 60V | | | 25A | 50A | 75A | 100A | | PSU 80-19 | 80V | 80V | 80V | 80V | | - | 19A | 38A | 57A | 76A | | PSU 100-15 | 100V | 100V | 100V | 100V | | | 15A | 30A | 45A | 60A | | PSU 150-10 | 150V | 150V | 150V | 150V | | | 10A | 20A | 30A | 40A | | PSU 300-5 | 300V | 300V | 300V | 300V | | | 5A | 10A | 15A | 20A | | PSU 400-3.8 | 400V | 400V | 400V | 400V | | | 3.8A | 7.6A | 11.4A | 15.2A | | PSU 600-2.6 | 600V | 600V | 600V | 600V | | | 2.6A | 5.2A | 7.8A | 10.4A | To augment output power, the PSU-series can realize two-fold rated power (models under 300V)via 2 same model units in series connection; and four-fold rated power via 4 same model units in parallel connection so as to satisfy customers with large voltage and large current requirements. 2U height units in series connection can achieve maximum 600V output. 4U height units in parallel connection can output maximum 800A and 6240W. #### B. REMOTE PROGRAM CONTROL (UP TO 31 UNITS CONNECTION) Provide RS-232, RS-485, USB, GPIB and LAN for PC to remote control Master PSU-Series. RJ-45 connector on the rear panel can connect up to 31 units. LAN or USB remote control and augmenting slave units by using PSU-Series multi-drop mode will no longer need any switch/hub that can help customers save equipment costs. #### C. BLEEDER CONTROL PSU-Series Built-in Bleed Resistor The PSU-Series employs a bleed resistor in parallel with the output terminal. Bleed resistor is designed to dispatch the power from the power supply filter capacitors when power is turned off or the load is disconnected. Without a bleed resistor, power terminal may remain charged on the filter capacitors for some time and be potentially hazardous. In addition, bleed resistor also allows for smoother voltage regulation of the power supply as the bleed resistor acts as a minimum voltage load. The bleed resistance can be turned on or off using the configuration setting. #### D. C.V/C.C PRIORITY MODE Under the conventional C.V mode, inrush current and surge voltage appeared at forward voltage(Vf) of LED. Under C.C priority mode, inrush and surge voltage are effectively restrained. V-I Characteristic of Diode Using GDS-3354 DSO to Test LED Operation Under C.V Priority and C.C Priority Respectively Conventional power supplies under the CV priority mode will produce inrush current and surge voltage at turn-on. The PSU-series has CV and CC priority modes. The CC priority mode can prevent inrush current and surge voltage from occurring at turn-on to protect DUT. ^{*} For the detailed information please refer to User Manual #### ADJUSTABLE SLEW RATE | | 0 | |-----------------------------------|-------------------------------------| | VOLTAGE SLEW RATE | CURRENT SLEW RATE | | 0.001V~0.060V/msec (PSU 6-200) | 0.001A~2.000A / msec (PSU 6-200) | | 0.001V~0.080V/msec(PSU 8-180) | 0.001A~1.800A / msec (PSU 8-180) | | 0.001V~0.125V/msec (PSU 12.5-120) | 0.001A~1.200A / msec (PSU 12.5-120) | | 0.001V~0.150V/msec(PSU 15-100) | 0.001A~1.000A / msec(PSU 15-100) | | 0.001V~0.200V/msec (PSU 20-76) | 0.001A~0.760A / msec (PSU 20-76) | | 0.001V~0.300V/msec(PSU 30-50) | 0.001A~0.500A / msec(PSU 30-50) | | 0.001V~0.400V/msec (PSU 40-38) | 0.001A~0.380A / msec (PSU 40-38) | | 0.001V~0.500V/msec(PSU 50-30) | 0.001A~0.300A / msec(PSU 50-30) | | 0.001V~0.600V/msec (PSU 60-25) | 0.001A~0.250A / msec (PSU 60-25) | | 0.001V~0.800V/msec(PSU 80-19) | 0.001A~0.190A / msec(PSU 80-19) | | 0.001V~1.000V/msec (PSU 100-15) | 0.001A~0.150A / msec (PSU 100-15) | | 0.001V~1.500V/msec (PSU 150-10) | 0.001A~0.100A / msec (PSU 150-10) | | 0.001V~1.500V/msec (PSU 300-5) | 0.001A~0.025A / msec (PSU 300-5) | | 0.001V~2.000V/msec (PSU 400-3.8) | 0.001A~0.008A / msec (PSU 400-3.8) | | 0.001V~2.400V/msec (PSU 600-2.6) | 0.001A~0.006A / msec (PSU 600-2.6) | Adjustable Voltage Slew
Rate The PSU series can adjust slew rate for current and voltage. Via setting the rise and fall time of voltage and current, users can verify DUT's characteristics during voltage and current variation. Additionally, slew rate adjustment can mitigate voltage shift to effectively prevent DUT from being damaged by inrush current. This function is ideal for tests such as capacitive load and motor. #### E. OVP,OCP AND UVL | MODEL | ОСР | OVP | UVL | |--------------|--------------|---------------|------------| | PSU 6-200 | 5 ~ 220A | 0.6 ~ 6.6V | 0 ~ 6.3V | | PSU 8-180 | 5 ~ 198A | 0.8 ~ 8.8V | 0 ~ 8.4V | | PSU 12.5-120 | 5 ~ 132A | 1.25 ~ 13.75V | 0 ~ 13.12V | | PSU 15-100 | 5 ~ 110A | 1.5 ~ 16.5V | 0 ~ 15.75V | | PSU 20-76 | 5 ~ 83.6A | 2 ~ 22V | 0 ~ 21V | | PSU 30-50 | 5 ~ 55A | 3 ~ 33V | 0 ~ 31.5V | | PSU 40-38 | 3.8 ~ 41.8A | 4 ~ 44V | 0 ~ 42V | | PSU 50-30 | 3 ~ 33A | 5 ~ 55V | 0 ~ 52.5V | | PSU 60-25 | 2.5 ~ 27.5A | 5 ~ 66V | 0 ~ 63V | | PSU 80-19 | 1.9 ~ 20.9A | 5 ~ 88V | 0 ~ 84V | | PSU 100-15 | 1.5 ~ 16.5A | 5 ~ 110V | 0 ~ 105V | | PSU 150-10 | 1 ~ 11A | 5 ~ 165V | 0 ~ 157.5V | | PSU 300-5 | 0.5 ~ 5.5A | 5 ~ 330V | 0 ~ 315V | | PSU 400-3.8 | 0.38 ~ 4.18A | 5 ~ 440V | 0 ~ 420V | | PSU 600-2.6 | 0.26 ~ 2.86A | 5 ~ 660V | 0 ~ 630V | Once the voltage or current output exceeds the preset level of OVP or OCP, PSU will shut down output to protect DUT.UVL is for users to set the minimum output voltage from the output terminal. #### G. TRIGGER CONTROL (TRIGGER INPUT/TRIGGER OUTPUT) PSU-series provides users with complete trigger input and trigger output functions so as to flexibly control PSU-series. Each function is elaborated as follows. #### Trigger Input function: - 1. Allow users to set the effective pulse width from $0\sim60ms$ for trigger input (0: the LOW or HIGH signal of DC level for trigger input) - 2. Receive trigger input to control PSU-series output or to output preset voltage and current. - 3. Receive trigger input to upload preset memory parameters. #### Trigger Output function: - Allow users to set the effective pulse width from 0~60ms for trigger output (0: the LOW or HIGH signal of DC level for trigger output) - 2. Set LOW or HIGH for output DC level - PSU produces trigger output signal when setting output or changing preset value or uploading preset memory parameters. #### H. EXTERNAL ANALOG CONTROL FUNCTION - Pin23 → EXT-V (-) - Pin22 → EXT-V (+) - Wire shield → negative (-) output terminal - EXT-R PSU Analog connector 2 core shielded wire or twisted pair Output Terminal - Pin22 → EXT-R - Pin23 → EXT-R - Wire shield → negative (-) output terminal # Switch PSU Analog connector 2 core shielded wire or heisted pair Output Terminal - Pin19 → Switch - Pin20 → Switch - Wire shield → negative (-) output terminal #### **External Voltage Controls Voltage Range** #### **External Resistance Controls Voltage Range** The rear panel of the PSU-series has an analog control terminal. The external analog control interface allows external voltage or resistance to control voltage and current output; and allows power supply to output or to be turned on and off. The diagram on the upper shows typical connection methods for external control applications. For more detailed connection information please refers to user manual. ## External On-off to Control Output, on or off ## Fanless Multi-Range DC Power Supply #### PFR-100L #### PFR-100M #### **FEATURES** - * Constant Power Output for Fivefold Multi-Range(V&I) Operation - * Natural Convection Cooling Design (Fanless Structure) - * Preset Memory Function - * Output ON/OFF Delay Function - * CV, CC Priority Mode - * Adjustable Slew Rate For Voltage and Current - * Bleeder Circuit Control - * Protection: OVP, OCP, AC FAIL and OTP - * Support Front Panel and Rear Panel Output - * Interface: USB,LAN,RS-232/485(std.); GPIB(opt.) - * Web Server Monitoring and Control - * External Analog Control and Monitor Function - * Remote Sensing Function | Model | PFR-100L | PFR-100M | |----------------|----------|----------| | Output Channel | 1 | 1 | | Output Voltage | 0~ 50V | 0~ 250V | | Output Current | 0~ 10A | 0~ 2A | | Rated Power | 100W | 100W | The PFR-100 series, a small and high-performance programmable D.C. power supply, adopts natural convection design to dissipate heat. The fanless structure allows users to focus on their experiments and tests in a quiet environment. Fanless power supply will not suck in dust and foreign objects, therefore, PFR-100 series has a longer life cycle compared with that of power supplies with fan. The PFR-100 series is a power supply with a five-fold rated power that allows users to self-define voltage and current under rated power conditions so as to satisfy them with wider voltage and current operational ranges. PFR-100 series, with rated 100W, provides two models: PFR-100L- maximum output voltage of 50V (at 2A) or maximum output current of 10A (at 10V); PFR-100M- maximum output voltage of 250V (at 0.4A) or maximum output current of 2A (at 50V). The PFR-100 series provides front and rear panel output terminals. The front panel output terminal helps users shorten test lead replacement time while conducting adjustment on front panel's function keys. The rear panel output terminal facilitates an easy wiring operation for rackmount assembly. 3U height, 70mm width and 2.5KG in weight have greatly elevated PFR-100 series portability. Furthermore, the multi-drop mode allows users to control up to 31 PFR-100 series without using switch/Hub that help users save the equipment cost. The LAN interface for PFR-100 is Ethernet port. PFR-100 also has a built-in web server and intuitive user interface. Users, via general browsers including Internet Explorer, Mozilla Firefox or Android cellular phones, can monitor PFR-100's test and measurement anywhere. Users not only can remotely monitor PFR-100 via internet, but also remotely observe and adjust their operating PFR-100s in the lab from your home. The outputs of PFR-100 series can be monitored including OVP, OCP, UVL; and the system information can be checked such as unit's serial number, firmware edition and internet setting. Users can remotely adjust PFR-100 settings, including output voltage/current, the slew rate for voltage/current, Bleeder circuit control, OCP, delayed time for output voltage and Buzzer settings. The PFR-100 series provides special functionalities to meet test requirements for different load's characteristics. The CC priority mode can be applied for DUTs with diode characteristics to prevent DUT from being damaged by inrush current. A slow rise time for voltage can also protect DUT from inrush current, especially for tests on capacitive load. When power is off or load is disconnected, the activation of Bleeder circuit control will allow the bleeder resistor to consume filter capacitor's electricity. Without the bleed resistor, power supply's filter capacitor may still have electricity that is a potential hazard. For automatic testing equipment systems, the bleeder resistor allows PFR-100 series to rapidly discharge to prepare itself for the next operation. | Model | | PFR-100L | PFR-100M | |---|-------------------|----------------------|----------------------| | OUTPUT RATING | | PFK-100L | PFR-100M | | Rated Output Voltage | | 50V | 250V | | Rated Output Current | | 10A | 2A | | Rated Output Power | | 100W | 100W | | REGULATION(CV) | | | | | Load Regulation (*2) | | 10mV | 33mV | | Line Regulation (*1) | | 3mV | 5mV | | REGULATION(CC) | | | | | Load Regulation (*9) | | 10mA | 3.2mA | | Line Regulation (*1) | | 8mA | 1.2mA | | RIPPLE & NOISE (*3) | | | 2022 | | Vp-p (*4) | | 50mV | 150mV | | Vr.m.s.(*5) | | 4mV | 15mV | | A r.m.s. | | 10mA | 2mA | | PROGRAMMING ACCURACY | | | | | Voltage | 0.1% of setting + | 40mV | 200mV | | Current | 0.2% of setting + | 20mA | 2mA | | MEASUREMENT ACCURACY | | | | | Voltage | 0.1% of reading + | 40mV | 200mV | | Current | 0.2% of reading + | 20mA | 2mA | | RESPONSE TIME | | | | | Rise Time (*6) | Rated load | 50ms | 100ms | | Fall Time (*7) | Rated load | 100ms | 200ms | | | No load | 500ms | 1000ms | | Transient Response Time (*8) | | 1.5ms | 2ms | | PROGRAMMING RESOLUTION | | | | | Voltage | | 2mV | 10mV | | Current | | 1mA | 0.1mA | | MEASUREMENT RESOLUTION | | | 1 | | Voltage | | 2mV | 10mV | | Current | | 1mA | 0.1mA | | PROTECTION FUNCTION | | | | | Over Voltage Protection (OVP) | Setting range | 5~55V | 5~275V | | Over Current Protection (OCP) | Setting range | 1~11A | 0.2~2.2A | | Under Voltage Limit (UVL) Over Temperature Protection (OTP) | Setting range | 0~52.5V | 0~262.5V | | | Operation | Turn the output off. | Turn the output off. | | Low AC Input Protection (AC-Fail) | Operation | Turn the output off. | Turn the output off. | #### Rear Panel #### **PFR-Series** | SPECIFICATIONS | | | | | | | | | |--|------------------------|--|---------------|--|--|--|--|--| | Model | | PFR-100L | PFR-100M | | | | | | | FRONT PANEL DISPLAY ACCURACY, 4 DIGIT | S | | | | | | | | | | reading +
reading + | 40mV
20mA | 200mV
2mA | | | | | | | ENVIRONMENT CONDITION | | | | | | | | | | Operating Temperature
Storage Temperature
Operating Humidity
Storage Humidity | | 0°C to 40°C
-20°C to 70°C
20% to 80% RH; No condensation
20% to 85% RH; No condensation | | | | | | | | READBACK TEMP. COEFFICIENT(After A 30 M | Minute Wa | rm-up) | | | | | | | | Voltage
Current | | 100ppm/°C
200ppm/°C | | | | | | | | OTHER | | | | | | | | | | Analog Control
Interface
AC Input | | Yes
USB,LAN,RS-232/485(std.); GPIB(opt.)
85~265VAC, 47~63Hz, single phase | | | | | | | | DIMENSIONS & WEIGHT | | | | | | | | | | | | 70(W)x124(H)x300(D)mm; | Approx, 2.5kg | | | | | | Note: *1: At 85 ~ 132Vac or 170 ~
265Vac, constant load. - *2: From No-load to Full-load, constant input voltage. Measured at the sensing point in Remote Sense. - *3: Measure with JEITA RC-9131B (1:1) probe *4: Measurement frequency bandwidth is 10Hz to 20MHz. - *5: Measurement frequency bandwidth is 5Hz to 1MHz. - *6: From 10%–90% of rated output voltage, with rated resistive load. *7: From 90%~10% of rated output voltage, with rated resistive load. - \pm 8: Time for output voltage to recover within 0.1% + 10mV of its rated output for a load change from 50 to 100% of its rated output current. - *9: For load voltage change, equal to the unit voltage rating, constant input voltage. #### ORDERING INFORMATION PFR-100L Fanless Multi-Range DC Power Supply PFR-100M Fanless Multi-Range DC Power Supply (European terminals provided only) #### ACCESSORIES: Power cord, GTL-134 test lead, Accessory Packages GTL-104A test lead (for PFR-100L only), GTL-105A test lead (for PFR-100M only), GTL-204A test lead (for PFR-100L European Type Jack Terminal) #### OPTIONAL ACCESSORIES GTL-258 GPIB Cable, 2000mm GTL-259 RS-232 Cable with DB9 connector to RJ45 PSU-232 RS-232 Cable with DB9 Connector Kit GTL-260 RS-485 Cable with DB9 connector to RJ45 PSU-485 RS-485 Cable with DB9 Connector Kit GTL-261 Serial Master Cable+Terminator, 0.5M USB Cable (USB 2.0 Type A-TypeB Cable) GTL-262 RS-485 Slave cable GTL-246 GRA-431-J-100/200 Rack mount Kit(JIS) with AC 100V/200V GRA-431-E-100/200 Rack mount Kit(EIA) with AC 100V/200V PFR-GPIB Optional GPIB Interface for PFR (Factory installed) GTL-261 GTL-262 GRA-431-J/E Rack Mount Kit(JIS/EIA) PSU-232 RS-232 Cable with DB9 Connector Kit PSU-485 RS-485 Cable with DB9 Connector Kit GTL-258 GPIB Cable, 2000mm GTL-134 Test Lead ## Programmable Switching DC Power Supply (Multi-range DC Power Supply) #### PSB-2400L2 ## PSB-2400L/PSB-2400H/ PSB-2800L/PSB-2800H #### **PSB-2800LS** #### **FEATURES** - * Output Voltage Rating: 80V/800V, Output Power Rating: 400W ~ 800W - * Constant Power Output for Multi-Range (V & I) Operation - * Series and Parallel Operation (2 Units in Series or 4 Units in Parallel Maximum) - * 90 Degree Angle Rotatable Control Panel - * Sequence Function Edited by PC will be **Controlled Through Power Supply Optional** Interfaces - * Standard Interface : RS-232C/USB/Analog Control Interface - * Optional Interface : GPIB * Preset Function (3 Points) - * LabVIEW Driver The PSB-2000 Series is a high power density, programmable and multi-range output DC power supply. There are six models in the series including one power booster unit. The PSB-2000 Series has the output voltage of 0~80V and 0~800V, and the output power ranges of 0~400W and 0~800W. The multi-range output functionality facilitates flexible collocations of higher voltage and larger current under the rated power range. Both series and parallel connections can be applied to the PSB-2000 Series to fulfill the requirements of higher The PSB-2000 Series provides three sets of preset function keys to memorize regularly used settings of voltage, current and power that users can recall rapidly. The sequence function, via RS232C, USB interface or optional GPIB interface, can connect with the computer to produce output power defined by sequence of a series of set voltage and current steps that are defined by the computer. This function is often used to establish a standard test procedure for the verification of the influence on DUTs done by the swiftly changing operating The PSB-2000 Series protects over voltage and over current. The power supply output function will be shut down to protect DUTs while the protection mechanism is triggered to function. When conducting battery charging operation, the Hi- Ω mode of the PSB-2000 Series will prevent reverse current from damaging power supply. The PSB-2000 Series provides analog control interfaces on the rear panel to control PSB-2000 Series output via the external voltage or to externally monitor voltage and current output status of power supply. The PSB-2000 Series panel can be rotated 90 degree angle suitable for vertical or horizontal position to accommodate the ideal space utilization. #### SERIES OPERATION | MODEL NUMBER | SINGLE UNIT | TWO UNITS | |---|-------------|-----------| | PSB-2400L | 80V/40A | 160V/40A | | PSB-2800L | 80V/80A | 160V/80A | | PSB-2800LS
(Booster Unit for PSB-2800L Only) | N/A | N/A | | PSB-2400L2 | N/A | N/A | | PSB-2400H | N/A | N/A | | PSB-2800H | N/A | N/A | #### PARALLEL OPERATION | MODEL NUMBER | SINGLE UNIT | TWO UNITS | THREE UNITS | FOUR UNITS | |--------------|-------------|--|--|------------| | PSB-2400L | 80V/40A | 80V/80A | 80V/120A | 80V/160A | | PSB-2800L | 80V/80A | 80V/160A | 80V/240A | 80V/320A | | PSB-2800LS | N/A | 80V/160A
(PSB-2800L x 1+
PSB-2800LS x 1) | 80V/240A
(PSB-2800L x 1+
PSB-2800LS x 2) | N/A | | PSB-2400L2 | N/A | N/A | N/A | N/A | | PSB-2400H | 800V/3A | 800V/6A | N/A | N/A | | PSB-2800H | 800V/6A | 800V/12A | N/A | N/A | | SPECIFICATIONS | | | | | | | |---|--|-------------------|-----------------------|---|--|---------------| | | PSB-2400L | PSB-2800L | PSB-2400L2 | PSB-2400H | PSB-2800H | PSB-2800LS | | OUTPUT RATING | | | | | | | | Voltage
Current | 0 ~ 80V
0 ~ 40A | 0 ~ 80V | 0 ~ 80V x 2CH | 0 ~ 800V
0 ~ 3A | 0 ~ 800V | 80V | | Power | 0~40A
400W | 0 ~ 80A
800W | 0 ~ 40A x 2CH
800W | 400W | 0 ~ 6A
800W | 80A
800W | | REGULATION (CV) | | 33311 | 333.11 | | | | | Load | 0.01% ± 3mV of rated vo | ltage | | 0.01% ± 30mV of rated voltage | | N/A | | Line | 0.01% ± 2mV of rated vo | | | $0.01\% \pm 20$ mV of rated voltage | | | | REGULATION (CC) | | | | | | | | Load | 0.02% ± 3mA of rated cu | | | 0.05% ± 15mA of rated current | | N/A | | Line | 0.01% ± 2mA of rated cu | | | 0.05% ± 10mA of rated current | | | | | e Bandwidth 20MHz ; Ripple B | | | | Date of the second | | | CV p-p | 90mV | 150mV | 90mV | 250mV(only output voltage
measures more than 1% of the
rated voltage) | 300mV (only output voltage
measures more than 1% of the
rated voltage) | N/A | | CV rms | 4mV | 6mV | 4mV | 20mV (when current measures<2A)
35mV (when current measures>2A) | 25mV (when current measures<2A)
40mV (when current measures>2A) | | | CC rms | 30mA | 60mA | 30mA | 15mA | 20mA | | | PROGRAMMING ACCU | 575 | | | | | | | Voltage | 0.1% setting±2digits | | | 0.1% setting±2digits | | N/A | | Current | 0.2%setting±2digits
± 10W | | | 0.2% setting±2digits | res mare than 10/ of out of | | | READ BACK ACCURACY | | | | ±10W (only output voltage measur | es more than 1% of rated voltage) | | | | | | | 0.2% reading±2digits | | N/A | | Voltage
Current | 0.2% reading±2digits
0.3% reading±2digits | | | 0.3% reading±2digits | | 13//3 | | Power | 0.5% reading±5digits | | | 0.5% reading±Vout x 40mA | | | | RESPONSE TIME | | | | | | | | Raise Time(Full load/No load) | 50ms | | | 200ms | | N/A | | Fall Time(Full load) | 100ms | | | 500ms | | [6] | | Fall Time(No load) | 500ms | | | 1000ms | | | | Load Transient Recover Time
(Load change from 50~100%) | lms | | | 7ms | | | | PROGRAMMING RESO | LUTION | | | | | | | | 10mV | | | 1001/ | | N/A | | Voltage
Current | 10mV | | | 100mV
10mA | | N/A | | Power | 10W | | | 10W | | | | MEASUREMENT RESOL | LUTION | | | | | | | Voltage | 10mV | | | 100mV | | N/A | | Current | 10mA
10W | | | 10mA
10W | | | | SERIES AND PARALLEL | | | | TOW | | | | Channel Number | 1 | 1 | 2 | 1 | 1 | Ī | | Series Operation | Up to 2 Units | Up to 2 Units | N/A | N/A | N/A | For PSB-2800L | | Parallel Operation | Up to 4 Units | Up to 4 Units | N/A | Up
to 2 Units | Up to 2 Units | Only | | Parallel with booster PSB-2800LS | 1923 M3395 | Up to 3 Units | N/A | N/A | N/A | | | PPROTECTION FUNCT | SC 10 (10 (10 (10 (10 (10 (10 (10 (10 (10 | C . I I: | | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | d- 1100/ -ftdlt | N/A | | OVP (Fixed)
OVP (Variable) | Output off when 110% of
Output off when operating; | | IV with front nanel | Output off when output voltage ex
Presettable in range from 10V ~ 84 | | N/A | | OCP (Fixed) | Output off when 110% of | | with front parier | Output off when output voltage ex | | | | OCP (Variable) | Output off when operating; Sett | | A for model number) | Presettable in range from 0.1A ~ 6. | | | | OHP' | Output off above heat sir | nk setting temper | ature | Output off at the internal heat sink t | emperature over setting value | | | ENVIRONMENT COND | | | | | | | | Operation Temp | 0°C ~ 40°C | | | | | N/A | | Storage Temp | -20°C ~ 70°C | andancation) | | | | | | Operating Humidity Storage Humidity | 30% ~ 80% RH (no dew of 30% ~ 80% RH (no dew of several severa | | | | | | | OTHER | | | | | | | | Inrush Current | 35A Max | 70A Max | 70A Mmax | 35A Max | 70A Max | 70A Max | | Power Consumption/Factor | 560VA/0.99 | 1120VA/0.99 | 1120VA/0.99 | 560VA/0.99 | 1120VA/0.99 | 1120VA/0.99 | | Cooling Method | Forced air-cooling with fa | n motor | | | | V. | | Power Source | 100VAC ~ 240VAC, 50/60H | tz, Single phase | | | | | | Interface (Standard) | RS-232C/USB | | | | | | | Interface (Optional)
Analog Control | GPIB
Yes | | | | | | | DIMENSIONS & WEIGH | 2.342.77 | | | | | | | D.MEITOIOITO & WEIGI | 210(W) x 124(H) x 290(D |)mm | | | | | | | Approx.5kg | Approx.7kg | Approx.7kg | Approx. 5kg | Approx. 6kg | Approx. 7kg | | | ANDIONINE. | rippiox./Kg | APPIUM./KK | Approx. JAK | APPION, OKE | LIPPIUM. /KB | ## Programmable Switching DC Power Supply (Multi-range DC Power Supply) PSB-2400L2 **Rear Panel** PSB-2400L/PSB-2400H/ PSB-2800L/PSB-2800H **PSB-2800LS** **PSB-003 Parallel Connection Kit for** Horizontal Installation PSB-004 Parallel Connection Kit for Vertical Installation #### ORDERING INFORMATION | PSB-2400L | 0~80V/0~40A/400W Multi-Range DC Power Supply | |------------|--| | PSB-2800L | 0~80V/0~80A/800W Multi-Range DC Power Supply | | PSB-2400L2 | 0~80V x 2/0~40A x 2/800W Multi-Range DC Power Supply | | PSB-2400H | 0~800V/0~3A/400W Multi-Range DC Power Supply | | | 0~800V/0~6A/800W Multi-Range DC Power Supply | | PSB-2800LS | 800W Slave (Booster) Unit For Current Extension Only | FREE DOWNLOAD AC Power Cord x 1, External Control Connector (26pin), Screws for output terminals on rear panel, Protection covers for output terminals on rear panel, Protection caps for output terminals on the front panel, GND Cable, USB Cable (For Model Number : PSB-2400L; PSB-2800L; PSB-2400L2; PSB-2400H; PSB-2800H) Local Bus (For Model Number: PSB-2400L; PSB-2800L; PSB-2400L2; PSB-2400H; PSB-2800H) | OPTI | ONAL ACCESSORIES | | | |-------|---|---------|-------------------------| | PSB-0 | | GTL-246 | USB Cable
GPIB Cable | | | Kit Includes : (PSB-007 Joint Kit, Horizontal bus bar x 2 , PSB-005 x1) | | Modular Cable | | PSB-0 | Parallel Connection Kit for Vertical Installation. Kit Includes: (PSB-007 Joint Kit, Verical bus bar x 2, PSB-005 x 1) | GRA-424 | Rack Mount Ki | | PSB-0 | 95 Parallel Connection Signal Cable | | | | PSB-0 | 06 Series Connection Signal Cable | | | | PSB-0 | Joint Kit: Includes 4 Joining Plates, (M3x6)screws x 4; (M3x8)screw x 2 | | | | PSB-0 | 08 RS232C Cable (PSB-2000 Only) | | | #### PSB-001 GPIB Control Board GRJ-1101 Modular Cable Labview Driver PSB-008 RS-232C Cable (PSB-2000 Only) **PSB-005 Parallel Connection** Signal Cable **PSB-006 Series Connection** Signal Cable PSB-007 Joint Kit #### A. MULTI-RANGE OUTPUT OPERATION #### The operation area of a Conventional Power Supply Compared with the maximum power output of the conventional power supply that is calculated by the maximum output voltage multiplies by the maximum output current, the PSB-2000 series, defying the formula, has a unique characteristic of multi-range output (voltage and current). This distinguishing feature, under the same maximum power output range, can output a higher voltage with a smaller current and vice versa. For instance, for a conventional power supply with a maximum power output of 360W, the maximum voltage and current outputs are likely to be The operation area of a Multi-Range Power Supply for PSB-2000 Series 10V and 36A respectively. Comparatively, PSB-2400L, with the maximum power output of 400W, provides voltage and current output ranges of 0~80V and 0~40A. The maximum current of 5A will be provided when the voltage reaches 80V and the maximum voltage of 10V for the maximum current of 40A. PSB-2400L, breaking the limitation of Pmax=Vmax x Imax,, broadens voltage and current application ranges. The following diagrams illustrate the voltage and current comparison between the multi-range output power supply and the conventional power supply. #### B. PRODUCTS IN THE SERIES There are six models in the PSB-2000 Series. Model type, output voltage, output current and output power are as follows: | MODEL | PSB-2400L | PSB-2800L | PSB-2400L2 | PSB-2400H | PSB-2800H | PSB-2800LS* | |---------------------|-----------|-----------|---------------|-----------|-----------|-------------| | Channel Number | 1 | 1 | 2 | 1 | 1 | NA | | Voltage Rating** | 0 ~ 80V | 0 ~ 80V | 0 ~ 80V x 2CH | 0 ~ 800V | 0 ~ 800V | 80V | | Current Rating*** | 0 ~ 40A | 0 ~ 80A | 0 ~ 40A x 2CH | 0 ~ 3A | 0 ~ 6A | 80A | | Output Power (Max.) | 400W | 800W | 800W | 400W | 800W | 800W | - * PSB-2800LS, a booster unit acting as slave to extend current, can not operate alone. It must operate with PSB-2800L master. - ** The maximum current under the highest output voltage is power/voltage. For instance, when PSB-2400L outputs 80V the maximum current is 400W/80V = 5A. - *** Same as above. When PSB2400L outputs 40A the highest voltage is 400W/40A = 10V. #### C. SERIES AND PARALLEL CONNECTIONS **Series Connection** Hence, the PSB-2000 Series, with its multi-range output function and the power extension capability of series and parallel connections, is the high power density and high performance to cost ratio DC power supply, which provides Parallel Connection a wider range of power applications for any limited equipment space. The PSB-2000 Series is an ideal selection for testing DC power supply module, automobile lithium and lithium iron battery and electronic parts. #### **PSH-Series** #### **FEATURES** - * Wide Input Voltage Range and High Power Factor (P.F) - * High Efficiency and High Power Density - * Constant Voltage and Constant Current Operation - * Over Voltage, Over Current and **Over Temperature Protection** - * Self-Test and Software Calibration - * Output ON/OFF Control - * Low Ripple and Noise - * LCD Display - * Built-in Buzzer Alarm - * Standard Interface: RS-232C - * Optional Interface : GPIB (IEEE-488.2) - * LabVIEW Driver The PSH-Series is a single output from 360W to 1080W, programmable switching DC power supply. OVP, OCP and OTP protect the power supply and loads from unexpected conditions. Remote sensing adds an extra level of precision by compensating cable losses between loads. The bright LCD with simultaneous parameter outputs allows effortless operation. Self-test and software calibration features also reduce maintenance overhead. SCPI commands and LabVIEW driver access through the RS-232C or the optional GPIB interface allow remote control and ATE software development capability. Modular architecture, dedicated rear-panel output, and the 19 inch 4U rack mounting option ensure that the PSH-Series is optimized for large systems. | SPECIFICATION | | DC11.26304 | DCI I 2620A | DCI 2626 * | |-------------------|--|---|--------------------------|---| | CUITAUT | PSH-2018A | PSH-3610A | PSH-3620A | PSH-3630A | | OUTPUT | | | | 500.1996 | | Voltage | 20V | 36V | 36V | 36V | | Current | 18A | 10A | 20A | 30A | | REGULATION (C | , | | | | | Load | $\leq 0.1\% + 5 \text{mV}$ | ≤ 0.1%+5mV | ≤0.1%+5mV | \leq 0.1%+5mV | | Line | \leq 0.05%+5mV | ≤ 0.05%+5mV | ≤0.05%+5mV | ≤ 0.05%+5mV | | REGULATION (C | .C.) | | | | | Load | ≤ 0.2%+5mA | ≤ 0.2%+5mA | ≤0.2%+10mA | ≤ 0.2%+15mA | | Line | ≤ 0.2%+5mA | ≤ 0.2%+5mA | ≤0.2%+10mA | ≤ 0.2%+15mA | | RIPPLE & NOISE | | | | | | Voltage (mVrms) | ≤ 10mVrms | ≤ 10mVrms | ≤10mVrms | ≤ 10mVrms | | Voltage (mVp-p) | — 10mVrms ≤ 100mVp-p | = 10mVrms
≤ 100mVp-p | = 10mVrms
≤ 100mVp-p | | | voitage (iiivp-p) | 20Hz~20MHz | 20Hz~20MHz | 20Hz~20MHz | 20Hz~20MHz | | Current (mArms) | | ≤ 0.2% | ≤0.2%+20mA | ≤ 0.2%+40mA | | , , | ≥ 0.2% | ≥ 0.2% | ≥0.2%+20mA | ≥ 0.2%+40mA | | RESOLUTION | M-00-00-00-00-00-00-00-00-00-00-00-00-00 | | 10000 | 00.000000000000000000000000000000000000 | | Voltage | 10mV | 10mV | 10mV | 10mV | | Current | 10mA | 10mA | 10mA | 10mA | | PROGRAM ACCU | IRACY | | | | | Voltage | $\leq 0.05\% + 25 \text{mV}$ | ≤ 0.05%+25mV | ≤ 0.05%+25mV | $\leq 0.05\% + 25 \text{mV}$ | | Current | ≤ 0.2%+30mA | ≤ 0.2%+30mA | ≤ 0.2%+30mA | ≤ 0.2%+30mA | | READBACK RESC | LUTION (Meter) | | 1 | | | Voltage | Same as Resolution | Same as Resolution | Same as Resolution | As Resolution | | Current | Same as Resolution | Same as Resolution | Same as Resolution | As Resolution | | READBACK ACCU | JRACY (Meter) | | | | | Voltage | Same as Program Accuracy | Same as Program Accuracy | Same as Program Accuracy | As Program Accurac | | Current | Same as Program Accuracy | Same as Program Accuracy | Same as Program Accuracy | As Program Accurac | | READBACK TEMP. | COEFFICIENT | | | | | Voltage (25 ±5°€) | ≤ 100ppm/ °C | ≤100ppm/°C |
≤100ppm/°C | ≤100ppm/°C | | RESPONSE (Rise | | - · · · · · · · · · · · · · · · · · · · | , | , | | , , | ≤150mS | ≤150mS | ≤150mS | ≤150mS | | Voltage Up | | | | | | (10%~90%) | (≤95% rating load)
≤150mS | (≤95% rating load)
≤150mS | (≤95% rating load) | (≤95% rating load) | | Voltage Down | | | ≤150mS | ≤150mS | | (90%~10%) | (≥10% rating load) | (≥10% rating load) | (≥ 10% rating load) | (≥10% rating load) | | | 50% Step Load Change | | | | | CV Mode | ≤ 2mS | ≤ 2mS | ≤2mS | ≤2mS | | PROTECTION | | | | | | OVP/OCP/OTP | V | V | V | V | | Rush Current | V | V | V | V | | OUTPUT ON/OFF | | | • | · · · | | oon or onjoin | V | V | V | | | INTERFACE | | | | | | | C; Optional : GPIB | | | | | | | | | | | POWER SOURCE | | | | | | AC90V~250V, 50/ | 20.10/11.0 | | | | | DIMENSIONS & | WEIGHT | | | | | | 108(W)x142(H)x393(D) | 108(W)x142(H)x393(D) | 188(W)x142(H)x393(D) | 268(W)x142(H)x393(D | | | mm; Approx. 3.3kg | mm; Approx. 3.3kg | mm; Approx. 6.2kg | mm; Approx. 9.3kg | #### **Rear Panel** ### ORDERING INFORMATION 360W Programmable Switching DC Power Supply PSH-2018A 360W Programmable Switching DC Power Supply 720W Programmable Switching DC Power Supply PSH-3610A PSH-3620A PSH-3630A 1080W Programmable Switching DC Power Supply ACCESSORIES: Power cord x 1 #### OPTION Opt. 01: GPIB Interface (Factory Installed) #### **OPTIONAL ACCESSORIES** GRA-403 GTL-232 RS-232C Cable, 9-pin Female to 9-pin, null Modem for Computer GTL-122 Test Lead, U-type to Alligator Test Lead, Max. Current 40A, 1200mm GTL-248 GPIB Cable, Double Shielded, 2000mm #### FREE DOWNLOAD **PC Software** PC Software including Data Log; Remote Control Software Driver Note: When Opt.01 GPIB interface is ordered, the standard interface RS-232C will be deleted. The PSP-Series is a single output, 200W, programmable switching DC power supply. OVL, OCL, OTP, and OPL protect the PSP-Series and its loads from unexpected conditions. The PSP-Series has a large LCD panel with output and parameter views and a key lock feature to prevent changing the settings. The PSP-Series is suitable for generic bench-top applications in laboratories and educational institutions. ## PSP-603/405/2010 #### **FEATURES** - * LCD Display - * Output ON/OFF Control - * 3 Step Fan Speed Control - * Voltage/Current/Power Setting - * Key Lock to Avoid Error Operation - * Normal , +% & -% Output Operation Key - * Standard Interface: RS-232C - * Optional European Type Jack Terminal #### **European Type Jack Terminal** #### **Rear Panel** | SPECIFICATIONS
OUTPUT | | | | |--------------------------|--------------------------|--|-----------------------| | Model | PSP-603 | PSP-405 | PSP-2010 | | Voltage | 0 ~ 60V | 0 ~ 40V | 0 ~ 20V | | Current | 0 ~ 3.5A | 0~5A | 0 ~ 10A | | VOLTAGE REGULATION | 177. 474.74.769 | | | | Load | < 10mV | < 10mV | < 10mV | | Line | ≤ 10mV
≤ 0.05% | ≤ 10mV
≤ 0.05% | ≤ 10mV
≤ 0.05% | | CURRENT REGULATION | | , and a second s | | | Load | ≤ 5mA | ≤ 5mA | < 5mA | | Line | ≤ 0.05% | ≤ 0.05% | ≤ 0.05% | | RIPPLE | | | | | Voltage (mVrms) | < 20mV | < 20mV | < 20mV | | Current (mArms) | ≤ 20mV
≤ 10mA | ≤ 20mV
≤ 10mA | ≤ 20mV
≤ 10mA | | RESOLUTION | - TOTAL | - TOTAL | _ 1011A | | Voltage | 20mV | 10mV | 10mV | | Current | 10mA | 10mA | 10mA | | PROGRAM ACCURACY | 1011111 | | | | Voltage | + 0.05%rdg+ 4digits | + 0.05%rdg+ 3digits | + 0.05%rdg + 3digits | | Current | ± 0.1%rdg + 5digits | ± 0.1%rdg + 5digits | ± 0.3%rdg + 10digits | | READBACK (METER) RESOL | UTION | | | | Voltage | Same as Resolution | Same as Resolution | Same as Resolution | | Current | Same as Resolution | Same as Resolution | Same as Resolution | | READBACK (METER) ACCUR | | | I | | Voltage | Same as Program Accuracy | Same as Program Accuracy | Same as Program Accur | | Current
PROTECTION | Same as Program Accuracy | Same as Program Accuracy | Same as Program Accur | | OVL/OCL/OPL/OTP | V | | | | OUTPUT ON/OFF CONTR | | • | | | oon or onjoir contin | V | V | V | | DISPLAY | \$ 100 miles | | | | LCD | | | | | INTERFACE (STANDARD) | | | | | RS-232C | | | | | POWER SOURCE | | | | | AC 115V/230V±15%, 50/60 | Hz | | | | DIMENSIONS & WEIGHT | | | | ## ORDERING INFORMATION 200W Programmable Switching DC Power Supply 200W Programmable Switching DC Power Supply PSP-2010 200W Programmable Switching DC Power Supply ACCESSORIES: Power cord x 1, Test lead GTL-104A x 1 , European test lead GTL-204A x 1 $\,$ #### **OPTIONAL ACCESSORIES** GTL-232A RS-232C Cable GRA-428 Rack Mount Kit, 19", 3U Size FREE DOWNLOAD PC Software RS-232C Remote Control Software The SPS-Series is a single output, 360W, switching DC power supply. OVP protects the SPS-Series and their loads from unexpected conditions. High regulation is maintained at 0.01%. Remote sensing adds an extra level of precision by compensating cable losses between loads. Turning the output On/Off from external device is available through Remote control terminals. The GPS-Series is an ideal solution for power-efficient bench-top or portable applications requiring high regulation. ## SPS-1230/1820/2415/3610/606 #### **FEATURES** - * Dual Measurement Display - * 0.01 % High Regulation - * Constant Voltage and Constant Current Operation - * High Efficiency - * High Power Density - * Over Voltage Protection - * Remote Output ON/OFF Control | SPECIFICATIONS | | | | | | |--------------------------------|----------------------|-------------------|---|----------|---------| | OUTPUT | | | | | | | | SPS-1230 | SPS-1820 | SPS-2415 | SPS-3610 | SPS-606 | | Voltage | 0 ~ 12V | 0 ~ 18V | 0 ~ 24V | 0 ~ 36V | 0 ~ 60V | | Current | 0 ~ 30A | 0 ~ 20A | 0 ~ 15A | 0 ~ 10A | 0 ~ 6A | | CONSTANT VOLTAGE OP | ERATION | | | | | | Regulation | Line regulation | on≤5mV | | | | | | Load regulati | on≤5mV | | | | | Ripple & Noise | ≤5mVrms, 10 | 00mVp-p 20Hz ~ | 20MHz | | | | Recovery Time | ≤500μS | | | | | | | (50% Load ch | nange, Minimum | load 0.5A) | | | | Temp. Coefficient | ≤ 100ppm /° | С | *************************************** | | | | Output Range | 0 to rating vo | ltage continuous | sly adjustable | | | | CONSTANT CURRENT OF | PERATION | | | | | | Regulation | Line regulation | n ≦3mA | | | | | | Load regulatio | n ≤3mA | | | | | Ripple Current | ≤3mArms (SP | S-606) | | | | | | ≤5mArms (SP | S-3610) | | | | | | ≤10mArms (S | PS-2415) | | | | | | ≤10mArms (S | PS-1820) | | | | | | ≤30mArms (S | PS-1230) | | | | | Output Range | 0 to rating cur | rent continuously | adjustable | | | | | (HI/LO range | switchable) | | | | | METER | | | | | | | Туре | 3 1/2 digit, 0.3 | 9" LED display | | | | | Accuracy | ± (0.5% of rdg | + 2digits) | | | | | INSULATION | | | | | | | Chassis and Terminal | $20M\Omega$ or above | | | | | | Chassis and AC Cord | 30MΩ or abov | re (DC 500V) | | | | | POWER SOURCE | | | | | | | AC 115V/ 230V± 15 %, 50 | 0.07.791.5 | | | | | | DIMENSIONS & WEIGHT | 6.0 10200012 | | | | | | 128(W) x 151(H) x 295(D) | mm, Approx. 3.2l | kg | | | | #### Rear Panel | ı | | ORDERING INFORMATION | |---|----------|--------------------------------| | | SPS-1230 | 360W Switching DC Power Supply | | | SPS-1820 | 360W Switching DC Power Supply | | | SPS-2415 | 360W Switching DC Power Supply | | | SPS-3610 | 360W Switching DC Power Supply | | | SPS-606 | 360W Switching DC Power Supply | | | ACCESSO! | DIES - | Power cord x 1 , Test lead GTL-203A x 1 ## Multiple Output Dual Range DC Power Supply #### SPD-3606 #### **FEATURES** - * Three Independent, Isolated Output - * CH1/CH2 : Dual Output Range of 30V/6A or 60V/3A - * CH3 Adjustable Output: 0.1~5V/3A - * High Efficiency Power Conversion (Up to 25% Than Traditional Power Supply) - * Remote Output On/Off Control - * OVP to Protect the DUT - * OTP to Protect SPD-3606 for Reducing the Repair Rate - * Automatically Switches AC 115V/230V Source - * Full Safety Design: Reverse Polarity, CH3 Overload Protection, Safe Output Setting, C.C./C.V. Mode -
* Compact Size, Light Weight - * Low Fan Acoustic Noise with Fan Speed Control Circuit - * Voltage/Current Protection Knob(Option) - * Optional European Jack Type Terminal #### **European Type Jack Terminal** #### Rear Panel ## GPS-001 Voltage/Current protection Knob The SPD-3606 DC power supply provides 375W output capacity, three isolated outputs with dual-range for CH1 & CH2, highly efficient power conversion, low noise, high reliability, thorough protection, excellent value and a compact size. SPD-3606 creates a new bench mark for satisfying mainstream power supply demands. CH1 & CH2 offer dual-range output either at 30V/6A or 60V/3A per channel to accommodate a wide range of applications. SPD-3606 supports series and parallel tracking, allowing the CH1 and CH2 to be internally connected in series or parallel providing flexible output (30V/12A, 60V/6A, or 120V/3A). High power density and high power conversion efficiency lets SPD-3606 consume less energy making for a greener power supply. In addition, the high power density makes SPD-3606 weigh less than half and occupy much less space compared to linear power supplies. To avoid damage caused by improper operation, it also has OVP and OTP. The dual range AC input accepts both 115V and 230V inputs. When the instrument is on, devices can be connected and voltage/current levels can be adjusted safely from the front panel by turning off the output using the Output on/off key. The optional voltage/current protection knobs can be used to prevent accidentally changing the output levels. These knobs are useful for automated testing at fixed output levels, such as in assembly lines or product inspections. | SPECIFICATIONS OUTPUT RATINGS | | |-------------------------------|--| | | 0 201/10 (4.0 (0)/10 24 | | CH1/CH2 Independent | 0 ~ 30V / 0 ~ 6A; 0 ~ 60V / 0 ~ 3A | | CH1/CH2 Series | 0 ~ 60V / 0 ~ 6A; 0 ~ 120V / 0 ~ 3A | | CH1/CH2 Parallel
CH3 | 0 ~ 30V / 0 ~ 12A; 0 ~ 60V / 0 ~ 6A | | VOLTAGE REGULATION | 0.1 ~ 5V / 3A | | | Z | | Line | ≤ 0.01% + 3mV | | Load | ≤ 0.01% + 5mV (rating current ≤ 6A) | | | ≤ 0.01% + 8mV (rating current≤12A) | | Ripple & Noise | ≤ 5mVrms (5Hz ~ 1MHz); ≤ 50mVpp (20Hz ~ 20MHz) | | Recovery Time | ≤ 100 μs (50% load change, minimum load 0.5A) | | CURRENT REGULATION | | | Line | $\leq 0.2\% + 3mA$ | | Load
Diagle & Naiss | ≤ 0.2% + 3mA
≤ 3mArms | | Ripple & Noise | ≥ 3mArms | | TRACKING OPERATION | I v | | Tracking Error | \leq 0.5% + 10mV of master | | Series Regulation | ≤ 300mV | | Ripple & Noise | ≤ 10mVrms (5Hz ~ 1MHz); ≤ 100mVpp (20Hz ~ 20MHz) | | OUTPUT ON/OFF RESPONSE | TIME | | Voltage Up (10% ~ 90%) | ≤ 100ms (≤ 95% rating load) | | Voltage Down (90% ~ 10%) | ≤ 100ms (≥10% rating load) | | OVP | | | Accuracy | \pm (0.5% of reading + 0.5V) | | METER | | | Туре | 3 ¹ / ₂ digit 0.5" LED display | | Accuracy | ± (0.5% of reading + 2 digits) | | Resolution | 100mV/10mA | | INSULATION | T | | Chassis & Terminal | 100M Ωor above (DC 1000V) | | Chassis & AC code | 100MΩor above (DC 1000V) | | TEMPERATURE COEFFICIENT | | | Voltage | ≤ 100ppm/ °C + 3mV | | Current | ≤ 150ppm/°C + 3mA | | REMOTE CONTROL | | | Output On/Off | | | FAN NOISE | | | <u>≤</u> 50dB | | | OPERATION ENVIRONMEN | | | Ambient temperature 0 ~ 40° (| C; Relative humidity≤80% | | STORAGE ENVIRONMENT | | | Ambient temperature -10 ~ 70 | °C; Relative humidity≤70% | | POWER SOURCE | 19 55 Wesperson 95 85 WORDSYNEE | | AC 115V/230V±15%, 50/60Hz | | | | | | DIMENSIONS & WEIGHT | | #### ORDERING INFORMATION SPD-3606 Multiple Output Dual Range DC Power Supply ACCESSORIES: User manual x 1, Power cord x 1, Test lead GTL-104A x 2, GTL-105A x 1 European Test Lead GTL-201A x 1, GTL-203A x 1, GTL-204A x 2 OPTIONAL ACCESSORIES GPS-001 Voltage/Current protection Knob #### GSM-20H10 #### **FEATURES** - * Maximum Output ±210V/±1.05A/22W - * Built-in 4 Sequence Output Modes (Stair, Log, SRC-MEM, Custom), up to 2500 Points - * OVP /OTP Protection Function - * 0.012% Basic Measure Accuracy with 6½-digit Resolution - * Variable Sampling Speed - * SDM (Source Delay Measure) Cycle - * 2-, 4-, and 6-wire Remote V-source and Measure Sensing - * Variable Display Digits - * Built-in Limit Function - * Built-in 5 Calculation Functions - * 4.3" TFT LCD, Digital Number Keyboard - * Built-in RTC Clock - * Interface: RS-232, USBTMC, LAN, GPIB (Opt.) GW Instek GSM-20H10 is a Source Measure Unit that provides highly stable DC power and instrument-grade 6½-digit multimeter measurements. While operating, it can be used as a voltage source, current source, voltmeter, ammeter, and ohmmeter, which is uniquely ideal for the evaluation of component characteristics and the test applications of production, including nanomaterials and components, semiconductor architecture, organic materials, high-efficiency illumination, passive components and material characteristics analysis, etc. GSM-20H10 provides four-quadrant operation of $\pm 210V/\pm 1.05A/22W$. The first and third quadrants operate as power supplies to supply power to the load. The second and fourth quadrants function as loads to consume power internally. Voltage value, current value and resistance value can be measured while operating the power supply or load function with an accuracy of 0.012% and a resolution of $1\mu V/10pA/10\mu\Omega$. With respect to sampling rate, GSM-20H10 supports a sampling rate of up to 50k points/second, which can accurately analyze the characteristics of the DUT. With the large 4.3-inch screen, all measurement settings, parameters and results can be completely displayed on the screen. The SDM (Source Delay Measure) function is provided to delay sampling when the signal changes so as to prevent the unstable signal from being captured and cause misjudgment. There are four built-in sequence output modes (Stair, Log, SRC-MEM, Custom), which can support up to 2500 points of sequence variation output. Pertaining to protection, GSM-20H10 provides OVP/OTP modes. The design of OVP allows users to self-define the range of OVP. OTP can effectively prevent errors caused by temperature drift during the test process. For interfaces, this product supports standard SCPI commands and provides RS-232, USBTMC, LAN, GPIB (optional) interfaces to meet users' different interface needs. #### GSM-20H10 #### Rear Panel #### SM-01/SM-02 Digital I/O Adapter ## ORDERING INFORMATION GSM-20H10 with GPIB Source Measure Unit GSM-20H10 Source Measure Unit #### ACCESSORIES: Test Lead GTL-207A x 1, Alligator Clip x 2 #### OPTIONAL ACCESSORIES SM-01 Digital I/O Adapter, Convert DB15 to DB9 + 8-pin micro-DIN SM-02 Digital I/O Adapter, Convert DB15 to DB37 + 8-pin micro-DIN GTL-246 USB Cable (USB 2.0 A-B Type, approx.. 1200mm) GTL-248 GPIB Cable, 2000mm NOTE: 1. Speed = Normal (1 NPLC). For 0.1 PLC, add 0.005% of range to offset specifications, except 200mV, 1A ranges, add 0.05%. For 0.01 PLC, add 0.05% of range to offset specifications, except 200mV, 1A ranges, add 0.5%. - 2. Required to reach 0.1% of final value after Command is processed. Resistive load. $10\mu A$ to 100mA range. - 3. Overshoot into a fully resistive 100k Ω load, 10Hz to 1MHz BW, adjacent ranges: 100mV typical, except 20V/200V. - 4. Maximum time required for the output to begin to change following the receipt of:SOURce:VOLTage|CURRent <nrf> Command. 5. Reading rates applicable for yellage or current maximum party automates off files off display of trigger data. GRA-450-J Rack Mount kit GRA-450-E Rack Mount kit - Reading rates applicable for voltage or current measurements, autorange off, filter off, display off, trigger delay = 0, and binary reading forma. - 6. Purely resistive lead. $1\mu A$ and $10\mu A$ ranges <65ms. - 7. 1000 point sweep was characterized with the source on a fixed rang. - Pass/Fail test performed using one high limit and one low math limit. - 9. Includes time to re-program source to a new level before making measurement. - 10. Time from falling edge of START OF TEST signal to falling edge of END OF TEST signal. 11. Command processing time of :SOURce:VOLTage|CURRent: TRIGgered<nri>Command not included. | | CATIONS | | | | | | | | | | | | | | |-------------------
--|--|--|--
--|---|--|---
---|---|---|--
--|--| | MANUALITA | Voltage | | ±210V | | | | | | | | | | | | | | Current | | ±210V
±1.05A | | | | | | | | | | | | | MAXIMUM | Power | | 22W | | | | | | | | | | | | | RANGE | Voltage Resolution | | 1μV | | | | | | | | | | | | | | Current Resolution | | 10pA | | | | | | | | | | | | | | | Output Voltage | ±21V / ±1.05A, ±2 | | | | | | | | | | | | | | | Current Limit | Min. 0.1% of rang
Range | | 000mV | 1 | ±2.00000V | - | | ±20.0000V | | - | | 200.000V | | | | Programming Resolution & | Resolution | | μV | | ±2.00000V | | | ±20.0000V | | - 4 | | 200.000V | | | | Accuracy*1 | | Accuracy $\pm (0.02\% + 600 \mu V)$ $\pm (0.02\% + 600 \mu V)$ $\pm (0.02\% + 24 m V)$ $\pm (0.02\% + 24 m V)$ | | | | | | | | | | | | | DC Velham | Load Regulation | 0.01% of range + | | | | | | 3 | | - | 107 | | 400 | | | DC Voltage | Line Regulation | 0.01% of range | | vertex entre | | | | | | | | | | | | | Overshoot | <0.1% typical (ful | l scale step,resistive lo | ad, 10mA range) | | | | | | | | | | | | | Recovery Time | <250us (within 0. | 1% plus load regulatio | n errors, 1A and 100m | A compliance.) | | | | | | | | | | | | (1000% Load Change)
Ripple and Noise | | MHz) / 10mVpp(20H | | | · · | | | | | | | | | | | Temperature Coefficient | | specification)/°C (0°- | | | | | | | | | | | | | 1 | Output Current | ±1.05A / ±21V, ±1 | | | | | | | | | | | | | | | Voltage Limit | Min. 0.1% of rang | | 120 00000000 | 0 14 | | Jaco Adversaria | 00.000 90 | | | 699714 | | Section 1997 and 199 | | SOURCE | | Programmed Source Resolution & | Range | ±1.00000μA | ±10.0000µ | 1 1 | ±100.000μA | ±1.000 | | ±10.00000r | mA | ±100.00 | | ±1.00000A | | | DC Current | Accuracy *1 | Resolution
Accuracy | 10pA
±(0.035%+600pA) | 100pA
±(0.033%+2r | A) | 1nA
0.031%+20nA) | ±(0.034% | | 100nA | LuA) | 1μ
±(0.066% | | 10μA | | | DC Current | Load Regulation | 0.01% of range + | | ±[0.03376+21 | A) ±(0 | 1.03 1 76+20fiA) | ±(0.03476 | +ZUUNA) | ±(0.045%+2 | :µм) | ±[0.000% | +20µА) | ±(0.27%+900μA) | | | | Line Regulation | 0.01% of range | Тоорк | | | | | | | | | | | | | | Overshoot | | nA step, RL = 10kΩ, 20 | V range) | | | | | | | | | | | | | Temperature Coefficient | | specification)/°C (0°- | | | | | | | | | | | | | | Output Settling Time #2 | 100µs typical time | e | | | | | | | | | | | | | | Output Rise Time (±30%) | | | 150µs, 20V range, 100r | nA compliance | | | | | | | | | | | | DC Floating Voltage | | ated up to ±250VDC | | | | | | | | | | | | | General | Remote Sense | Up to 1V drop per | | na to horo on -10 | | | | | | | | | | | | S244 ANA | Compliance Accuracy Range Change Overshoot *3 | | | ng to base specification
/, 2V and 20V ranges, 1 | | | | | | | | | | | | | Minimum Compliance Value | 0.1% of range | gcs between 200m | , . a and £04 langes, | vonit cypical | | | | | | | | | | | | Command Processing Time *4 | | ms. Autorange Off: 7m | 15 | | | | | | | | | | | | | Input Resistance | >10 GΩ | remarks seeken to be take even a | 0.00 | | | | | | | | | | | | | Measurement Resolution & | Range | | 000mV | | ±2.00000V | | Or
Or | ±20.0000V | | - 2 | ± | 200.000V | | | Voltage | Accuracy | Resolution | | μV | | 10μV | | | 100µV | 10. | 4 | | 1mV | | | | Temperature Coefficient | Accuracy | ±(0.0125
specification)/°C (0°- | %+300μV)
18°C & 28°50°C\ | | ±(0.012%+300μV) | | | ±(0.015%+1.5m) | v) | | ±(0.0 | 15%+10mV) | | | | Voltage Burden (4-wire mode) | < 1mV | specification)/ C (0- | -18°C & 28°~30°C) | | | | | | | | | | | | | 87 87 83 | Range | ±1.00000μA | ±10.0000µ | | ±100.000μA | ±1.000 | 000mA | ±10.00000r | mA | ±100.00 | 00mA | ±1.00000A | | | Current | Programmed Source Resolution & | Resolution | 10pA | 100pA | | 1nA | 10r | | 100nA | TOX. | 1μ | | 10μA | | | | Accuracy*1 | Accuracy | ±(0.029%+300pA) | | pA) ±(0 | 0.025%+6nA) | ±(0.0279 | | ±(0.035%+60 | IOnA) | ±(0.0559 | | ±(0.22%+570µA) | | | | Temperature Coefficient | ±(0.1 × accuracy s | specification) / °C (0°- | -18°C & 28°~50°C) | | 29 | | 33 | | 9 | | | | | | | 200 | 15 VI VA VI | <2.00000Ω 2.00000Ω | | | 20.000 | | | .0000. | - 2 | 2.00000kΩ | | 20.0000kΩ | | | . | | Resolution | | 1 | θμΩ | 100μΩ 1mΩ | | | 10mΩ | | 100mΩ | | | | | | | | | | | | | | 10mA 1mA | | | | 100μA | | MEASUREMENT | | | Test current | D | | | | | | | . (0.070 | | I | | | MEASUREMENT | | 23 | Accuracy | Source IACC+Meas | .VACC Source IAC |
C+Meas.VACC | ±(0.1%+0.003 | Ω), Normal | ±(0.08%+0. | 03Ω), Normal | | 6+0.3Ω), No | | ±(0.06%+3Ω), Normal | | MEASUREMENT | | Range | | | | | ±(0.1%+0.003
±(0.07%+0.0010 | Ω), Normal
Ω), Enhanced | ±(0.08%+0.0
±(0.05%+0.0 | 03Ω), Normal
1 Ω), Enhanced | ±(0.05% | 6+0.3Ω), No
+0.1Ω), Enh | | | | MEASUREMENT | | Range | |
Source IACC+Meas
200.000kΩ | 2.00 |
C+Meas.VACC
000MΩ
0Ω | ±(0.1%+0.003 | Ω), Normal
Ω), Enhanced
ΟΜΩ | ±(0.08%+0.0
±(0.05%+0.0
200.0 | 03Ω), Normal | ±(0.05% | 6+0.3Ω), No | | ±(0.06%+3Ω), Normal | | MEASUREMENT | Resistance | Range | Accuracy | 200.000kΩ | 2.00 | 000ΜΩ | ±(0.1%+0.003
±(0.07%+0.0014
20.0000 | Ω), Normal
Ω), Enhanced
ΟΜΩ
Ω | ±(0.08%+0.0
±(0.05%+0.0
200.0 | 03Ω), Normal
1 Ω), Enhanced
000ΜΩ | ±(0.05% | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | | ±(0.06%+3Ω), Normal | | MEASUREMENT | | Range | Accuracy Resolution Test current | 200.000kΩ
1Ω
10μA
±(0.07%+30Ω), No | 2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00 | 000MΩ
0Ω | ±(0.1%+0.003
±(0.07%+0.0010
20.0000 | Ω), Normal
Ω), Enhanced
0ΜΩ
Ω | ±(0.08%+0.0
±(0.05%+0.0
200.0
1 | 03Ω), Normal
1 Ω), Enhanced
000ΜΩ
kΩ | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | | | Resolution
Test current
Accuracy | 200.000kΩ
1Ω
10μA
±(0.07%+30Ω), No
±(0.05%+10Ω), Enl |
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00 | 000MΩ
0Ω
μΑ | ±(0.1%+0.003)
±(0.07%+0.0010)
20.0000
1000
0.5µ
±(0.11%+1kΩ | Ω), Normal
Ω), Enhanced
0MΩ
Ω
ιA
Ω), Normal | ±(0.08%+0.0
±(0.05%+0.0
200.0
1
10
±(0.66%+10 | 03Ω), Normal
1 Ω), Enhanced
000MΩ
kΩ
l0nA | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | | Temperature Coefficient | Resolution Test current Accuracy ±(0.15 × accuracy | 200.000kΩ
1Ω
10μA
±(0.07%+30Ω), No
±(0.05%+10Ω), Enh
specification)/°C (0°- | 2.00 pormal ±(0.11%+3 ananced ±(0.05%+10 -18°C & 28°-50°C) | 000MΩ
0Ω
iµA
00Ω), Normal
0Ω), Enhanced | ±(0.1%+0.003)
±(0.07%+0.0014)
20.0000
1000
0.5µ
±(0.11%+1kΩ
±(0.05%+500Ω | Ω), Normal
Ω), Enhanced
0MΩ
Ω
ιA
Ω), Normal | ±(0.08%+0.0
±(0.05%+0.0
200.0
1
10
±(0.66%+10 | 03Ω), Normal
1 Ω), Enhanced
000ΜΩ
kΩ
l0nA
0kΩ), Normal | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | | Temperature Coefficient Source I mode, Manual OHMS | Resolution Test current Accuracy ±(0.15 × accuracy Total uncertainty | 200.000kΩ
1Ω
10μA
±(0.07%+30Ω), No
±(0.05%+10Ω), Enh
specification),"C (0°-
= I source accuracy+ | 2.00 pormal ±(0.11%+3 nanced ±(0.05%+10 -18°C & 28°~50°C) / measure accuracy (4 | 000MΩ
0Ω
iµA
00Ω), Normal
0Ω), Enhanced
wire remote ser | ±(0.1%+0.003)
±(0.07%+0.0014)
20.0000
1000
0.5µ
±(0.11%+1kΩ
±(0.05%+500Ω) | Ω), Normal
Ω), Enhanced
0MΩ
Ω
ιA
Ω), Normal | ±(0.08%+0.0
±(0.05%+0.0
200.0
1
10
±(0.66%+10 | 03Ω), Normal
1 Ω), Enhanced
000ΜΩ
kΩ
l0nA
0kΩ), Normal | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS | Resolution Test current Accuracy ±(0.15 × accuracy Total uncertainty Total uncertainty | 200.000kΩ 1Ω 10μA ±(0.07%+30Ω), No ±(0.05%+10Ω), Enh specification)/°C (0°- = I source accuracy + = V source accuracy + | 2.00 cormal | 000MΩ
0Ω
iµA
00Ω), Normal
0Ω), Enhanced
wire remote ser-
wire remote ser- | ±(0.1%+0.003)
±(0.07%+0.0014)
20.0000
1001
0.5 μ
±(0.11%+1kΩ
±(0.05%+500Ω) | Ω), Normal
Ω), Enhanced
OMΩ
Ω
IA
Ω), Normal
Ω), Enhanced | ±(0.08%+0.0
±(0.05%+0.0)
200.0
1
10
±(0.66%+10
±(0.35%+5k) | 03Ω), Normal 1 Ω), Enhanced 000MΩ kΩ 100A 00kΩ), Normal cΩ), Enhanced | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode | Resolution Test current Accuracy ±(0.15 × accuracy Total uncertainty Total uncertainty | 200.000kΩ 1Ω 10μA ±(0.07%+30Ω), Not ±(0.05%+10Ω), Enfr specification), PC (0°. = I source accuracy + 1 = V source accuracy + 2 titive ohms guard and | 2.00 pormal ±(0.11%+3 nanced ±(0.05%+10 -18°C & 28°~50°C) / measure accuracy (4 | 000MΩ
0Ω
iµA
00Ω), Normal
0Ω), Enhanced
wire remote ser-
wire remote ser- | ±(0.1%+0.003)
±(0.07%+0.0014)
20.0000
1001
0.5 μ
±(0.11%+1kΩ
±(0.05%+500Ω) | Ω), Normal
Ω), Enhanced
OMΩ
Ω
IA
Ω), Normal
Ω), Enhanced | ±(0.08%+0.0
±(0.05%+0.0)
200.0
1
10
±(0.66%+10
±(0.35%+5k) | 03Ω), Normal 1 Ω), Enhanced 000MΩ kΩ 100A 00kΩ), Normal cΩ), Enhanced | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance | Accuracy Resolution Test current Accuracy ±(0.15 × accuracy Total uncertainty Total uncertainty Available using ac | 200.000kΩ 1Ω 10μA ±(0.07%+30Ω), Not ±(0.05%+10Ω), Enfr specification), PC (0°. = I source accuracy + 1 = V source accuracy + 2 titive ohms guard and | 2.00 cormal | 000MΩ
0Ω
iµA
00Ω), Normal
0Ω), Enhanced
wire remote ser-
wire remote ser- | ±(0.1%+0.003)
±(0.07%+0.0014)
20.0000
1001
0.5 μ
±(0.11%+1kΩ
±(0.05%+500Ω) | Ω), Normal
Ω), Enhanced
OMΩ
Ω
IA
Ω), Normal
Ω), Enhanced | ±(0.08%+0.0
±(0.05%+0.0)
200.0
1
10
±(0.66%+10
±(0.35%+5k) | 03Ω), Normal 1 Ω), Enhanced 000MΩ kΩ 100A 00kΩ), Normal cΩ), Enhanced | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | Resistance | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Cuard Output Impedance hange Rate | Accuracy Resolution Test current Accuracy ±(0.15 × accuracy Total uncertainty Available using ac <0.1Ω in ohms m | 200.000kΩ
1Ω
10μA
±(0.07%+30Ω), NH
±(0.05%+10Ω), Enh
specification)/°C (0°-
– I source accuracy + 1°-
– V source accuracy + 2°-
titive ohms guard and jode | 2.00 cormal | 000MΩ
0Ω
iµA
00Ω), Normal
00Ω), Enhanced
wire remote ser
wire remote ser
rd Output Curre | ±(0.1%+0.003
±(0.07%+0.0016
20.0000
1000
0.5µ
±(0.11%+1kΩ
±(0.05%+500Ω
nse)
ent: 50mA (except | Ω), Normal Ω), Enhanced DMΩ Ω Ω A 1), Normal 1), Enhanced t 1A range). Ac | ±(0.08%+0.0
±(0.05%+0.0)
200.0
1
1
100
±(0.66%+1/4
±(0.35%+5k) | 03Ω), Normal 1 Ω), Enhanced 00MΩ kΩ lOnA 0kΩ), Normal ΩkΩ), Normal Ω), Enhanced dependent | ±(0.05%
>2 | 6+0.3Ω), No
+0.1Ω), Enh
200.000M Ω

ACC+Meas. | anced : | ±(0.06%+3Ω), Normal | | MEASUREMENT | Resistance Maximum Range C | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time | Accuracy Resolution Test current Accuracy ±(0.15 × accuracy Total uncertainty, Total uncertainty, Available using ac <0.1Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig | 200.000kΩ
10μ
±(0.07%+300), Nr.
±(0.07%+300), Fr.
±(0.05%+000), Enf.
±(0.05%+000), Enf.
= I source accuracy + '= - V source accuracy + '= - V source accuracy + '= title ohms guard and jode
te) %6 | 2.00 ormal ±(0.11%+3 ianced ±(0.05%+10 -18°C & 28°-50°C) / measure accuracy (4 I measure accuracy (4 guard sense. Max. Gua | 000MΩ
0Ω
μA
00Ω), Normal
00Ω), Enhanced
wire remote ser
wire remote ser
rd Output Curre | ±(0.1%+0.003
±(0.07%+0.0016
20.0006
1000
0.5µ
±(0.11%+1kG
±(0.05%+5000
nse)
ent: 50mA (except | Ω), Normal Ω), Enhanced ΟΜΩ Ω stA Ω), Normal Ω), Normal Ω), Enhanced t 1A range). Ac | ±(0.08%+0.0
±(0.05%+0.0)
200.0
1
10
±(0.66%+10
±(0.35%+5k | 03Ω), Normal 1 Ω), Enhanced 000MΩ kΩ 100, A | ±(0.05%) >2 - Source I | 6+0.3Ω), No
+0.1Ω), Enh
100.000M Ω

ACC+Meas. | wacc : | ±(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced | | MEASUREMENT | Resistance Maximum Range C Maximum Measure | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed | Resolution Test current Accuracy ±(0.15 × accuracy) total uncertainty uncertai | 200.000kΩ 1Ω 10μA ±(0.079%-300), N. ±(0.05%+300), N. ±(0.05%+10Ω),
Ent specification)/*C (0°- 1 source accuracy + - V accurac | 2.00 cormal | 000MΩ 0Ω iµA 00Ω), Normal 00Ω), Enhanced wire remote ser wire remote ser rd Output Curre | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
1001
0.51μ
±(0.11%+1kΩ
±(0.05%+500Ω
nse)
ent: 50mA (except | Ω), Normal Ω), Enhanced ΟΜΩ Ω μ μ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ | ±(0.08%+0.0
±(0.05%+0.0)
200.0
1
10
10
±(0.66%+10
±(0.35%+5k | 03Ω), Normal 1 Ω), Enhanced 000MΩ kΩ l00nA 0kΩ), Normal cΩ), Enhanced dependent leasure Pass/Fai 0RY T | ±(0.05% >2 >2 Source I | 6+0.3Ω), No
+0.1Ω), Enh
100.000M Ω

ACC+Meas. | WACC Meas MEMORY | ±(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
ure Memory *9
TO GPIB | | MEASUREMENT | Resistance Maximum Range C Maximum Measure Sequence Reading | Temperature Coefficient Source I mode, Manual OHMS Source Y mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast | Resolution Test current Accuracy ±(0.15 × accuracy ±(0.15 × accuracy Total uncertainty Total uncertainty Available using ac <0.0 \(\text{1} \text{in in ohms m} \) 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal | 200.000kΩ 1Ω 10μA ±(0.07%+3001), Ne ±(0.05%+1001), Enf specification)/°C (0°- 1 source accuracy + 2 vource accuracy + titive ohms guard and glode TO MEMORY 2081 (2080) | 2.00 | 000MΩ 0Ω 0Ω 0Ω 0Ω 0Ω), Normal 00Ω), Enhanced wire remote ser wire remote ser rd Output Curre TO MEMC 1551 (151 | #(0.1%+0.003
#(0.07%+0.0011)
20.0000
0.5µ
#(0.11%+1160
#(0.05%+5000)
nse)
ent: 50mA (except | (Ω), Normal (Ω), Enhanced (Ω) | ±(0.08%+0.0
±(0.05%+0.0)
20.0.1
10
±(0.56%+10
±(0.35%+5k
ccuracy is load
50urce-M | 03Ω), Normal 1 Ω), Enhanced 0000MΩ kΩ 10nA 00kΩ), Normal αΩ), Enhanced dependent dependent leasure Pass/Fa 0RY T 7) 8 | ±(0.05%
>2
Source I | 6+0.3Ω), No
+0.1Ω), Enh
+0.00000M Ω

ACC+Meas. | WACC Meas MEMORY 65 (162) | ±(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
ure Memory *9
TO GPIB
164 (162) | | MEASUREMENT | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 | Resolution Test current Test current Test current Test current Total uncertainty Total uncertainty Available using ac <0.1\Omega in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.01 / external | 200.000kΩ 1Ω 10µA ±(0.0796-300), N: ±(0.0596-100), Enk specification)/*C (9'- = I source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 1239 (1200) | 2.00 2.00 2.00 3.07 3.07 4.00.15%-3 5.07 6.18°C & 28°-50°C) 7.07 7. | 000MΩ 00Ω μA 00Ω), Normal 00Ω), Normal 00Ω), Enhanced wire remote ser wire remote ser rd Output Curre S TO MEMC 1551 (151 1018 (99) | #(0.1%+0.003
#(0.07%+0.0010
20.0000
0.5p
#(0.15%+18ct
#(0.05%+5000
nse)
ent: 50mA (except
50urce-Measure *5
PRY TC
15) 100
0) 916 | Ω), Normal Ω), Enhanced Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω | ±(0.08%+0.0
±(0.05%+0.0
200.0
10
10
±(0.66%+10
±(0.35%+5k
ccuracy is load
Source-M
TO MEMC
902 (900
830 (830 | 03Ω], Normal 1 Ω), Enhanced | ±(0.05% >2 Source I il test *8, *9 O CPIB 09 (840) 56 (780) | 6+0.3Ω), No
+0.1Ω), Enh
+0.00.000M Ω
 | Meas MEMORY 65 (162) 63 (160) | #(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
(0.04%+1Ω) = The American
ure Memory *9
TO GPIB
164 (162)
162 (160) | | MEASUREMENT | Resistance Maximum Range C Maximum Measure Sequence Reading | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Cuard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) Total uncertainty uncerta | 200.000kΩ 10 10µA ±(0.079%+300), Nc ±(0.05%+300), Nc ±(0.05%+100), Enf specification)/*C (0°- = 1 source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jodd TO MEMORY 2081 (2030) 139 (1200) 1510 (433) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μ, Normal 0Ω μ, Enhanced wire remote ser wire remote ser d Output Curre TO MEMC 1551 (151 1018 (99) 470 (400 | #(0.1%+0.003 #(0.07%+0.0011 #(0.07%+0.0011 #(0.07%+0.0011 #(0.05%+0.0011 #(0.05%+5000 #(0.05%+50 | (Ω), Normal (Ω), Enhanced (Ω) | ±(0.08%+0.0
±(0.05%+0.0
200.0
10
±(0.66%+10
±(0.35%+5k
5ource-M
TO MEMC
902 (900
830 (830
339 (343) | 03Ω], Normal 1 Ω], Enhanced | ±(0.05%
>2
Source I
il test *8, *9
FO 9 (840)
56 (780)
88 (343) | 6+0.3Ω), No. +0.1Ω), Enh. +0.1Ω), Enh. +0.1Ω), Enh. +0.1Ω), Enh. +0.0.000M Ω | Meas
MEMORY
65 (162)
33 (126) | ure Memory *9 TO GPIB 162 (160) 162 (160) 132 (126) | | MEASUREMENT | Resistance Maximum Range C Maximum Measuru Sequence Reading Rates 97 | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 | Resolution Test current Test current Test current Test current Total uncertainty Total uncertainty Total uncertainty Available using ac <0.1\Omega in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.01 / external | 200.000kΩ
1Ω
10μA
±(0.07%+300), Net
±(0.05%+100), Ent
specification)/°C (0°-
= 1 Source accuracy +
= V source accuracy +
= V source accuracy +
titive ohms guard and glode
TO MEMORY
2081 (2030)
1239 (1200)
510 (433)
438 (380) | 2.00 2.00 2.00 3.07 3.07 4.00.15%-3 5.07 6.18°C & 28°-50°C) 7.07
7.07 7. | 000MΩ 00Ω μA 00Ω), Normal 00Ω), Normal 00Ω), Enhanced wire remote ser wire remote ser rd Output Curre S TO MEMC 1551 (151 1018 (99) | #(0.1%+0.003
#(0.07%+0.0011)
20.0000
0.5µ
#(0.11%+1160
#(0.05%+5000)
mse)
sent: 50mA (except
50urce-Measure *5
DRY TO
15) 100
0) 916
5) 47(5) | Ω), Normal Ω), Enhanced Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω | ±(0.08%+0.0
±(0.05%+0.0
200.0
10
10
±(0.66%+10
±(0.35%+5k
ccuracy is load
Source-M
TO MEMC
902 (900
830 (830 | 03Ω), Normal 1 Ω), Enhanced 00000 kΩ 000A 0kΩ), Normal 0kΩ), Normal 0kΩ), Enhanced dependent dependent 100, Enhanced | ±(0.05% >2 Source I il test *8, *9 O CPIB 09 (840) 56 (780) | 6+0.3Ω), No
+0.1Ω), Enh
+0.00.000M Ω
 | Meas MEMORY 65 (162) 63 (160) | #(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
(0.04%+1Ω) = Enhanced
ure Memory *9
TO GPIB
164 (162)
162 (160) | | SYSTEM | Resistance Maximum Range C Maximum Measuru Sequence Reading Rates 97 | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 | Resolution Test current Accuracy ±(0.15 × accuracy ±(0.15 × accuracy) Total uncertainty uncertai | 200.000kΩ 10 10µA ±(0.079%+300), Nc ±(0.05%+300), Nc ±(0.05%+100), Enf specification)/*C (0°- = 1 source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jodd TO MEMORY 2081 (2030) 139 (1200) 1510 (433) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω), Finhanced wire remote ser wire remote ser d Output Curre TO MEMC 1551 (151 1018 (99) 470 (405) | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0
±(0.05%+0.0
20.0.0
1 10
±(0.66%+1)
±(0.65%+5k
ccuracy is load
5curce-M
TO MEMC
902 (900
830 (830
38) (344
334 (333
374 (333
56 (47)
56 (47) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05%
>2
Source I
il test *8, *9
O GPIB
09 (840)
56 (780)
88 (343)
74 (333) | 6+0.3Ω), No
+0.1Ω), Enh
+0.00.00M Ω
 | Meas
MEMORY
65 (162)
33 (126)
31 (125)
44 (38) | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) | | | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 | Resolution Test current Accuracy ±(0.15 x accuracy total uncertainty Available using ac <0.10 in ohms T5/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.01 / external 0.1 / external 1 / external 1 / external NPLC/ Trig | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596+100), Enl: specification)/*C (9'- = 1 source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 1239 (1200) 510 (433) 438 (380) 59 (49) | 2.00 2.00 2.00 3 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 200.6 10.05%+0.0 10.0 10.0 ±(0.05%+5k ±(0.05%+5k ±(0.35%+5k ±(0.3 | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3Ω), No
+0.1Ω), Enh
+0.00.00M Ω
 | Meas
MEMORY
65 (162)
63 (160)
33 (126)
31 (125)
44 (38)
44 (38)
45 (38) | #(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
(0.04%+1Ω), Enhanced
TO GPIB
164 (162)
162 (160)
132 (126)
131 (125)
44 (38)
44 (38)
47 (38) | | SYSTEM | Maximum Range C Maximum Measure Sequence Reading Rates**/ (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed | Resolution Test current Test current Test current Test current Total uncertainty Total uncertainty Available using ac <0.1Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 0.1 / external 1 / internal 1 / external NPLC / Trig Origin NPLC / Trig | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596+100), Enl: specification)/*C (9'- = 1 source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 1239 (1200) 510 (433) 438 (380) 59 (49) | 2.00 pormal ±(0.11%+3 pormal ±(0.11%+3 ananced ±(0.05%+10 18°C & 28'-50°C) 18°C & 28'-50°C) I measure accuracy (4 TO GPIB 1198 (1210) 1079 (1050) 509 (433) 438 (380) 57 (48) Measure TO GPIB | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (O), Normal (O), Enhanced (O), Enhanced (O) | ±(0.08%+0.0
±(0.05%+0.0
20.0.1
10.05%+0.0
±(0.65%+15k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k)
±(0.35%+5k | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3Ω), No
+0.1Ω), Enh
+0.00.00M Ω
 | Meas
MEMORY
65 (162)
63 (160)
33 (126)
31 (125)
44 (38)
44 (38)
70 GPI | are Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 144 (38) 44 (38) 45 (38) 48 (38) | | SYSTEM | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) Total uncertainty. Total uncertainty. Total uncertainty uncer | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596+100), Enl: specification)/*C (9'- = 1 source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 1239 (1200) 510 (433) 438 (380) 59 (49) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10
±(0.66%+10.66%+ | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3Ω), No
+0.1Ω), Enh
+0.00.00M Ω
 | Meas
MEMORY
65 (162)
63 (160)
33 (126)
31 (125)
44 (128)
easure Pass
TO GP (81) | are Memory *9 TO GPIB 164 (162) 162 (160) 132 (125) 44 (38) 44 (38) 75 ail test *8, *9 3 | | SYSTEM | Maximum Range C Maximum Measure Sequence Reading Rates**/ (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) | Resolution Test current Accuracy ±(0.15 x accuracy ±(0.15 x accuracy total uncertainty Total uncertainty Total uncertainty Total uncertainty Available using ac <0.10 in ohms 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / external 1 / external 1 / external NPLC / Trig Origin 0.01 / internal 0.01 / internal 0.01 / internal | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596+100), Enl: specification)/*C (9'- = 1 source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 1239 (1200) 510 (433) 438 (380) 59 (49) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0
±(0.05%+0.0
200.6
10
±(0.66%+1/4
±(0.35%+5k)
ccuracy is load
Source-M
TO MEMC
902 (900
830 (83/3)
334 (33/3)
56 (47)
56 (47)
64 (4 | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3Ω), No
+0.1Ω), Enh
+0.00.00M Ω
 | Meas
MEMORY
65 (162)
63 (160)
33 (126)
33 (125)
44 (38)
easure Pass
TO GPI
79 (83)
69 (70) | ±(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
(0.04%+1Ω), Enhanced
TO GPIB
164 (162)
162 (160)
132 (26)
131 (125)
44 (38)
44 (38)
48 (38)
49 (38) | | SYSTEM | Resistance Maximum Range C Maximum Measure Sequence Reading Rates 97 GoHz (SOHz) Single Reading Operation Rates (rdg,/second) for 60Hz (SOHz) | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Normal 488.2 Speed Frast(488.2) Medium(488.2) Medium(488.2) Medium(488.2) Medium(488.2) | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) Total uncertainty. Total uncertainty Tinternal 1.1 internal 1.2 internal 1.3 internal 1.4 internal 1.5 internal 1.5 internal 1.7 int | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596+100), Enl: specification)/*C (9'- = 1 source accuracy + = V source accuracy + = V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 1239 (1200) 510 (433) 438 (380) 59 (49) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0
±(0.05%+0.0
20.0.1
10
±(0.66%+15)
±(0.35%+5k
ccuracy is load
Source-M
TO MEMM
902 (900
830 (833)
339 (343)
374 (333)
55 (47)
easure ¹⁹
(easure ¹⁹
(easur | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3Ω), No
+0.1Ω), Enh
100.000M Ω
 | Meas
MEMORY
65 (162)
33 (126)
33 (126)
44 (38)
44 (38)
79 (83)
69 (70)
35 (30) | ±(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
(0.04%+1Ω), Enhanced
TO GPIB
164 (162)
162 (160)
132 (26)
131 (125)
44 (38)
44 (38)
48 (38)
49 (38) | | SYSTEM | Maximum Range C Maximum Massure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast 488.2 Normal 488.2 Speed Fast 488.2 Speed Fast 588.2 Speed Fast 588.2 Speed Fast 588.2 Speed Fast 588.2 Speed Speed Fast 588.2 Speed Speed Fast 588.2 Speed Speed Speed Speed Speed Speed Speed Speed Speed | Resolution Test current Accuracy ±(0.15 x accuracy ±(0.15 x accuracy total uncertainty Total uncertainty Total uncertainty Total uncertainty Available using ac <0.10 in ohms 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / external 1 / external 1 / external NPLC / Trig Origin 0.01 / internal 0.01 / internal 1 / internal NPLC / Trig Origin NPLC / Trig Origin NPLC / Trig Origin | 200.000kΩ 10 10plA ±(0.0796+300r), Nr. ±(0.0596+100r), Enf. specification)/"C (0°- 1 source accuracy + - V source accuracy + - V source accuracy + - W sou | 2,000 2,000 3 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 200.6 1 10 ±(0.05%+0.0 1 10 ±(0.05%+1sh ±(0.35%+sh ±(| 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
+0.00, | Meas MEMORY 65 (162) 63 (160) 79 (83) 1725 (144) (38) 1725 (145) 172 (145) 173 (145) 1 | #(0.06%+3Ω), Normal
(0.04%+1Ω), Enhanced
(0.04%+1Ω), Enhanced
TO GPIB
164 (162)
162 (160)
132 (126)
131 (125)
44 (38)
44 (38)
44 (38)
45 (38)
47 (38)
47 (38) | | SYSTEM | Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg, second) for 60Hz (50Hz) Single Reading Operation Rates (rdg, second) for 60Hz (50Hz) Component Interface Handler | Temperature
Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Medium(488.2) Medium(488.2) Speed Fast Fast Fast Fast Fast Fast Fast Fast | Resolution Test current Accuracy ±(0.15 × accuracy total uncertainty Available using ac 0.01 Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / external 1 / external NPLC / Trig Origin 0.01 / internal 1 0.1 / internal | 200.000kΩ 10 10µA ±(0.0796+300), Nr. ±(0.0596+300), Nr. ±(0.0596+100), Enh specification)/*C (Ø'- = V source accuracy + = V source accuracy + tive ohms guard and jodd the company of | 2.00 pormal ±(0.11%+3 paramated ±(0.05%+10 18°C & 28"-50°C) 18°C & 28"-50°C) measure accuracy (4 I TO GPIB 1198 (1210) 1079 (1050) 509 (433) 438 (380) 57 (48) Measure TO GPIB 256 (256) 167 (166) 49 (42) Measure TO GPIB 0.04 mrs (1.08 ms) | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), Normal (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), (Ω), Normal Nor | ±(0.08%+0.0 ±(0.05%+0.0 20.0.1 10 ±(0.66%+10 | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3Ω), No
+0.1Ω), Enh
+0.1Ω), Enh
+0.00, OMM Ω
 | Measaure MeMoRY 4 (38) 33 (126) 33 (126) 37 (128) 44 (38) 45 (50) 69 (70) 79 (83) 35 (30) 35 (| are Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 45 (38) 46 (38) 47 (38) 48 (38) 49 (38) 49 (38) 49 (38) 40 (38) 41 (38) 41 (38) | | SYSTEM | Maximum Range C Maximum Massure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Normal Fast Medium(488.2) Normal Fast Medium(488.2) Normal | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) ±(0.15 × accuracy) Total uncertainty. Total uncertainty Tiggin 0.01 / internal 0.1 / internal 0.1 / internal 0.1 / internal 0.1 / internal NPLC / Trig Origin 0.01 / internal 0.1 / internal | 200.000kΩ 10 10µA ±(0.079%+30Q), Nc ±(0.05%+30Q), Nc ±(0.05%+10Q), Eni specification)/*C (0° -1 source accuracy + -V | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM | Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *8,*10 | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Medium(488.2) Medium(488.2) Speed Fast Fast Fast Fast Fast Fast Fast Fast | Resolution Test current Test current Accuracy ±(0.15 x
accuracy Total uncertainty. Only internal 0.0.1 / internal 1 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal 0.1 / internal 0.1 / internal 0.1 / internal 0.1 / internal | 200.000kΩ 10 10pA ±(0.079%-10C), N. ±(0.05%-10C), Eni- specification)/**C (0°- 1- source accuracy + - V | 2.00 pormal ±(0.11%+3 paramated ±(0.05%+10 18°C & 28"-50°C) 18°C & 28"-50°C) measure accuracy (4 I TO GPIB 1198 (1210) 1079 (1050) 509 (433) 438 (380) 57 (48) Measure TO GPIB 256 (256) 167 (166) 49 (42) Measure TO GPIB 0.04 mrs (1.08 ms) | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), Normal (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), Enhanced (Ω), (Ω), Normal Nor | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Measaure MeMoRY 4 (38) 33 (126) 33 (126) 37 (128) 44 (38) 45 (50) 69 (70) 79 (83) 35 (30) 35 (| ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM | Maximum Range C Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, 10 Load impedance | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast Medium(488.2) Speed Fast Medium(488.2) Speed Fast Medium(488.2) Medium(488.2) Medium(488.2) Speed Fast Medium Normal | Resolution Test current Accuracy ±(0.15 × accuracy total uncertainty Available using ac 0.01Ω in ohms m 75/second 40ms (fixed sourc NPIC/ Trig Origin 0.01 / internal 0.1 / external 1 / internal 1 / external NPIC/ Trig Origin 0.01 / internal 1 / internal 1 / internal 1 / internal 0.1 NPIC / Trig Origin 0.00 / internal 0.1 / internal 0.1 / internal | 200.000kΩ 10 10pA ±(0.079%-10C), N. ±(0.05%-10C), Eni- specification)/**C (0°- 1- source accuracy + - V | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM | Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *8,*10 | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Normal 488.2 Speed Fast Medium Normal Fast Medium(488.2) Normal Fast Medium(488.2) Normal | Resolution Test current Test current Accuracy ±(0.15 x accuracy Total uncertainty. Only internal 0.0.1 / internal 1 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal 0.1 / internal 0.1 / internal 0.1 / internal 0.1 / internal | 200.000kΩ 10 10pA ±(0.079%-10C), N. ±(0.05%-10C), Eni- specification)/**C (0°- 1- source accuracy + - V | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 67 (157)
67 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM | Resistance Maximum Range C Maddmum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4,**10 Load Impedance Differential Mode V Common Mode fix Common Mode fix | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast Medium 488.2 Speed Fast Medium 688.2 Speed Fast Medium 688.2 Normal 688.2 Speed Fast Medium 688.2 Normal | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) ±(0.15 × accuracy) Total uncertainty. Total uncertainty Tiggin 0.01 / internal 1 | 200.000kΩ 10 10µA ±(0.0796-300), Nr. ±(0.0596-100), Enforce specification)/*C (0°) = I Source accuracy + = V | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) **, *10 Load Impedance Differential Mode V Common Mode Vo Commo | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast Medium 488.2 Speed Fast Medium 688.2 Speed Fast Medium 688.2 Normal 688.2 Speed Fast Medium 688.2 Normal | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) total uncertainty. Total uncertainty Tiggin 0.01 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal 1 / internal 1 / internal 1 / internal Stable into 20,000 250VPk 250VDC >10GΩ, <1000pF | 200.000kΩ 10 10µA ±(0.0796-300), Nr. ±(0.0596-100), Enforce specification)/*C (0°) = I Source accuracy + = V | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *8,*10 | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast Medium 488.2 Speed Fast Medium 688.2 Speed Fast Medium 688.2 Normal 688.2 Speed Fast Medium 688.2 Normal | Resolution Test current Test current Test current Test current Test current Test current Total uncertainty. Trigorigin 0.01 / internal 1 2504 / internal 1 | 200.000kΩ 10 10µA ±(0.0796+300), N: ±(0.0596+300), N: ±(0.0596+300), N: =V source accuracy + =V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 510 (433) 438 (380) 57 (48) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0
20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load Impedance Differential Mode V Common Mode Iso Over Range Max. Voltage Drop Max. Sense lead Re | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast Medium(488.2) Speed Fast Medium(488.2) Medium(488.2) Medium(488.2) Medium(488.3) Normal Voltage Bage Bage Lation | Resolution Test current Accuracy ±(0.15 × accuracy ±(0.15 × accuracy total uncertainty Available using ac 0.1Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / internal 1 / external NPLC / Trig Origin 0.01 / internal 1 / internal 0.1 / internal 1 | 200.000kΩ 10 10µA ±(0.0796+300), N: ±(0.0596+300), N: ±(0.0596+300), N: =V source accuracy + =V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 510 (433) 438 (380) 57 (48) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) | | SYSTEM | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg_/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg_/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load Impedance Differential Mode V Common Mode So Common Mode So Common Mode So Over Range Max. Voltage Drop Max. Sense lead Re Sense lead Re Sense lead Re | Temperature Coefficient Source I mode, Manual OHMS Source I mode, Manual OHMS Source Mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Normal 688.2 Medium(488.2) Normal 688.2 Normal 688.2 Speed Fast(488.2) Medium(688.2) Normal 688.2 Speed Fast Medium Normal | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) total uncertainty. Total uncertainty Tiggin 0.01 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal 1 / internal 1 / internal 1 / internal 3 / internal 1 | 200.000kΩ 10 10µA ±(0.0796+300), N: ±(0.0596+300), N: ±(0.0596+300), N: =V source accuracy + =V source accuracy + tive ohms guard and jode TO MEMORY 2081 (2030) 510 (433) 438 (380) 57 (48) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 67 (157)
67 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM
SPEED+5 | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *8, *10 Load Impedance Differential Mode Is Common Mode Iso Over Range Max. Voltage Drop Max. Sense lead Re Sense input Imped Guard Offset Volta Sense input Imped Guard Offset Volta | Temperature Coefficient Source I mode, Manual OHMS Source I mode, Manual OHMS 6-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast Medium 488.2 Speed Fast Medium 488.2 Speed Fast Medium 488.2 Speed Fast Medium Speed Fast Medium Normal Voltage Itage I | Resolution Test current Test current Test current Accuracy ±(0.15 x accuracy Total uncertainty Total uncertainty Total uncertainty Total uncertainty Available using ac <0.1Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / internal | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596+100), Enf: specification)/*C (0'*) = I source accuracy + = V sou | 2.00 2.00 3.00 3.00 3.00 4.00.15%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 5.00.56% | 000MΩ 00Ω μA 00Ω), Normal 00Ω), Enhanced wire remote ser wire remote ser rd Output Curre \$ TO MEMC 1151 (151 1018 (99) 470 (400) 5 (48) 5 (48) | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load Impedance Differential Mode 't Common Mode Iso Ower Range Max. Voltage Drop Max. Sense lead Re Sense Input Imped Guard Offset Voltas Source Cuttput Mod | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast Medium Normal Fast Medium(488.2) Medium(488.2) Medium(488.3) Normal Medium(488.3) Speed Fast Medium Normal Voltage latge | Resolution Test current Accuracy ±(0.15 × accuracy ±(0.15 × accuracy total uncertainty Available using ac 0.1Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / internal 1 / external 1 / external NPLC / Trig Origin 0.01 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596+100), Enf: specification)/*C (0'*) = I source accuracy + = V sou | 2.00 | 000MΩ 00Ω μA 00Ω), Normal 00Ω), Enhanced wire remote ser wire remote ser rd Output Curre \$ TO MEMC 1151 (151 1018 (99) 470 (400) 5 (48) 5 (48) | ±(0.1%+0.003
±(0.07%+0.0011
20.0000
0.5μ
±(0.17%+1kCl
±(0.15%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.0 1 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (830 339 (341 334 (333 55 (47) 56 (47) 67 (48asure '97) 881) 70) 381) ss/Fail test 2PIB 0.5 ms) 0.5 ms) | 03Ω , Normal 1 Ω , Enhanced | ±(0.05% >2 Source | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 67
(157) 67 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM
SPEED+5 | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load Impedance Differential Mode V Common Mode Isc Common Mode So Common Mode So Serse lead Re Source Output Mo Source Wemory Lis Source Output Mo Source Output Mo Source Memory Lis | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast Medium Normal Fast Medium(488.2) Medium(488.2) Medium(488.3) Normal Medium(488.3) Speed Fast Medium Normal Voltage latge | Resolution Test current Accuracy ±(0.15 × accuracy) ±(0.15 × accuracy) ±(0.15 × accuracy) Total uncertainty. Total uncertainty Tiggin 0.01 / internal 1 inter | 200.000kΩ 10 10µA ±(0.0794-300), N. ±(0.0594-300), N. ±(0.0594-300), N. ±(0.0594-100), Eni specification)/*C (0°- = 1 source accuracy + = V source accuracy + = 10 Me TO MEMORY 2081 (2030) 139 (1200) 131 (433) 438 (380) 59 (49) 57 (48) | 2.00 | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA 0π μΑ | ±(0.1%+0.003
±(0.07%+0.0010
20.0000
0.5µ
±(0.11%+1kG
±(0.05%+500Ω
nse)
nse)
nse)
nse)
nse)
nse)
nse)
nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 20.0.1 ±(0.05%+0.0 10 10 ±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (833 389 (344 334 (333 55 (47) 64 (47) 64 (47) 65 (48) 65 (47) 65 (48) 65 (47) 65 (47) 65 (47) 66 (48) 67 (68) 68 (48) 69 (50 (58) 60 (5 | 03Ω], Normal 0], Enhanced 000000 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load Impedance Differential Mode 't Common Mode Iso Ower Range Max. Voltage Drop Max. Sense lead Re Sense Input Imped Guard Offset Voltas Source Cuttput Mod | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast Medium Normal Fast Medium(488.2) Medium(488.2) Medium(488.3) Normal Medium(488.3) Speed Fast Medium Normal Voltage latge | Resolution Test current Test current Test current Test current Test current Test current Total uncertainty Origin 0.01 / internal 1 | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596-100), Enf: specification)/*C (0°) = I source accuracy + = V sour | 2.00 2.00 3.00 3.00 3.00 4.00.15%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 5.00.56% | DOOMΩ OQ IµA OQO), Normal OO), Enhanced wire remote ser wire remote ser rd Output Curre S TO MEMC 11551 1511 1018 (99) 470 (409) 55 (48) 57 (48) | ±(0.1%+0.003 ±(0.07%+0.0010 20.0000 1000 0.5 µ ±(0.17%+1kct ±(0.05%+5000 nse) nse) nse) ent: 50mA (except 50urce-Measure *5 RY TC 151 1000 00 916 50 477 00 455 5 5 | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 20.0.1 ±(0.05%+0.0 10 10
±(0.66%+1) ±(0.66%+1) ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 830 (833 389 (344 334 (333 55 (47) 64 (47) 64 (47) 65 (48) 65 (47) 65 (48) 65 (47) 65 (47) 65 (47) 66 (48) 67 (68) 68 (48) 69 (50 (58) 60 (5 | 03Ω], Normal 0], Enhanced 000000 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (\$0Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (\$0Hz) Component Interface Handler Time for 60Hz (\$0Hz) **, *10 Load Impedance Differential Mode V Common Mode Isc Common Mode So Common Mode So Sense lead Re Sense lead Re Sense Input Imped Guard Offset Volta; Source Voltage Max. Voltage Drop Max. Sense lead Re Source Output Mo Source Memory Lis Memory Buffer Programmability Digital I/O Connect | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast(488.2) Medium(488.2) Speed Fast(488.2) Medium(488.2) Speed Fast(488.2) Medium(488.3) Speed Fast Medium Normal Voltage Itage lation | Resolution Test current Accuracy ±(0.15 × accuracy total uncertainty Available using ac 0.1Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / internal 1 / internal 1 / external NPLC / Trig Origin 0.01 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 / internal 1 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 | 200.000kΩ 10 10µA ±(0.0796+300), N. ±(0.0596+300), N. ±(0.0596+300), N. ±(0.0596+300), N. ±(0.0596+300), P. = V source accuracy + | 2.00 2.00 3.00 3.00 3.00 3.00 4.00.05%-10.05% | 000MΩ 0Ω μA 0Ω μA 0Ω μA 0Ω μA 0Ω μN 0π μA 0Ω μN 0π μA 0Ω μN 0π μA μα | ±(0.1%+0.003 ±(0.07%+0.001) 20.0000 1001 0.5µ ±(0.11%+1kC) ±(0.05%+500Ω nse) nse) nse) nse) nse) nse) nse) nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.1 10 ±(0.65%+5k) ±(0.35%+5k) ccuracy is load Source-M TO MEMC 902 (900 33.9 (343 334 (333 55 (471) 55 (47) easure 9 279 (300 389 (350
389 (350 | 03Ω), Normal 1 Ω), Enhanced 00MΩ kΩ 00nA kΩ 00nA k(c), Normal dependent dependent 3 8 9) 8 9) 9 7 8) 9 3 3 9 3 3 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load impedance Differential Mode V Common Mode Isc Over Range Max. Voltage Drop Max. Sense lead Re Sense Input Imped Guard Offset Voltag Source Output Mo Source Memory Li Source Memory Li Source Memory Li Remote Interface Programmability Digital I/O Connec | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast(488.2) Medium(488.2) Speed Fast(488.2) Medium(488.3) Speed Fast(488.2) Medium(488.3) Speed Fast Medium Normal Voltage Itage lation | Resolution Test current Accuracy ±(0.15 x accuracy Total uncertainty Origin 0.01 / internal 0.01 / external 1 / internal | 200.000kΩ 10 10µA ±(0.0796-300), N: ±(0.0596-300), N: ±(0.0596-300), N: ±(0.0596-100), Enf: specification)/*C (0°) = I source accuracy + = V accura | 2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00.15%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 4.00.55%-10 5.00.56%-10 5.00.56%-10 6.00.56% | DOOMΩ OQ IµA OQO), Normal OO), Enhanced wire remote ser wire remote ser rd Output Curre TO MEMC 1151 (151 1018 (99) 470 (400) 5 (48) 5 (48) 5 (48) | ±(0.1%+0.003 ±(0.07%+0.0010 20.0000 1000 0.5µ ±(0.11%+1kct ±(0.05%+5000 nse) nse) nse) ent: 50mA (except 50urce-Measure *5 07 100 100 100 100 100 100 100 100 100 | (O), Normal (O), Enhanced (O), Enhanced (O) | ±(0.08%+0.0 ±(0.05%+0.0 20.0.1 10 ±(0.65%+5k) ±(0.35%+5k) ccuracy is load Source-M TO MEMC 902 (900 33.9 (343 334 (333 55 (471) 55 (47) easure 9 279 (300 389 (350 | 03Ω), Normal 1 Ω), Enhanced 00MΩ kΩ 00nA kΩ 00nA k(c), Normal dependent dependent 3 8 9) 8 9) 9 7 8) 9 3 3 9 3 3 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 67
(157) 67 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load Impedance Differential Mode 't Common Mode Iso Over Range Max. Voltage Drop Max. Sense lead Re Sense Input Imped Guard Offset Volta Source Cuttput Mo Source Memory Lis Memory Buffer Programmability Digital I/O Connec Remote Interface Insulation | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast(488.2) Medium(488.2) Speed Fast Medium Normal Voltage tage lation | Resolution Test current Accuracy ±(0.15 × accuracy total uncertainty Available using ac 0.1Ω in ohms m 75/second 40ms (fixed sourc NPLC / Trig Origin 0.01 / internal 0.1 / external 1 / internal 1 / external 1 / external NPLC / Trig Origin 0.01 / internal 1 NPLC / Trig Origin 0.01 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal NPLC / Trig Origin 0.01 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 2 / internal 2 / internal 2 / internal 2 / internal 2 / intern | 200.000kΩ 10 10µA ±(0.0796+300), Nr. ±(0.0596+300), Nr. ±(0.0596+300), Nr. ±(0.0596+300), Nr. = Specification)/*C (θ' = 1 Source accuracy + | 2.00 2.00 2.00 3.07 3. | 000MΩ 00 μA 000j, Normal 000j, Normal 000j, Enhanced wire remote ser wire remote ser wire remote ser 10 Output Curre 11 1018 (99) 470 (405 470 (40 | ±(0.1%+0.003 ±(0.07%+0.001) 20.0000 1000 0.5µ ±(0.17%+1kΩ ±(0.15%+500Ω nse) nse) nse) nse) nse) nse) nse) nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.1 10 ±(0.65%+0.1 ±(0.65%+5k ccuracy is load Source-M TO MEMC 902 (900 33.98 (343 334 (333 55 (471 55 (47) 162,PIB 33) 337 (333 55 (471 55 (47) 163,PIB 339 (0.55 ms) 0.5 ms) | 03Ω), Normal 1 Ω), Enhanced 00MΩ kΩ 00nA kΩ 00nA k(k), Normal dependent dependent 3 8 9) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg./second) for 60Hz (S0Hz) Single Reading Operation Rates (rdg./second) for 60Hz (S0Hz) Component Interface Handler Time for 60Hz (S0Hz) *8, *10 Load Impedance Differential Mode V Common Mode to Common Mode so Over Range Max. Voltage Drop Max. Sense lead Re Sense Input Imped Guard Offset Voltag Source Output Mo Source Output Mo Source Memory Li Memory Buffer Programmability Digital I/O Connec Remote Interface Insulation Operation Environ Operation Environ Operation Environ | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium Medium Normal Normal Normal Speed Fast Medium | Resolution Test current Accuracy ±(0.15 x accuracy) ±(0.15 x accuracy) total uncertainty. Total uncertainty Tig Origin 0.01 / internal 1 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 i | 200.000kΩ 10 10μA ±(0.079%+300), N. ±(0.05%+300), N. ±(0.05%+100), Eni specification)/*C (Φ' = 1 Source accuracy + = V source accuracy + = 10 MEMORY 2081 (2030) 510 (433) 438 (380) 59 (49) 57 (48) 10 pF typical 11 pF typical 12 pF typical 13 15 16 17 18 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 2.00 | 000MΩ 00 μA 000j, Normal 000j, Normal 000j, Enhanced wire remote ser wire remote ser wire remote ser 10 Output Curre 11 1018 (99) 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405 470 (405
470 (405 470 (40 | ±(0.1%+0.003 ±(0.07%+0.001) 20.0000 1000 0.5µ ±(0.17%+1kΩ ±(0.15%+500Ω nse) nse) nse) nse) nse) nse) nse) nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.1 10 ±(0.65%+5k ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 33.98 (343 334 (333 55 (471) 55 (47) 162,PIB 33) 337 (333 55 (471) 65,PIB 30,0.5 ms) 0.5 ms) | 03Ω), Normal 1 Ω), Enhanced 00MΩ kΩ 00nA kΩ 00nA k(k), Normal dependent dependent 3 8 9) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Masuru Sequence Reading Rates *7 (rdg,/second) for 60Hz (50Hz) Single Reading Operation Rates (rdg,/second) for 60Hz (50Hz) Component Interface Handler Time for 60Hz (50Hz) *4, *10 Load Impedance Differential Mode Iv Common Mode Ivo Common Mode Vo Common Mode Vo Common Mode Ivo Common Mode Vo Co | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium Medium Normal Normal Normal Speed Fast Medium | Resolution Test current Test current Test current Test current Test current Test current Total uncertainty Origin 0.01 / internal 1 | 200.000kΩ 10 10µA ±(0.0796+300), Ni. ±(0.0596+300), Ni. ±(0.0596+100), Enf. specification)/*C (9° + = V source accuracy sourc | 2.00 | 000MΩ 00 μA 000j, Normal 000j, Normal 000j, Enhanced wire remote ser wire remote ser wire remote ser 10 Output Curre 11 1018 (99) 470 (405 470 (40 | ±(0.1%+0.003 ±(0.07%+0.001) 20.0000 1000 0.5µ ±(0.17%+1kΩ ±(0.15%+500Ω nse) nse) nse) nse) nse) nse) nse) nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.1 10 ±(0.65%+5k ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 33.98 (343 334 (333 55 (471) 55 (47) 162,PIB 33) 337 (333 55 (471) 65,PIB 30,0.5 ms) 0.5 ms) | 03Ω), Normal 1 Ω), Enhanced 00MΩ kΩ 00nA kΩ 00nA k(k), Normal dependent dependent 3 8 9) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 67
(157) 67 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | | SYSTEM SPEED+5 | Resistance Maximum Range C Maximum Range C Maximum Measure Sequence Reading Rates *7 (rdg./second) for 60Hz (S0Hz) Single Reading Operation Rates (rdg./second) for 60Hz (S0Hz) Component Interface Handler Time for 60Hz (S0Hz) *8, *10 Load Impedance Differential Mode V Common Mode to Common Mode so Over Range Max. Voltage Drop Max. Sense lead Re Sense Input Imped Guard Offset Voltag Source Output Mo Source Output Mo Source Memory Li Memory Buffer Programmability Digital I/O Connec Remote Interface Insulation Operation Environ Operation Environ Operation Environ | Temperature Coefficient Source I mode, Manual OHMS Source V mode, Manual OHMS G-wire OHMS Mode Guard Output Impedance hange Rate Auto Range Time Speed Fast 488.2 Medium 488.2 Normal 488.2 Speed Fast(488.2) Medium(488.2) Speed Fast(488.2) Medium(488.2) Speed Fast (488.2) Medium(488.2) Speed Fast (488.2) Medium(488.3) Speed Fast (488.2) Speed Fast (488.2) Medium (488.2) Speed Fast (488.2) Speed Fast (488.2) Medium (488.2) Speed Fast (488.2) Speed Fast (488.2) Medium (488.2) Speed Fast (488.2) Speed Fast (488.2) Speed Fast (488.2) Medium (488.2) Speed (488.2) Speed (488.2) Speed (488.2) Speed (488.2) Medium (488.2) Speed (488.2) Speed (488.2) Medium (488.2) Speed (488 | Resolution Test current Accuracy ±(0.15 x accuracy) ±(0.15 x accuracy) total uncertainty. Total uncertainty. Total uncertainty Tiggin 0.01 / internal 1 / internal 1 / internal 1 / internal NPLC / Trig Origin 0.01 / internal 1 inte | 200.000kΩ 10 10µA ±(0.0796+300), Ni. ±(0.0596+300), Ni. ±(0.0596+100), Enf. specification)/*C (9° + = V source accuracy sourc | 2.00 | 000MΩ 00 μA 000j, Normal 000j, Normal 000j, Enhanced wire remote ser wire remote ser wire remote ser 10 Output Curre 11 1018 (99) 470 (405 470 (40 | ±(0.1%+0.003 ±(0.07%+0.001) 20.0000 1000 0.5µ ±(0.17%+1kΩ ±(0.15%+500Ω nse) nse) nse) nse) nse) nse) nse) nse) | (Ω), Normal (Ω), Enhanced (Ω), Enhanced (Ω) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | ±(0.08%+0.0 ±(0.05%+0.0 20.0.1 10 ±(0.65%+5k ±(0.35%+5k ccuracy is load Source-M TO MEMC 902 (900 33.98 (343 334 (333 55 (471) 55 (47) 162,PIB 33) 337 (333 55 (471) 65,PIB 30,0.5 ms) 0.5 ms) | 03Ω), Normal 1 Ω), Enhanced 00MΩ kΩ 00nA kΩ 00nA k(k), Normal dependent dependent 3 8 9) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | =(0.05% >2 | 6+0.3 Ω), No
+0.1 Ω), Enh
100.000 M Ω
 | Meas MMMORY 65 (162) 33 (125) 33 (125) 34 (138) 69 (70) 33 (127) 57 (157) 6 | ure Memory *9 TO GPIB 164 (162) 162 (160) 132 (126) 131 (125) 44 (38) 44 (38) 47 (38) 47 (38) 48 (38) 49 (38) 49 (38) 41 (38) 41 (38) 42 (38) 43 (38) 44 (38) 45 (38) 46 (38) | #### A. MAXIMUM OUTPUT: ±210V/±1.05A/22W The power source output of the GSM-20H10 has two ranges. The voltage range is ± 21 volts, and the current is $\pm 1.05A$. The voltage range is ± 210 volts, and the current range is ± 105 mA. The power capacity is 22W. Provide a full range of four-quadrant measurement without duty cycle limit. ## B. BUILT-IN 4 SEQUENCE OUTPUT MODES, UP TO 2500 POINTS GSM-20H10 Source Measure Unit provides four sequence output modes: linear staircase, log staircase, SRC-MEM (source memory) and Custom (self-defined). With these output modes, users can quickly generate output as needed. The total number of sequence points is 2,500. #### C. OVP/OTP PROTECTION FUNCTION In terms of protection, GSM-20H10 provides OVP/OTP protection modes; in the design of OVP, users can define the range of OVP, and the protection of OTP can effectively prevent errors caused by temperature drift during the test process. #### D. 0.012% BASIC MEASURE ACCURACY WITH 6½DIGIT RESOLUTION GSM-20H10 provides a measurement accuracy of up to 0.012%, and provides a meter display function of up to $6\frac{1}{2}$ digits, allowing users to have more accurate results when measuring small signals... #### E. VARIABLE SAMPLING SPEED The sampling rate of GSM-20H10 is variable. Therefore, users can choose the sampling rate from 0.01 PLC to 10 PLC according to their needs. | SAMPLING MODE | FAST | MEDIUM | NORMAL | HIGH | OTHER | |---------------|------|--------|--------|------|--------------| | Speed, NPLC | 0.01 | 0.1 | 1 | 10 | User defined | | Digit | 3½ | 4½ | 5½ | 6½ | Selectable | Where NPLC represents the number of power line cycles, for example, AC power frequency is 50Hz, 1 PLC means 20ms, 2 PLC means 40ms, and so on. #### F. SDM (SOURCE DELAY MEASURE) CYCLE The initial state of the source output may be unstable. If the meter starts measuring after the source is output, users can set the source delay to start the meter measurement after passing the unstable period so as to obtain stable measurement results. GSM-20H10 Source Measure Unit delay range is 0 to 9999.999 seconds. #### G. 2-, 4-, AND 6-WIRE REMOTE V-SOURCE AND MEASURE SENSING Other than 2-wire, GSM-20H10 also provides 4-wire and 6-wire resistance measurements. 4-wire measurement eliminates the effect of lead resistance, realizing accurate measurement of small resistances below 100ohm at high currents. 6-wire combining 4-wire connection and the protection of ohm characteristics eliminate the effects of internal parallel resistance, realizing the resistance measurement of a tiny wire. #### H. VARIABLE DISPLAY DIGITS The display bits of GSM-20H10 are variable. Therefore, users can choose the number of display bits among 3.5, 4.5, 5.5, and 6.5 bits according to their needs. #### I. BUILT-IN LIMIT FUNCTION GSM-20H10 has three built-in Pass/Fail limit line tests with a total of 11 sets. #### BUILT-IN 5 CALCULATION FUNCTIONS GSM-20H10 provides five built-in calculation functions: Power, Offset Compensation Ohms, Voltage Coefficient, Varistor Alpha, and Percent Deviation. ## Programmable High Precision DC Power Supply ####
PPH-1503 ## PPH-1503D/1506D/1510D #### **FEATURES** - * 3.5"TFT LCD Display - * High Measurement Resolution: 1mV/0.1µA for 5mA range. - * Transient Recovery Time: ≦40µS within 100mV; <80µs within 20mV - * Current Sink Function - * Pulse Current Measurement (Pulse width min.: 33us) - * Long Integration Current Measurement - * Built-in DVM Measurement Function - * Sequence Function (Sequence power output) - * Built-in Battery Simulation Function (CH1 of PPH-15xxD) - * OVP, OCP, OTP & Temperature Display for **Heat Sink** - * Support USB (Device & Host)/GPIB/LAN - * Five Groups of Save/Recall Setting - * External Relay Control #### PPH-1503 Rear Panel #### PPH-1503D/1506D/1510D Rear Panel PPH-Series high precision measurement capability achieves the maximum resolution of 1mV/0.1μA and the smallest pulse current width of 33 µs that satisfy customers' measurement application requirements of high resolution and pulse current. Fast load current variation will result in voltage sag for general power supplies that will have an impact on DUT's internal circuit operation. PPH-Series is equipped with the excellent transient recovery time, which can, in less than 40μs, recover the output voltage to within 100mV of the previous voltage output when the current level changes from 10% to 100% of the full scale. Furthermore, conventional power supplies do not have sufficient response speed to promptly respond to set voltage value once the set voltage is changed. PPH-15xxD has a rise time of 0.2ms and a fall time of 0.3ms, which are 100 times faster than that of conventional power supplies. Therefore, PPH-15xxD can provide DUT with a stable output voltage even when DUT is operating under large transient current output. The internal high-speed sampling circuit design of PPH-15xxD, with the sample rate of 64K, can conduct pulse current measurement without using a current probe and oscilloscope. The current read back accuracy is 0.2%+1μA (equals to 11μA) at 5mA range, and the read back resolution is 0.1 µA that allow DUT to be measured with a high accuracy level. Unlike battery, general power supplies, which do not have the characteristics of fast transient recovery time, can not maintain a stable power supply for cellular phone, wireless device, and wearable device which produce large transient pulse current load for hundreds of µs to dozens of ms when in use. PPH-15xxD, different from general power supplies, has the characteristics of fast transient recovery time. While simulating battery to output pulse current, PPH-15xxD can quickly compensate the voltage drop caused by pulse current. PPH-15xxD's CH1 has the built-in battery simulation function, which can define output impedance settings so as to accurately simulate battery's impedance characteristics during battery discharge. Fast transient recovery time and built-in battery simulation function together facilitate PPH-15xxD to accurately simulate battery's real behavior pattern so as to conduct product tests. PPH-15xxD is not only suitable for simulating battery, charger and supplying power to DUT, but also ideal for simulating an electronic load to conduct discharge tests with its sink current capability. The sink current function allows PPH-15xxD to simulate a voltage source with the sink current capability. The maximum sink current of PPH-15xxD's CH1 is 3.5A and for CH2 is 3A. Long integration current measurement can be utilized to conduct average current measurement for periodical pulse current in a long period of time that is applied to analyze power consumption for a period of time. One of the applications is to measure the average power consumption of a cellular phone in use so as to conduct the internal RF module parameter analysis. The maximum pulse current measurement range of CH1 is 5A and for CH2 is 3A. The built-in sequence function of CH1 provides users with 1000 steps to edit sequential outputs, including voltage, current and execution time. The built-in DVM function of CH2 has a voltage range from 0 to +20VDC that saves users the cost of purchasing an additional voltage meter. PPH-15xxD provides OTP function and shows heat sink temperature on the upper right corner of the display screen. Other than that, features such as five sets of system setting values for the SAVE/RECALL function, 10 sets of Power On Setup Settings, Key-Lock function to prevent unauthorized inputs, temperature-controlled fan to reduce noise, hardcopy to save screen information, and external relay control device together augment PPH-15xxD's usability. PPH-Series supports test requirements of Profile1, Profile2 and Profile3 from USB Power Delivery(PD) constructed by USB-IF association. #### SELECTION GUIDE | Model | PPH-1503 | PPH-1503D | PPH-1506D | PPH-1510D | | |---|----------------------------|--|--|--|--| | Channel | 1 | 2 | 2 | 2 | | | Dual Range Output Channel 1 Channel 2 | 0~15V/0~3A or
0~9V/0~5A | 0-15V/0-3A or
0-9V/0-5A
0-12V/0-1.5A | 0~15V/0~3A or
0~9V/0~5A
0~12V/0~3.0A | 0~15V/0~3A or
0~9V/0~5A
Rear Terminal:
0~10A(0~ 4.5V)
0~12V/0~3.0A | | | Display | 3.5 Inch TFT LCD | | | Current Measurement Range | 5A/5mA | 5A/500mA/
5mA(CH1) | 5A/500mA/
5mA(CH1) | 10A/500mA/
5mA(CH1) | | | CV&CC | 1 | 1 | 1 | 1 | | | Built-in DVM Measurement Function | 1 | √ (CH2) | ✓ (CH2) | √ (CH2) | | | Pulse Current Measurement | 1 | 1 | 1 | 1 | | | Long integration Current Measurement | 1 | 1 | 1 | 1 | | | Battery Simulation | NA | √ (CH1) | √ (CH1) | √ (CH1) | | | Automated Sequential Ouput | 1 | √ (CH1) | √ (CH1) | √ (CH1) | | | High Measurement Resolution | ✓ (1mV/0.1 µ A) | ✓ (1mV/0.1 µ A) | ✓ (1mV/0.1 µ A) | ✓ (1mV/0.1 µ A | | | Sink Current Capability | ✓ (Max: 2A) | ✓ (Max: 3.5A) | ✓ (Max: 3.5A) | ✓ (Max: 3.5A) | | | Selectable Output From Front or Rear Panel | 1 | 1 | 1 | 1 | | | Relay Output Control | 1 | 1 | 1 | 1 | | | Memory | 5 Sets | 5 Sets | 5 Sets | 5 Sets | | | Sample Rate | 60K | 64K | 64K | 64K | | | Lock Function | 1 | 1 | 1 | 1 | | | Protection Function | OVP/OTP/OCP | OVP/OTP/OCP | OVP/OTP/OCP | OVP/OTP/OCP | | | Four Wire Output Open Circuit Protection | NA | 1 | 1 | 1 | | | Temperature Display for Heat Sink | NA | 1 | 1 | 1 | | | Standard Interface: GPIB LAN, USB, Analog Control USB Interface LAN | √
√ (CDC)
√ | √
√ (TMC)
√ | √
√ (TMC)
√ | √
√ (TMC)
√ | | #### ORDERING INFORMATION PPH-1503 (0~15V/0~3A or 0~9V/0~5A) High Precision DC Power Supply PPH-1503D (CH1:0~15V/0~3A or 0~9V/0~5A;CH2:0~12V/0~1.5A) High Precision Dual Channel Output DC Power Supply PPH-1506D (CH1:0-15V/0-3A or 0-9V/0-5A;CH2:0-12V/0-3A) High Precision Dual Channel Output DC Power Supply (CH1:0~15V/0~3A or 0~9V/0~5A,0~4.5V/0~10A(Rear terminal);CH2:0~12V/0~3A)High Precision Dual Channel PPH-1510D Output DC Power Supply ACCESSORIES Power cord (Region dependent), Test lead GTL-207A x 1, GTL-203A x 1, GTL-204A x 1 OPTIONAL ACCESSORIES USB Cable (USB 2.0, A-B Type) GRA-450-J Rack Mount kit GRA-450-E Rack Mount kit | SPECIFICATIONS
Model | PPH-1503 PPH-1503D | | PPH-1 | 506D | PPH-15 | 10D | | |--|---|---|--------------------------------|---|------------------------------------|---|---------------------| | OUTPUT RATING | | | | | | | | | Number of Output Channel | 1 | 2 | | 2 | | 2 | | | Channel No. | Ch 1 | Ch 1 | Ch 2 | Ch 1 | Ch 2 | Ch 1 | Ch 2 | | Power | 45W | 45W
0 ~ 15V or 0 ~ 9V | 18W
0 ~ 12V | 45W | 36W
0 ~ 12V | 45W
0 ~ 15V or 0 ~ 9V | 36W
0 ~ 12V | | Voltage
Current | 0 ~ 15V or 0 ~ 9V
0 ~ 3A or 0 ~ 5A | 0 ~ 15V or 0 ~ 9V
0 ~ 3A or 0 ~ 5A | 0 ~ 12V
0 ~ 1.5A | 0 ~ 15V or 0 ~ 9V
0 ~ 3A or 0 ~ 5A | 0 ~ 12V
0 ~ 3.0A | 0 ~ 15V or 0 ~ 9V
0 ~ 3A or 0 ~ 5A | 0 ~ 12V
0 ~ 3.0A | | Current | 0 - 3A 01 0 - 3A | 0 - 3A 0I 0 - 3A | 0 - 1,3A | 0 - 3A 01 0 - 3A | 0 - 3.0A | Rear:0~10A(under 0~4.5V) | 0 - 3.0A | | Output Voltage Rising Time | 0.15ms (10% ~ 90%) | 0.20ms (10% ~ 90%) | | 0.20ms (10% ~ 90%) | | 0.20ms (10% ~ 90%) | | | Output Voltage Falling Time | 0.65ms (90% ~ 10%) | 0.30ms (90% ~ 10%) | | 0.30ms (90% ~ 10%) | - | 0.30ms (90% ~ 10%) | | | STABILITY | | | | | | | | | Voltage
Current | 0.01%+0.5mV
0.01%+50 µ A | 0.01%+3.0mV | | 0.01%+3.0mV | | 0.01%+3.0mV | | | REGULATION (CV) | 0.0176+30 µ A | | | | | | | | Load | 0.01%+2mV | 0.01%+2mV | | 0.01%+2mV | | 0.01%+2mV | | | Line | 0.5mV | 0.5mV | | 0.5mV | | 0.5mV | | | REGULATION (CC) | | | | | | | | | Load
Line | 0.01%+1mA
0.5mA | 0.01%+1mA
0.5mA | | 0.01%+1mA
0.5mA | | 0.01%+1mA
0.5mA | | | RIPPLE & NOISE (20Hz~20M | 5.40000000000 | U.JIIIA | | U.JIIIA | | U.SIIIA | | | CV p-p | 8mV | ≤5A:8mVp-p(20Hz~ | 20MHz) | ≤5A:8mVp-p(20Hz~ | - 20MHz) | ≤5A:8mVp-p(20Hz~ | 20MHz) | | | 7000 | | | | | >5A : 12mVp-p (20Hz~20MHz) | | | CV rms | 1mV | 3mV(0~1MHz) | | 3mV(0~1MHz) | | 3mV(0~1MHz) | | | CC rms PROGRAMMING ACCURAC | _ | | | _ | | | | | Voltage | 0.05%+10mV | 0.05%+10mV | | 0.05%+10mV | | 0.05%+10mV | | | Current(Ch1:5A,10A/CH2:1.5A,3A) | 0.16%+5mA | 0.16%+5mA(5A/1.5A) | | 0.16%+5mA(5A/3A) | | 0.16%+5mA(5A/3A) | | | Current (500mA) | _ | 0.16%+0.5mA | | 0.16%+0.5mA | _ | 0.16%+0.5mA | _ | | Current (5mA) | 777 17 | 0.16%+5μΑ | <u> </u> | 0.16%+5μΑ | | 0.16%+5μΑ | | | READBACK ACCURACY | | | | | | | | | Voltage | 0.05%+3mV | Current (Ch1:5A,10A/CH2:1.5A,3A) | 0.2%+400μA(5A) | 0.2%+400μA(5A) | 0.2%+400μΑ | 0.2%+400μA(5A) | 0.2%+400μΑ | 0.2%+400μA(5A) |
0.2%+400μΑ | | Current (500mA) | - | 0.2%+100μΑ | _ | 0.2%+100μΑ | _ | 0.2%+100μΑ | | | Current (5mA) | 0.2%+1μA | 0.2%+1μA | 0.2%+1μΑ | 0.2%+1μA | 0.2%+1μA | 0.2%+1μΑ | 0.2%+1μA | | RESPONSE TIME | | | 1 | | | | | | Transient Recovery Time | <40μS (within 100mV) | <40µS (within 100mV, R | | <40μS(within 100mV, | | <40μS(within 100mV, F | | | (Response to 1000% Load Change) | <80μS(within 20mV) | <50μS(within 100mV,Front)
<80μS(within 20mV) | | <50μS (within 100mV,F | ront) | <50μS (within 100mV,Front) | | | | | | | <80μS(within 20mV) | | <80μS(within 20mV) | | | PROGRAMMING RESOLUT | | | T | T | | | | | Voltage | 2.5mV | 2,5mV | 2,5mV | 2,5mV | 2,5mV | 2,5mV | 2,5mV | | Current (5A range) | 1.25mA | 1,25mA(5A) | 1,25mA | 1,25mA(5A) | 1,25mA | 1,25mA(5A) | 1,25mA | | Current (500mA range)
Current (5mA range) | | 0.125mA
1,25μA | - | 0.125mA
1,25μA | _ | 0.125mA
1,25μA | _ | | READBACK RESOLUTION | | 1,23μΑ | | 1,23µА | | 1,23μΑ | | | Voltage | 1mV | Current (5A range) | 0.1mA | 0.1mA(5A) | 0.1mA(1.5A) | 0.1mA(5A) | 0.1mA(3A) | 0.1mA(5A) | 0.1mA(3A) | | Current (500mA range) | 7_ | 0.01mA | _ | 0.01mA | | 0.01mA | | | Current (5mA range) | 0.1μΑ | PROTECTION FUNCTION | | | | | | | | | OVP Accuracy | 50mV | Ch1: 0.8V | Ch2: 50mV | Ch1: 0.8V | Ch2: 50mV | Ch1: 0.8V | Ch2: 50mV | | OVP Resolution | 10mV | DVM | | | | | | | | | DC Readback Accuracy (23°C ± 5°C) | ±0.05%+3mV | | ±0.05%+3mV | | ±0.05%+3mV | | ±0.05%+3mV | | Readbck Resolution
Input Voltage Range | 1mV
0 ~ 20VDC | _ | 1mV
0 ~ 20VDC | _ | 1mV
0 ~ 20VDC | _ | 1mV
0 ~ 20VDC | | Maximum Input Voltage | <u>-</u> | | -3V, +22V | 20.77 | -3V, +22V | | -3V, +22V | | Input Resistance and Capacitance | 100000M Ω | | 20ΜΩ | | 20ΜΩ | | 20M Ω | | PROGRAMMABLE OUTPUT | RESISTANCE | | | | | | | | Range | | $0.001 \Omega \sim 1.000 \Omega$ | | 0.001 Ω ~ 1.000 Ω | | $0.001 \Omega \sim 1.000 \Omega$ | | | Programming Accuracy | _ | $0.5\% + 10 \text{ m}\Omega$
$1\text{m}\Omega$ | i - | 0.5% + 10 m Ω
1m Ω | _ | 0.5% + 10 m Ω
1m Ω | _ | | Resolution | | 111177 | | 111122 | | 111177 | | | PULSE CURRENT MEASURE | | F. A. FA F. A 65. | - | F. A. FA F. A/G. | | F . A . F A . F . A . (5 | | | Trigger Level High Time/low Time/ | 5mA ~ 5A, 5mA/Step | 5mA ~ 5A, 5mA/Step | | 5mA ~ 5A, 5mA/Step | | 5mA ~ 5A, 5mA/Step | | | Average Time | 33.3µs ~ 833ms,
33.3µs/Step | 33.3μs ~ 833ms,
33.3μs/Step | | 33.3μs ~ 833ms,
33.3μs/Step | | 33.3μs – 833ms,
33.3μs/Step | | | Trigger Delay | 0 ~ 100ms,10μs/Steps | 33.3μs/Step
0 ~ 100ms,10 μ s/Steps | | 0 ~ 100ms,10 μ s/Steps | | 0 ~ 100ms,10μs/Steps | | | Average Readings | 1 ~ 100 | 1 ~ 100 | | 1 ~ 100 | | 1 ~ 100 | | | Long Integration Pulse Time | 15 ~ 635 | 1S ~ 63S | | 15 - 635 | | 15 ~ 63S | | | Long Integration
Measurement Time | 850ms(60Hz)/840ms(50Hz)~60s,or Auto time
16.7ms/Steps(60Hz),20ms/Steps(50Hz) | 850ms(60Hz)/840ms(50Hz)~60s,or Auto time
16.7ms/Steps(60Hz),20ms/Steps(50Hz) | | 850ms(60Hz)/840ms(50Hz)~60s,or Auto time
16.7ms/Steps(60Hz),20ms/Steps(50Hz) | | 850ms(60Hz)/840ms(50Hz)~60s,or Auto ti
16.7ms/Steps(60Hz),20ms/Steps(50Hz) | | | Long Integration Trigger Mode | Rising, Falling, Neither | Rising, Falling, Neither | | Rising, Falling, Neithe | r steps(Junz) | Rising, Falling, Neither | (20112) | | OTHERS | | | | | | | | | Output Terminal | Front/Rear Panel | Front/Rear Panel | Rear Panel | Front/Rear Panel | Rear Panel | Front/Rear Panel | Rear Panel | | DVM Input | Front/Rear Panel | _ | Front Panel | _ | Front Panel | _ | Front Panel | | Relay Control Connector | 150mA/15V, 5V output, 100mA | 150mA/15V, 5V output | | 150mA/15V, 5V outpu | | 150mA/15V, 5V output | | | Operation Temperature | 0 ~ 40°C | 0 ~ 40°C | Control C | 0 ~ 40°C | - (TT) | 0 ~ 40°C | | | Operation Humidity | < 80% | < 80% | | < 80% | | < 80% | | | Storage Temperature | -20°C ~ 70°C | -20°C ~ 70°C | | -20°C ~ 70°C | | -20°C ~ 70°C | | | Storage Humidity | < 80% | < 80% | | < 80% | | < 80% | | | PC REMOTE INTERFACES | | | | | | | | | | GPIB/USB/LAN | GPIB/USB/LAN | | GPIB/USB/LAN | | GPIB/USB/LAN | | | Standard STANK CARACITY | | d a a | do a mini | al 3 a | d o o =:: | d 1 0 | | | CURRENT SINK CAPACITY | | | Ch2: 0-5V:2A; | Ch1:0-4V:3.5A; | Ch2:0-5V:3A;
5-12V:3A-(0.25A/V) | Ch1:0-4V:3.5A; | Ch2:0-5V:3A; | | | 2A(Vout≤5V);
2A.0.1*(Vout.5) | Ch1:0-4V:3.5A; | | 4~15V:3.5A-(0.25A/V) | | 4~15V:3.5A-(0.25A/V) | 5~12V:3A-(0.25A/ | | CURRENT SINK CAPACITY | 2A-0.1*(Vout-5) | 4~15V:3.5A-(0.25A/V) | | *(Vset-4V) | *(Vset-5V) | *(Vset-4V) | *(Vset-5V) | | CURRENT SINK CAPACITY Sink Current Rating | | | 512V:2A-(0.1A/V)
*(Vset-5V) | *(Vset-4V) | *(Vset-5V) | *(Vset-4V) | *(Vset-5V) | | CURRENT SINK CAPACITY | 2A-0.1*(Vout-5) | 4~15V:3.5A-(0.25A/V) | | *(Vset-4V) | *(Vset-5V) | *(Vset-4V) 5 Sets | *(Vset-5V) | | CURRENT SINK CAPACITY Sink Current Rating MEMORY Save/Recall | 2A-0.1*(Vout-5)
(Vout>5V) | 4~15V:3.5A-(0.25A/V)
*(Vset-4V) | | , , | *(Vset-5V) | | *(Vset-5V) | | CURRENT SINK CAPACITY Sink Current Rating MEMORY Save/Recall POWER | 2A-0.1*(Vout-5)
(Vout>5V)
5 Sets | 415V:3.5A-(0.25A/V)
*(Vset-4V)
5 Sets | *(Vset-5V) | 5 Sets | | 5 Sets | | | CURRENT SINK CAPACITY Sink Current Rating MEMORY Save/Recall | 2A-0.1*(Vout-5)
(Vout>5V) | 4~15V:3.5A-(0.25A/V)
*(Vset-4V) | *(Vset-5V) | , , | | | | ## Programmable High Precision DC Power Supply #### FAST RESPONSE TO LOAD AND VOLTAGE CHANGES **PPH-Series** Conventional Power Supply When DUT such as cellular phone switches to idling, receiving or transmitting mode, the current drawn from power supply changes over tenfold. The sudden current change will cause the supplied voltage to drop as well. The conventional power supply is considered a dull device since it will take several milliseconds for the dropped voltage to return to the original level. PPH-Series is designed to simulate battery response when a significant voltage drop occurs. Recovery time of 40 µs or less is guaranteed when the maximum voltage drop is within 100mV. #### PULSE CURRENT MEASUREMENTS **Pulse Current Measurement** PPH-Series DC power supply can perform current measurements for pulsing loads. To avoid false pulse detection, users can use a trigger level of up to 5A. All pulses, noise or other transients that are less than set trigger level will be ignored. The manual integration time range setting is 33 us to 833,333 us. Pulse current measurement can measure transient current consumption to provide the information for the allocation of power supply system for products' preliminary design, i.e. power supply circuits, battery selections for clients' product analyses. Portable communications products, i.e. RF modules and designs based upon blue tooth system can better use pulse current measurement function. #### **BUILT-IN DIGITAL VOLTMETER** #### **DVM Input for PPH-Series** The built-in Digital Volt-Meter (DVM) of PPH-Series has a dedicated input terminal located on the front panel. With the DC voltage measurement range from 0 to +20VDC, PPH-Series not only provides power supply for DUT but also measures the voltage on DUT. The read back accuracy reaches ±(0.05%+3mV) and read back resolution is 1mV. Users are able to save the cost of purchasing an extra voltage meter. Furthermore, DVM measurements can be remotely controlled by SCPI commands via a PC. #### SINK CURRENT FUNCTION PPH-Series and an Electrical Potential Circuit When connecting with an electric potential circuit and the output voltage of the tested electric potential circuit is greater than that of PPH-Series by approximately 0.3V to 2.5V, PPH-Series will automatically convert its power supply role to the sink current role acting as a load of voltage source. At this time, the voltage setting of PPH-Series can be regarded as the CV setting of an electronic load. A single PPH-Series can be used to charge battery and to simulate battery's load to consume power without extra instruments. PPH-Series is ideal for tests on battery and portable charger. #### LONG INTEGRATION CURRENT MEASUREMENT Long Integration Current Measurement Long integration current measurement is to measure the average current of periodical pulse current in a long period of time. The measured pulse current must be a complete periodical waveform or multiple complete periodical waveforms. The total measurement time is up to 60 seconds. Measurements can be taken from pulse's positive edge trigger or negative edge trigger. Users can also take measurements from the beginning of power output. Long integration current measurement is to analyze power consumption for a period of time. For instance, users can measure the average power consumption of a cellular phone in use to analyze its internal RF module parameters. #### MEASUREMENTS FOR POWER CONSUMPTION ANALYSIS #### Voltage and Current Waveforms of the Receiving Signals of a Cellular Phone One particular requirement of power consumption for portable wireless communications devices is Pulse Current. Portable devices such as cellular phones must transmit and receive (detect) signal periodically by drawing pulse current instead of constant current from battery to ensure devices' sound connection in network. To analyze the transient power consumption of a DUT, the peak of short pulse current and average current measurements over a long period of time are crucial. PPH-Series provides pulse current and long integration functions, the former can measure the peak value of a pulse, the latter can measure the average value of pulses. PPH-Series provides DUT with pulse current measurement and analyzes the transient power consumption to qualify the device for specified power consumption requirements. #### G. EXTERNAL RELAY CONTROL #### Relay Can be Driven by Using Internal +5V or External Power Source : #### +5VDC Relay Output Using the +5VDC relay output to drive an external relay. Ensure the current does not exceed 150mA. #### **External Power Source** Using an external power
source to drive the external relay. The voltage of the source can not exceed 15V and the current can not exceed 150mA. PPH-Series provides Limit relay and Trip relay modes and is equipped with corresponding output ports, in which output signals control external relay. Under Limit relay mode and the current limit is reached, PPH-Series will switch from Constant Voltage to Constant Current automatically. Under "Trip relay" mode and the current limit is reached, PPH-Series will turn output off. Furthermore, External Relay control can be used if users simultaneously use other devices for test system. When "Limit Relay" mode is selected and the current limit is reached, External Relay control signal will go high and will return back to the low level when the current level goes back below the constant current setting. When "Trip Relay" mode is selected and the current limit is reached, the relay control signal will go high and the output is disabled. When the output goes back on and the current is less than the current setting, the relay control signal will back to the low level. Users can use relay control signal to control other devices for test system. #### Н #### SEQUENCE FUNCTION BATTERY SIMULATION FUNCTION **Battery Equivalent Model** #### **Functional Setting Page for Sequence Function** For the practical usage, PPH-15xxD can be programmed to output a sequential voltage variation according to the requirements. There are 1000 steps for users to edit output voltage, current and execution time. Programmable execution time range is from 0.001 second to 3600 seconds and the resolution is 0.001 second. Programmable recurring frequency is from 1 to 9999 or it can be set to infinite execution (set recurring frequency to 0). PPH-15xxD's battery simulation function is equivalent to a variable resistance circuit internally connected in series to simulate battery's output impedance. The function can also be regarded as a power supply with a variable internal resistor. The variable internal resistance range is from 0.000Ω to 1.000Ω and the resolution is $1m\Omega$. PPH-15xxD can be utilized as a battery or an ideal voltage source Vset to be connected with variable resistance Res in series. The following diagram shows battery simulation to produce output voltage Vout. ## Programmable High-precision DC Power Supply #### **PPX-Series** #### **FEATURES** - * CV, CC Priority Start Function - * Four Levels of Current Measurement Resolution (min. 0.1µA)/Two Levels of Voltage Measurement Resolution (min. 0.1mV) - * Power Output ON/OFF Delay Function - * Adjustable Voltage and Current Slew Rate - * Bleeder Circuit Control - * Delayed Over-current Protection(OCP Delay) - * Sequential Power Output Function - * Remote Sensing Function & Data Logger - * 10 Sets of Memory Function - * Over Voltage Protection, Under Voltage Limit, Over Current Protection, Over Temperature Protection, AC Alarm Function - * Supports K-Type Thermocouple Temperature Measurement - * Interfaces: USB, LAN, RS-232, RS-485, Analog Control; Opt: GPIB The PPX-Series programmable high-precision DC power supplies include six models; PPX-1005 (10V/5A/50W), PPX-2002 (20V/2A/40W), PPX-2005 (20V/5A/100W)), PPX-3601 (36V/1A/36W), PPX-3603(36V/3A/108W), and PPX-10H01(100V/1A/100W). This series has the output low noise (0.35mVrms) and fast transient response characteristics (<50µs) of conventional linear power supplies. It also provides constant voltage and constant current priority output modes, and the series can also set the voltage and current rising/falling slew rates separately, and the delay time for the output to be turned on and off. The PPX-Series has four current levels and two voltage levels to provide users with high-precision measurements, and via the Data Logger function, the measurement records can be stored in the USB for long-term measurement and recording of IoT devices, portable devices, wearable devices, and sensor components. In order to extend the use time of portable devices and wearable devices, manufacturers are not only committed to improving the operating efficiency of the circuit, but also reducing standby power consumption as much as possible. In order to satisfy users' low-power measurement applications, GW Instek has launched the PPX-Series with current measurement resolutions (0.1µA, 1µA, 10µA, 0.1mA) and voltage measurement resolutions (0.1mV, 1mV) to provide power for portable devices and wearable devices. When the device enters the sleep mode or the standby mode, the PPX series can still measure the subtle current changes of the DUT. The PPX-Sseries provides the Test Sequence function, which allows users to arbitrarily define output waveforms. The voltage rising or falling time and the voltage maintenance time of each step can be set. For the operation, users can directly edit parameters on the front panel of the PPX-Series, or the CSV file can be edited via computer and imported into the PPX-Series, and the PPX-Series can be remotely edited. In addition, the OCP Delay function of the PPX-Series allows users to flexibly adjust the time to enable the over-current protection according to the characteristics of the DUT to protect the DUT and at the same time to test the current change of the DUT within a certain period of time. Other than voltage, current, and power measurement, the PPX-Series also supports temperature measurement. While collocating with a K Type Thermocouple, the temperature range can be measured from -200°C ~ +1372°C. Supported standard communication interfaces include USB, LAN, RS-232, RS-485 and optional GPIB interface. **PPX-Series** | | le | PPX-1005 | PPX-2002 | PPX-2005 | PPX-3601 | PPX-3603 | PPX-10H01 | |--|--|--|--|--|--|--|--| | Output Voltage Output Current Output Power CONSTANT VO Line Regulation Load Regulation Transient Respon Ripple Noise(Vrn Rise Time" Ra | le | | | | | | | | Output Current
Output Power
CONSTANT VO
Line Regulation
Load Regulation
Transient Respoor
Ripple Noise(Vrn
Rise Time** Ra | | | | | | | | | Output Power CONSTANT VO Line Regulation Load Regulation Transient Respon Ripple Noise(Vrn Rise Time" Ra | | 10.000V | 20.000V | 20.000V | 36.000V | 36.000V | 100.00V | | Line Regulation Load Regulation Transient Respon Ripple Noise(Vrn Rise Time" Ra | | 5.0000A
50W | 2.0000A
40W | 5.0000A
100W | 1.0000A
36W | 3.0000A
108W | 1.0000A
100W | | Line Regulation
Load Regulation
Transient Respon
Ripple Noise(Vrn
Rise Time" Ra | ITACE ODERATION | | 1011 | 10011 | 30₩ | 100 W | 100₩ | | Load Regulation
Transient Respon
Ripple Noise(Vrn
Rise Time" Ra | LIAGE OPERATION | | | | | | | | Transient Respon
Ripple Noise(Vrn
Rise Time" Ra | | ±(0.01% of setting+1mV) | ±(0.01% of setting+1mV) | ±(0.01% of setting+1mV) | ±(0.01% of setting+3mV) | ±(0.01% of setting+3mV) | ±(0.01% of setting+7mV) | | Ripple Noise(Vrn
Rise Time Ra | | ±(0.01% of setting+2mV)
<50μs | ±(0.01% of setting+2mV)
<50μs | ±(0.01% of setting+3mV)
<50μs | ±(0.01% of setting+3mV)
<50μs | ±(0.01% of setting+4mV)
<50μs | ±(0.01% of setting+7mV)
<100μs | | Rise Time" Ra | 2000 2000 1000 | 0.35mVrms/<6mVpp | 0.5mVrms/<8mVpp | 0.5mVrms/<8mVpp | 0.8mVrms/<10mVpp | 0.8mVrms/<10mVpp | 1.2mVrms/<15mVpp | | | ted load | 20ms | 50ms | 50ms | 50ms | 50ms | 100ms | | | load | 20ms | 50ms | 50ms | 50ms | 50ms | 100ms | | | ted load | 10ms | 20ms | 20ms | 20ms | 20ms | 50ms | | | load | 100ms | 150ms
 150ms | 150ms | 150ms | 250ms | | Setting Range (10 | | 0V 10.5V | 0V - 21.0V | 0V - 21.0V | 0V - 37.8V | 0V - 37.8V | 0V 105.0V | | Setting Resolutio
Setting Accuracy | | 1mV | 1mV | 1mV | 1mV | 1mV | 10mV | | | pensation Voltage(single line) | ±(0.03% of setting+3mV) | ±(0.03% of setting+5mV) | ±(0.03% of setting+5mV) | ±(0.03% of setting+8mV) | ±(0.03% of setting+8mV) | ±(0.03% of setting+20m
3V | | Temperature Coe | | 100 ppm/°C | | • | , , | | 100 ppiniy C | тоо ррпп/ С | тоо ррппу с | тоо ррппу с | тоо ррппу с | | | RRENT OPERATIO | V - (V - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | (0.000/ 5 200 4) | 10 000/ C 050 A) | (0.000/ 5 70 4) | 10.000/ C 350 A) | 10.000/ C 50.41 | | Line Regulation | | ±(0.02% of setting+250μA) | ±(0.02% of setting+100μA)
±(0.02% of setting+100μA) | ±(0.02% of setting+250μA)
±(0.02% of setting+250μA) | ±(0.02% of setting+50μA)
±(0.02% of setting+50μA) | ± (0.02% of setting+150μA) | ±(0.02% of setting+50μA) | | Load Regulation
Ripple Noise(Arn | ne*2\ | ±(0.02% of setting+250μA)
2mA | ±(0.02% of setting+100μA) | ±(0.02% of setting+250μA) 2mA | ±(0.02% of setting+50μA)
400μA | ±(0.02% of setting+150μA)
1mA | ±(0.02% of setting+50μA | | Setting Range (10 | | 0A - 5.25A | 0A - 2.1A | 0A - 5.25A | 0A – 1.05A | 0A - 3.15A | 0A 1.05A | | Setting Resolutio | | 0.1mA | 0.1mA | 0.1mA | 0.1mA | 0.1mA | 0.1mA | | Setting Accuracy | 1 1437 N. S. | ±(0.05% of setting+3.0mA) | ±(0.05% of setting+1.0mA) | ±(0.05% of setting+3.0mA) | ±(0.05% of setting+0.5mA) | ±(0.05% of setting+1.5mA) | ±(0.05% of setting+1.0mA | | Temperature Coe | | 200 ppm/°C | | MEASUREMEN' | T AND DISPLAY | | · · · · · · · · · · · · · · · · · · · | | | | | | Voltage Range F | 4 | 10.000V | 20.000V | 20.000V | 36.000V | 36.000V | 100.00V | | L | 0 | 1.0000V | 2.0000V | 2.0000V | 3.6000V | 3.6000V | 10.000V | | Current Range F | 355 | 5.0000A | 2.0000A | 5.0000A | 1.0000A | 3.0000A | 1.0000A | | N | | 500.00mA | 200.00mA | 500.00mA | 100.00mA | 300.00mA | 100.00mA | | ŀ | | 50.000mA
5.0000mA | 20.000mA
2.0000mA | 50.000mA
5.0000mA | 10.000mA
1.0000mA | 30.000mA
3.0000mA | 10.000mA
1.0000mA | | | /oltage(H) | 1mV | 1mV | 1mV | 1mV | 1mV | 10mV | | | Voltage(L) | 0.1mV | 0.1mV | 0.1mV | 0.1mV | 0.1mV | 1mV | | | Current(H) | 0.1mA | 0.1mA | 0.1mA | 0.1mA | 0.1mA | 0.1mA | | | Current(M) | 0.01mA | 0.01mA | 0.01mA | 0.01mA | 0.01mA | 0.01mA | | | Current(L) | 0.001 mA | 0.001mA | 0.001mA | 0.001mA | 0.001mA | 0.001mA | | | Current(LL) | 0.0001mA | 0.0001mA | 0.0001mA | 0.0001mA | 0.0001mA | 0.0001mA | | | /oltage(H/L) | ±(0.03% of rdg + 2mV) | ±(0.03% of rdg + 4mV) | ±(0.03% of rdg + 5mV) | ±(0.03% of rdg + 6mV) | ±(0.03% of rdg + 8mV) | ±(0.03% of rdg + 15mV) | | 하는 사이 등이 아이들에 살아왔다. | Temperature Coefficient*(TYP.) | 100 ppm/°C
±(0.05% of rdg + 2.5mA) | 100 ppm/°C
±(0.05% of rdg + 1.0mA) | 100 ppm/°C
±(0.05% of rdg + 2.5mA) | 100 ppm/°C
±(0.05% of rdg + 0.4mA) | 100 ppm/°C | 100 ppm/°C | | | Current(H/M) Current(L/LL) | ±(0.03% of rdg + 2.5mA)
±(0.1% of rdg + 40μA) | ±(0.1% of rdg + 24μA) | ±(0.03% of rdg + 2.5mA)
±(0.1% of rdg + 40μA) | ±(0.1% of rdg + 16μA) | ±(0.05% of rdg + 1.2mA)
±(0.1% of rdg + 28μA) | \pm (0.05% of rdg + 1.0mA)
\pm (0.1% of rdg + 24 μ A) | | | Temperature Coefficient (TYP.) | 200 ppm/°C | | TEMPERATURE N | | 200 ppini/ C | 200 ppini, C | 200 ppin/ C | 200 ppin/ C | 200 ppm/ C | 200 ppin/ C | | | | -200°C+1372°C | | | | | | | Temperature
(K-Type Thermoc | Range
ouple) Resolution | 0.25°C | | | | | | | (K-1)pe Thermoci | Accuracy | ±(0.5% + 2°C) | | | | | | | PROTECTION | | | | | | | | | Over Voltage | Operation | Turns the output off, displays | OVP and lights ALARM | | | | | | Protection(OVP) | Setting Range | 0.5V - 11.0V | 1.0V - 22.0V | 1.0V ~ 22.0V | 1.8V ~ 39.6V | 1.8V ~ 39.6V | 5.0V - 110.0V | | | | (5% to 110% of the rated ou | tput voltage) | | | | | | | Setting Accuracy | ±(1% of rating) | | | | | | | Over Current | Operation | Turns the output off, displays | | 10 | | 4 | 1 200,000,000,000 | | Protection(OCP) | Setting Range | 0.25A ~ 5.5A | 0.1A - 2.2A | 0.25A - 5.5A | 0.05A 1.1A | 0.15A - 3.3A | 0.05A - 1.1A | | | Setting Accuracy | (5% to 110% of the rated our
±(1% of rating) | tput current) | | | | | | Over Temperature | | Turns the output off, displays | OTP and lights ALARM | | | | | | Protection(OTP) | | | | | | | | | OTHER | | | | | | | | | Interface Capabi | lities LAN | MAC Address, DNS IP Addre | ess, User Password, Gateway I | P Address, Instrument IP Add | ress, Subnet Mask | | | | .per 2005-19 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | USB | Type A: Host, Type B: Slave, | | the state of s | | | | | | RS-232/RS-485 | | 2/RS-485 specifications (exclu | | | | | | Nominal Input Vo
Input Frequency I | | 100Vac / 120Vac / 220Vac / 2
47Hz – 63Hz | 40Vac(±10%), 50Hz / 60Hz, s | ingle phase | | | | | Max. Inrush Curre | | 25Amax | 20Amax | 30Amax | 35Amax | 40Amax | 30Amax | | Max. Power Consu | 2000 | 200VA | 150VA | 300VA | 150VA | 300VA | 300VA | | | | 0°C - 40°C | | | | | | | Operaing Temper | | -20°C 70°C
20% 80% RH; No condens | ation | | | | | | Storage Temperatu | ity | 20% – 85% RH; No condens
20% – 85% RH; No condens | | | | | | | | | | | | | | | NOTE: *1. Time for output voltage to recover within ±(0.1% + 10mV) of its rated output for a load change from 50% to 100% of its rated output current *2. Measurement frequency bandwidth is 5 Hz to 1 MHz *3. Measurement frequency bandwidth is 10 Hz to 20 MHz *4. From 10%–90% of rated output voltage, with rated resistive load *5. From 90%–10% of rated output voltage, with rated resistive load *6. Temperature coefficient: after a 30 minute warm-up *7. Before connecting the power plug to an AC line outlet, make sure the voltage selector switches of the bottom panel in the correct position.It might be damaged the instrument by connecting to the wrong AC line voltage # **Programmable High-precision DC Power Supply** #### Rear Panel ## GRA-441-J/E Rack Mount Kit(JIS/EIA) #### ORDERING INFORMATION PPX-1005 10V/5A/50W Programmable High-precision DC Power Supply PPX-2002 20V/2A/40W Programmable High-precision DC Power Supply PPX-2005 20V/5A/100W Programmable High-precision DC Power Supply PPX-3601 36V/1A/36W Programmable High-precision DC Power Supply PPX-3603 36V/3A/108W Programmable High-precision DC Power Supply PPX-10H01 100V/1A/100W Programmable High-precision DC Power Supply #### **ACCESSORIES** Power Cord, Test Lead (GTL-104A for PPX-1005/PPX-2005/PPX-3603, 1m, 10A) (GTL-105A for PPX-2002/PPX-3601, 1m, 3A) (GTL-204A for PPX-1005/PPX-2005/PPX-3603
 Terminal>, 1m, 10A) (GTL-203A for PPX-2002/PPX-3601/PPX-10H01
 European Type Jack Terminal>, 1m, 3A) (GTL-201A, Ground lead for European Type Jack Terminal) #### **OPTIONAL ACCESSORIES** | GTL-246 USB Cable (USB 2.0 Type A-Type B Cable,4) | |---| |---| GTL-205A Temperature probe adapter (thermal coupling, K-Type), about 1000mm GTL-258 GPIB Cable, 2000mm GTL-259 RS-232 Cable with DB9 connector to RJ45 GTL-260 RS-485 Cable with DB9 connector to RJ45 GTL-261 Serial Master Cable+Terminator, 0.5M GTL-262 RS-485 Slave cable GRA-441-J Rack for PPX-Series (JIS) GRA-441-E Rack for PPX-Series (EIA) PPX-G GPIB Interface (factory installed) ## A. DISPLAY MODE Voltage and Current Voltage, Current and Wattage Voltage, Current and Sequence Test Voltage, Current and Temperature Measurement which are convenient for users to switch to different display modes according to test requirements. ## B. REMOTE SENSING #### REMOTE SENSING CONNECTION DIAGRAM The Remote Sensing function can be used to compensate for the voltage drop caused by the resistance on the test connection lead from the power output to the load. PPX-1005/2002/2005/3601/3603 compensates for voltages up to 1 volt, and PPX-10H01 compensates The PPX-Series has four display modes, namely 1) voltage and current 2) voltage, current and wattage 3) voltage, current and Sequence Test 4)voltage, current and temperature measurement, for voltages up to 3 volts. When testing, choose a test connection lead with a voltage drop less than the compensation voltage of the PPX series as much as possible. Blue: Temperature Control on with no GTL-205A Connected White: Temperature Control on with GTL-205A Connected The PPX-Series can measure DUT temperature while outputting power. Before measuring the temperature, please use the optional accessory GTL-205A (temperature probe adapter with K-type thermocouple) to connect the DUT and TC input terminals on the front panel of the PPX-Series respectively. During the measurement process, users can set the monitoring Green: Output Safe is Activated and Output is on with GTL-205A Connected Red: The Alarm of Short Circuit Occurs From Temperature Measurement temperature for the DUT. Once the measurement temperature reaches the monitoring temperature value, the PPX-Series will stop the output. The PPX-Series can measure the temperature range of -200.0 $^{\circ}$ C ~1372.0 $^{\circ}$ C (-328.0 $^{\circ}$ F ~2501.6 $^{\circ}$ F). Users can choose the display unit as °C or °F according to the requirement. ## D. DATA LOGGER **Appears** Dlog Icon Save Data Log Into USB Disk The PPX-Series can record the measured voltage, current and temperature data to a USB flash drive or can be remotely controlled to read the data. Data sampling interval is 0.1~999.9 seconds. ## E. SEQUENCE TEST **Data Logger Function** SEQ Run in Cycle Mode The Sequence Test function allows users to plan the PPX-Series to execute a sequential power output. The PPX-Series will automatically execute the planned power output to the DUT to realize automated measurement. The PPX-Series can store SEQ Stop in Cycle Mode # Model R_V Slew Rate/ F_V Slew Rate Setting Range PPX-1005 0.0001V/ms ~ 0.1V/ms PPX-2002 0.0001V/ms ~ 0.2V/ms PPX-2005 0.0001V/ms ~ 0.2V/ms PPX-3601 0.0001V/ms ~
0.36V/ms PPX-3603 0.0001V/ms ~ 0.5V/ms PPX-10H01 0.001V/ms ~ 0.5V/ms ## Voltage Rising/Falling Slew Rate The PPX-Series can adjust the slew rate of current and voltage. Via setting the rising and falling time of voltage and current, users can verify the performance of the DUT during the voltage/current changes. In addition, the adjustment of the slew rate slows down the voltage transfer, which can effectively avoid the damage of the inrush current to the DUT, therefore, the series is especially suitable for the testing of capacitive loads and motors. ## G. ANALOG REMOTE CONTROL **External Control of Output** The PPX-Series supports the analog control function, including external voltage to control voltage output/current output, external resistance to control voltage output/current output, external control of power output, trigger input/trigger output, and voltage/current monitoring. ## H. MULTIPLE UNIT CONNECTION ## Multiple Unit Connection The PPX series can connect up to 31 units. The PC is connected to the first unit of PPX through GTL-260, and the remaining PPX units are connected in a daisy-chained method via GTL-262. When using PPX-Series Multiple Unit Connection for remote program control and slave expansion, there is no need to use other remote control equipment (E.g. switch/Hub), which can help users save equipment purchase costs. # Triple-channel Programmable DC Power Supply ## GPP-3060/6030/3650 #### **FEATURES** - * 4.3"TFT LCD Display - * Setting Resolution: 1mV/0.1mA; Read Back Resolution: 0.1mV/0.1mA - * Low Ripple Noise: ≦1mVrms/≦2mArms - * Transient Response Time: ≦100µs - Load Function (CC, CV, CR mode) - * Tracking Series and Parallel Function without Additional External Wiring - * Utilizing Hardware to Realize Over Voltage Protection/Over Current Protection/Over Temperature Protection - * Delay Function/Output Monitoring Function/ **Output Recorder Function** - * Supports Setting Value, Measurement Value and Output Waveform Display - * Sequential Output Function and Built-in **8 Template Waveforms** - * The Output Recorder Function Records the Output Voltage & Current Parameters with a Minimum Recording Interval of 1 Second - * Provides 10 Sets of Memory for Each Sequence/Delay/Recorder/Panel Setting Condition - * GPP-3060/6030 Supports a USB (Type A) **Output Terminal** - * Intelligent Temperature Control Fan Effectively Reduces Noise - * Standard: RS-232, USB, Ext I/O Optional (manufacturer installed only): LAN, LAN+GPIB GPP-3060 and GPP-6030 triple-channel programmable DC power supplies are extension models of the GPP-X323 series. The maximum output power of these three models is 385W. GPP-3650 supports CH1/CH2: 0 ~ 36V / 0 ~5A output; CH3 supports 1.8V, 2.5V, 3.3V, 5.0V / 5A. GPP-3060 supports CH1/CH2: 0 ~ 30V / 0 ~ 6A output; GPP-6030 supports CH1/CH2: 0 ~ 60V / 0 ~ 3A output; CH3 of both models supports 1.8V, 2.5V, 3.3V, 5.0V/5A. GPP-3650, GPP-3060 and GPP-6030 inherit the high program resolution (1mV/0.1mA) and read back resolution (0.1mV/0.1mA) of the GPP series with low-ripple noise characteristics ≤1mVrms/≤ 2mArms and ≦100µs output transient recovery ability. An independent output on-off switch is provided for each channel. For series and parallel applications of CH1 and CH2, the tracking function can automatically switch to series or parallel output without additional external wiring. Multiple display modes including single channel or multi-channel setting value, measurement value and waveform display to collocate with the built-in output monitoring function allow users to set the monitoring conditions according to their needs so as to generate an alarm or stop the output during the measurement process in order to stop the measurement and protect the customer's DUT. The output recorder function can record the voltage/current of the output process in the internal memory, and save the result as a (*.REC) or (*.CSV) file, and then save it to a USB flash drive. The unique load function of the GPP series can arbitrarily set CH1/CH2 as power supply or load function. For example, one channel is set as power output, and the other channel is set as load function to consume the power of the DUT to satisfy simple battery charging and discharging or load characteristic test by a single power supply. The sequence output function allows users to edit the power output waveforms by themselves, and also allows users to set the sequential constant voltage (CV) or constant current (CC) load waveforms such as serial power output or dynamic load simulation test. Channel 3 (CH3) incorporates 3A USB (Type A) output terminal, which can be used for USB charging test. Pertaining to measurement protections, OVP/OCP/OPP/OTP protection functions are provided. The protection mechanism of OVP/OCP/OTP is implemented by hardware circuits, which has a faster response time to protect equipment or DUT while comparing with competitors who use software for protection. The OVP and OCP functions allow users to set the protection action point according to the conditions of the DUT. OPP only provides protection during the operation of the load function. In addition, GPP-3650, GPP-3060 and GPP-6030 incorporate terminal output on the rear panel, and include a voltage remote sensing terminal. Users can choose front panel or rear panel terminal output, which is convenient for stand-alone or rack operation. Output value setting and Sequence/ The Delay/Recorder functions provide 10 sets of internal memory, which can be uploaded/stored by a USB flash drive. ## GPP-6030 ## GRA-449-J Rack Mount Kit (JIS) ## GRA-449-E Rack Mount Kit (EIA) ## Rear Panel ## **European Type Jack Terminal** # **Triple-channel Programmable DC Power Supply** | SPECIFI | CATIONS | | | | | | | | | | |--|-------------------------|--|-------------------------|-----------------------------------|---|-------------------------|-------------------|--------------------------------|-------------------------|--| | 31 ECII I | CAITONS | GPP-30 | GPP-3060 GPP-6030 | | | | | | 0 | | | Output Mode | | | 5 | | | | GPP-3650 | | | | | Number of Channe | 1 | CH1 CH2 | CH3 | CH1 | CH2 | CH3 | CH1 | CH2 | CH3 | | | Voltage | | 0 ~ 30.000V 0 ~ 30.000V | 1.8V/2.5V/3.3V/5.0V,±5% | 0 ~ 60.000V | 0 ~ 60.000V | 1.8V/2.5V/3.3V/5.0V,±5% | 0 ~ 36.000V | 0 ~ 36.000V | 1.8V/2.5V/3.3V/5.0V,±5% | | | Current | | 0 ~ 6.0000A 0 ~ 6.0000A | 5A (USB Port 3A) | 0 ~ 3.0000A | 0 ~ 3.0000A | 5A (USB Port 3A) | 0 ~ 5.0000A | 0 ~ 5.0000A | 5A (USB Port 3A) | | | Tracking Series Vol | tage / Current | 0 - 60.000V / 0 - 6.0000A | | 0 - 120.000V | / 0 ~ 3.0000A | | | / 0 - 5.0000A | | | | Tracking Parallel Vo | oltage / Current | 0 ~ 30.000V / 0 ~ 12.0000A | | 0 ~ 60.000V / | 0 ~ 6.0000A | - | 0 ~ 36.000V / | 0~10.0000A | | | | Warning | | 0 ~ 30.0007 / 0 ~ 12.00000 | | | | | | | | | | Constant Voltage C | peration | | | | | | | | | | | Line Regulation | | ≤ 0.01% + 3mV | ≤ 3mV | ≤ 0.01% | + 3mV | ≤ 3mV | ≤ 0.01% | 6 + 3mV | ≤ 3mV | | | Load regulation | | ≤ 0.01% + 5mV (rating current ≤ 10A | ≤ 5mV | ≤ 0.01% + 5mV (rat | ting current ≤ 10A) | ≤ 5mV | ≤ 0.01% + 5mV (ra | ating current ≤ 10A) | ≤ 5mV | | | Ripple & noise (5H: | z-1MHz) | ≤1mVrms | ≤ 2mVrms | ≤1m\ | | ≤ 2mVrms | | Vrms | ≤ 2mVrms | | | E-84 975,595 | 205 | | | | ≤100µs | | | | | | | Transient recovery | time | 7 | | (50% lc | oad change · minin | num load 0.5A) | | | | | | Temperature coeffic | cient | | | (0.000 | ≤ 300ppm/°(| | | | | | | Constant Current C | | | | | _ = = = = = = = = = = = = = = = = = = = | · . | | | | | | Line Regulation | perunon | I. | | | ≤ 0.01% + 3m | nA. | | | | | | Load regulation | | 5 | | | ≤ 0.01% + 3m | | | | | | | Ripple & noise | | > | | | ≤ 2mArms | | | | | | | Resolution | | | | | _22111111113 | | | | | | | | Voltage | 1mV | | 2m | ıV. | | 2r | mV | | | | Programming | Current | 0.2mA | 1
 0.1 | | † | 0.1 | | | | | | Voltage | 0.1mV | 1 : | 0.11 | | - 25 2 | 0.1 | | · · | | | Reedback | Current | 0.1mA | 1 | 0.1 | | Ť | | mA | | | | Tracking Operation | | | 6 | | | | | | | | | | | ≤ 0.1% +10mV of Master | | ≤ 0.2% +20m | nV of Master | | ≤ 0.1% +10r | mV of Master | | | | Tracking error | | (No Load, with load add load | 1 | (No Load, with | | 1 | | h load add load | | | | | 8 95 - E | regulation ≤200mV) | _ | regulation | ≤200mV) | 1 | regulation | n ≤200mV) | | | | X-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 | Line | ≤ 0.01% + 3mV | | ≤ 0.01% | + 3mV | I | | 6 + 3mV | | | | Parallel regulation | Lood | ≤ 0.01% + 5mV (rating current ≤ 10A | | ≤ 0.01% + 5mV (rat | ting current ≤ 10A) | | ≤ 0.01% + 5mV (ra | ating current ≤ 10A) | | | | | Load | ≤ 0.02% + 5mV (rating current > 10A | | | ting current > 10A) | Ī | | ating current > 10A) | | | | entra a tat | Line | ≤ 0.01% + 5mV | 1 | ≤ 0.01% | | † | | 6 + 5mV | | | | Series regulation | Load | ≤ 200mV | 1 | ≤ 200 | | † | | 00mV | | | | Ripple & noise | | ≤2mVrms(5Hz-1MHz) | 1 | ≤2mVrms(5 | Hz-1MHz) | | | 5Hz-1MHz) | | | | Note | | | | Tracking | g is not supported i | n LOAD mode. | 1 272-637 60 507 | and one of | 70 | | | Meter | | | | | | | | | | | | Full Scale | Voltage | 32.0000V | 1.8V/2.5V/3.3V/5.0V | 62.00 | | 1.8V/2.5V/3.3V/5.0V | | V000V | 1.8V/2.5V/3.3V/5.0V | | | The second secon | Current | 6.2000A | 4 | 3.20 | | 1 | | 000A | | | | Programming | Voltage | 5 digits | 4 | 5 di | | 1 | | igits | | | | Resolution | Current | 5 digits | 4 | 5 di | | 1 | | igits | | | | Reedback | Voltage | 6 digits | - | 6 di | | 1 | | igits | | | | Resolution | Current | 5 digits | | 5 di | | | | igits | b 5 | | | Setting accuracy | Voltage | ± (0.03% of reading + 10mV) | 4 | ± (0.03% of rea | | 1 | | rading + 10mV) | | | | | Current | ± (0.3% of reading + 10mA) | - | ± (0.3% of rea | | 1 | | ading + 10mA) | | | | Readback accuracy | Voltage
Current | ± (0.03% of reading + 10mV)
± (0.3% of reading + 10mA) | + | ± (0.03% of rea
± (0.3% of rea | | + | | ading + 10mV)
ading + 10mA) | | | | DC Load Mode | Carrent | I (0.570 of reading 1 form) | | 2 (0.570 0) 100 | ung i runny | | 2 (0.570 01100 | iding i roming | | | | | Voltage | 1 ~ 32.00V | | 1 - 62 | 2.00V | | 1 ~ 36 | 5.5.00V | | | | Display | Current | 0 ~ 6.200A | | 0 ~ 3. | | Ī | | .200A | | | | - 10 | Power | 0 ~ 50.00W | | 0 ~ 50 | | | 0 ~ 50 | | | | | | CH1/CH2 | 1.500V - 32.00V | | 1.500V - | | I | | - 36.50V | | | | CV Mode | Setting Accuracy | ≤±(0.1% + 30mV) | | ≤±(0.1% | | | | + 30mV) | | | | | Reedback Accuracy | ≤±(0.1% + 30mV) | | ≤±(0.1% | | | | + 30mV) | | | | 4 | Resoltion | 10mV | _ | 10r | | 1 | | lmV | | | | 6.5 | CH1/CH2 | 0 ~ 6.200A | - | 0 ~ 3. | | 1 | | .200A | | | | CC Mode | Setting Accuracy | ≤±(0.3% + 10mA) | | ≤±(0.3% | | | | + 10mA) | | | | | Reedback Accuracy | ≤±(0.3% + 10mA) | - | ≤±(0.3% | | 1 | | + 10mA) | | | | 2 | Resoltion
CH1/CH2 | 1mA
1Ω- 1kΩ | - | 1m
1Ω- | | - | | mA
1kΩ | | | | 20 | CHI/CHZ | ≤±(3% + 1Ω) | + | <±(3% | | + | | 6 + 1Ω) | | | | | Setting Accuracy | (voltage≥0.1V, and current≥0.1A) | 1 | ≤±(376
(voltage≥0.1V, ar | - / | t | | nd current≥0.1A) | | | | CR Mode | 27 % 589 | (voltage≥0.1V, and current≥0.1A)
≤±(3% + 1Ω) | - | (voitage≥0.1v, ar
≤±(3% | | + | | ina current≥0.1A)
6 + 1Ω) | | | | | Reedback Accuracy | (voltage≥0.1V, and current≥0.1A) | 1 | (voltage≥0.1V, ar | | † | | nd current≥0.1A) | | | | | Resoltion | 1Ω | 1 | (voitage_o.rv, ar | | 1 | | Ω | | | | Protection | | | + | | | · | · | | | | | 7 3 | Power Mode | OFF,ON(0.5V-35.0V) | Fixed 5.5V | OFF,ON(0 | | Fixed 5.5V | | 0.5V-38.0V) | Fixed 5.5V | | | OVP | Load Mode | OFF,ON(1.5V-35.0V) | | OFF,ON(1 | .5V-65.0V) | | OFF,ON(1 | 1.5V-38.0V) | | | | | Setting Accuracy | 72 72 72 | 70 | | ±100mV | | n | 24 | % | | | | Resoltion | OFF ON (DOFA C FOA) | 2.14(1)(0.0) | OFF ONLY | 100mV | 2 14/1100 | OFF OFF | UEV E EUV? | 2 14 (1100) | | | 2000 | Power Mode
Load Mode | OFF,ON(0.05A-6.50A)
OFF,ON(0.05A-6.50A) | 3.1A(USB port) | OFF,ON(0. | | 3.1A(USB port) | | .05A-5.50A)
.05A-5.50A) | 3.1A(USB port) | | | OCP | Setting Accuracy | ±20mA | <u> </u> | JFF,014(0. | varta.avrtj | | JFF,014(0 | (JJA-J.JUA) | | | | | Resoltion | 10mA | | | | | | | | | | | Between chassis | *** 1.7000.0.400.000 | | | | | | | | | | Insulation | and terminal | 20MΩ or above (DC 500V) | | | | | | | | | | resistance | Between chassis | 20MO or about (DC 500M | | | | | | | | | | NO. OF STREET | and DC power cord | 30MΩ or above (DC 500V) | | | | | | | | | | General | | | | | | | | | | | | | | Indoor use, Altitude: ≤ 2000m | | | | | | | | | | Operation Environr | ment | Ambient temperature: 0 ~ 40°C | | | | | | | | | | -p | | Relative humidity: ≤ 80% | dagran: 2 | | | | | | | | | 7.50 | | Installation category: II / Pollution
TEMPERATURE: -10°C ~ 70°C | r degree: Z | | | | | | | | | Storage Environme | nt | | | | | | | | | | | Power Iron | | HUMIDITY: ≤70%
AC 100V/120V/220V/230V±10%, 5 | 0/60H- | | | | | | | | | Power Input
Power Consumptio | n | 900VA, 680W | OLOGIC | | | | | | | | | . oner consumptio | | CD User manual x1, Quick Start m | anual x1. Power Code x1 | | | | | | | | | Accessories | | Test lead: GTL-104A x 3 | | | | | | | | | | 1.2 | | (Europe) Test lead: GTL-204A x 3, | GTL-201A x1 | | | | | | | | | Dimensions | | 213 (W) x 145 (H) x 362 (D) mm | | | | | | | | | | Weight | ₹ | Approx. 10kg | | | | | | | | | | | | · | | | | | | | 3736 | | ## ORDERING INFORMATION **GPP-3060** 385W Triple-channel Programmable DC Power Supply **GPP-6030** 385W Triple-channel Programmable DC Power Supply GPP-3650 385W Triple-channel Programmable DC Power Supply ACCESSORIES Power cord, test lead: GTL-104A x 3, European test leads: GTL-204A x 3, GTL-201A x 1 OPTIONAL ACCESSORIES GTL-246 USB Cable GRA-449-E Rack Mount Kit (EIA) GRA-449-J Rack Mount Kit (JIS) INTERFACE Standard: RS-232, USB, Ext I/O, Optional (manufacturer installed only): LAN, GPIB+LAN NOTE: Contact local sales if you have issues with Interface purchase. ## A. TRACKING SERIES AND PARALLEL FUNCTION ## **Output in Parallel Connections** For series and parallel applications of CH1 and CH2, the tracking function of the GPP-Series utilizes the internal circuit to automatically switch the output to serial or parallel output without additional external wiring, providing users with convenience not only in operating procedures but also a more stable output. #### **Output in Series Connections** The tracking function design of other brands requires additional external wiring connections for the output in series or parallel. However, excessively long, thin or inconsistent external wiring may cause inaccurate voltage or current output. ## B. OUTPUT MONITORING FUNCTION **Output Monitoring** The output monitoring function allows users to set the monitoring conditions according to the requirements, including the voltage, current, and power greater than or less than the setting and the logical relationship of AND, OR. It also allows users to sound **Monitoring Function Setting** alarms or stop the output during the measurement process, stop the measurement, and protect the customer's DUT. Both Channel could be monitored simultaneously as well. * Channel 3 does not support the output monitoring function. ## C. SEQUENCE OUTPUT FUNCTION Output Waveform of the GPP-6030/3060 The GPP-Series provides a sequential output function on Channel 1 and Channel 2. This function not only allows users to edit the power output waveform, but also allows users to set the sequential constant voltage (CV) or constant current (CC) load waveform, i.e. a serial power output or a simulation test of a dynamic load. The maximum settable points for sequence function are 2048, and interval range of each point can be set from 1 to 300 seconds. In order to simplify the setting of waveform editing, the GPP-Series has 8 built-in Templet waveforms in sequence output function for users to directly apply for output, including Sine, Pulse, Ramp, Stair Up, Stair Dn, Stair UpDn, Exp Rise, and Exp Fall waveforms. The editing data of the sequence output can be stored in the internal 10 sets of the memory, or to be saved by USB flash drive (Save/Recall) and saved as *.SEQ or *.CSV file; The stored *.CSV can be exported into Excel for editing and analysis. The final edited file can be imported to (Save/Recall) of the power supply using a USB flash drive. # Triple-channel Programmable DC Power Supply ## D. HARDWARE PROTECTION FUNCTION(OVP/OCP/OTP) **OVP Trigger** The protection mechanism of OVP/OCP/OTP is implemented by hardware circuit, which has the advantage of faster response time than competitors who use software to achieve protection. When it is detected that the voltage of the DUT exceeds the setting value of the OVP, the output of the power supply can be stopped in a short time to achieve the purpose of protecting the DUT. ## E. LOAD FUNCTION GPP-Series Application The CH1/CH2 of the GPP series is designed with the load function. A single power supply can meet the basic battery charging and discharging test requirements. It can provide power output in channel 1 and channel 2. The rated constant voltage load (CV), rated constant current load (CC) and maximum $1k\Omega$ constant resistance load (CR) function are built-in to allow users to conduct discharging test without using an electronic load. In application, users can also set either that one channel of the single GPP series as the power output, one channel as the load function to consume the power of the DUT, or that both channels as load functions to consume the power of different loads simultaneously. ## F. OUTPUT DELAY FUNCTION **GPP-Series Delayed Waveform** Output delay function allows users to edit the timing waveform of the power output on/off when the front panel voltage and current settings are unchanged. In order to simplify the setting of waveform editing, the GPP-Series has three built-in timing modes in the
delay output function, including Fixtime, Increase, Decline for users to apply directly. The editing data of the output delay can be stored in the internal 10 sets of memory, or to be saved by USB flash drive (Save/Recall) and saved as *.DLY or *.CSV file. The stored *.CSV can be exported into Excel for editing and analysis. The final edited file can be exported to (Save/Recall) of the power supply using a USB flash drive. #### G. OUTPUT RECORDER FUNCTION GWINSTEK ON BIC OTP === EM BIN Recorder : On REC Channels : OH O'R REC Pariol : OH s REC Groups : 002148 REC Pariol : MEM:RECORDO0 **Schematic Diagram for Recorder Function** **Recorder Function Setting** Save as*.REC The output recorder function records the voltage & current parameters of the output process. The recording interval of each point can be set according to user's requirements, and the shortest interval is 1 second and the longest is 300 seconds. The results can be stored in *.REC or *.CSV format to the power supply or directly saved in the USB flash drive. The stored *.CSV can be exported into Excel to conduct the future analysis. (*.REC can be saved to 2048 records, *.CSV can be saved to 614400 records) ^{*} Channel 3 does not support the output recorder function # Single Channel Programmable DC Power Supply ## GPP-3610H/7250 #### **FEATURES** - * GPP-3610H: 36V/10A; GPP-7250: 72V/5A; 4.3" TFT LCD Display - * Programming Resolution: 1mV/0.2mA (GPP-3610H); 2mV/0.1mA (GPP-7250) - * Readback Resolution: 0.1mV/0.1mA - * Low Ripple Noise: ≤1mVrms/≤2mArms - * Transient Response Time: ≤100ms - * Load Function (CC, CV, CR Mode) - * Utilizes Hardware to Realize Over Voltage Protection/Over Current Protection/ **Over Temperature Protection** - * Delay Function/Output Monitoring Function/ **Output Recorder Function** - * Supports Setting Value, Measurement Value and Output Waveform Display - * Sequential Output Function and 8 Built-in **Template Waveforms** - * The Output Recorder Function Records the Output Voltage & Current Parameters With a Minimum Recording Interval of 1 Second - * Sequence/Delay/Recorder/Panel Setting Conditions Respectively Provide 10 Sets of **Internal Storage Memory** - * Intelligent Temperature-controlled Fan **Effectively Reduces Noise** - * Standard Interface: RS-232, USB, Ext I/O - * Optional Interface (Manufacturer Installed Only): LAN, GPIB+LAN ${\sf GPP\ programmable\ DC\ power\ supply\ series\ incorporates\ two\ 360W\ models,\ namely\ the\ 36V/10A\ {\sf GPP-3610H\ }}$ and the 72V/5A GPP-7250. GPP-3610H provides high programming resolution (1mV/0.2mA) and readback resolution (0.1mV/0.2mA); GPP-7250 provides high programming resolution (2mV/0.1mA) and readback resolution (0.1mV/0.1mA), and the best low ripple noise characteristics ≤1mVrms (5Hz~1MHz)/≤ 2mArms and output transient recovery capability $\!\leq\! 100 \mu s.$ GPP-3610H and GPP-7250 provide a variety of display modes, including channel setting values, measurement values, and waveform display. Using the output monitoring function of the GPP-Series, users can set monitoring conditions according to their needs, generate an alarm or stop output during the measurement process, stop the measurement and protect the customer's DUT. The GPP series provides an output recorder function, the voltage/current of the output process can be recorded in the internal memory, and the results can be saved as (*.REC) or (*.CSV) file and transferred to a USB. The saved *.CSV can be later exported into Excel for analysis. GPP-3610H and GPP-7250 are designed with a load function of up to 100W. The GPP-3610H provides 36V/10A power output, and has built-in maximum 36.5V constant voltage load (CV), maximum 10.2A constant current load (CC) and maximum $1k\Omega$ constant resistance load (CR) functions. GPP -7250 provides 72V/5A power output, and has built-in maximum 72.5V constant voltage load (CV), maximum 5.2A constant current load (CC) and maximum $1k\Omega$ constant resistance load (CR) functions The output of GPP-3610H and GPP-7250 provides the sequence output function, which not only allows users to edit the power output waveform, but also allows users to set a sequence of constant voltage (CV) or constant current (CC) load waveform. For example, sequential power output or dynamic load simulation testing. In order to simplify the settings of waveform editing, the GPP-Series has 8 built-in waveforms in the templet waveform from the sequence output function, including Sine, Pulse, Ramp, Stair Up, Stair Dn, Stair UpDn, Exp Rise, Exp Fall waveforms, providing users to apply for output directly. The complete protection functions comprise OVP, OCP, OPP, and OTP. The protection mechanism of OVP, OCP, and OTP is implemented by hardware circuits. Compared with competitors that use software to implement protection, it has the advantage of fast response time. The OVP and OCP functions allow users to set the protection action point based on the conditions of the DUT. OPP only protects the operation of the load function. The delay function can set the length of time during which the power output is on or off. In addition, the Trigger In/Trigger Out function can synchronize external devices. The intelligent temperaturecontrolled fan can adjust the speed according to the temperature of the power transistor to reduce unnecessary noise. The output value setting and Sequence/Delay/Recorder functions respectively provide 10 sets of internal storage memory, and can be exported/stored using a USB. In addition to standard RS-232 and USB remote interfaces, GPP-3610H and GPP-7250 also have optional LAN or LAN+GPIB interfaces to meet different user needs. **GPP-7250** ## **OUTPUT FUNCTION LIST** | Model | GPP-7250/3610H | |--------------------------------------|----------------| | Functions | CH1 | | Sequence Output Function | ✓ | | Load Functions (CC, CV, CR mode) | ✓ | | Output Delay Function | ✓ | | Output Monitoring Function (10 sets) | ✓ | | Output Recorder Function | ✓ | | Panel Save/Recall | ✓ | ## **OPERATING RANGE** | Model | Number of Output | CH1 | |-----------|------------------|-------------| | GPP-3610H | 1 | 0-36V/0-10A | | GPP-7250 | 1 | 0-72V/0-5A | #### Rear Panel ## **European Type Jack Terminal** # Single Channel Programmable DC Power Supply | SPECIFICATIONS | | | | | | | |----------------------------|---------------------------|--|----------------------------------|--|--|--| | SPECIFICATIONS | | GPP-3610H | GPP-7250 | | | | | OUTPUT MODE | | GFF-3010FI | GFF-7230 | | | | | Number of Channel | | I CH1 | CH1 | | | | | Voltage | | 0 ~ 36.000V | 0 ~ 72.000V | | | | | Current | | 0 ~ 10.0000A | 0 ~ 72.000¥ | | | | | Constant Voltage Operation | | 0 - 10.0000A | 0 ~ 3.0000A | | | | | Line Regulation | | ≤ 0.01% + 3mV | | | | | | Load Regulation | | < 0.01% + 5mV | | | | | | Ripple & Noise (5Hz-1MHz) | | ≤2mVrms | | | | | | Transient Recovery Time | | ≤ 100µs (50% load change, minimum load | | | | | | Temperature Coefficient | | ≤ 300ppm/°C | | | | | | CONSTANT CURRENT OPERA | TION | | | | | | | ine Regulation | | ≤ 0.01% + 3mA | | | | | | oad Regulation | | ≤ 0.01% + 3mA | | | | | | Ripple & Noise | | ≤ 2mArms | | | | | | RESOLUTION | | C Ellis villa | | | | | | Programming | Voltage/Current | 1mV / 0.2mA | 2mV / 0.1mA | | | | | Reedback | Voltage/Current | 0.1mV / 0.2mA | 0.1mV / 0.1mA | | | | | METER | | | | | | | | Full Scale | Voltage/Current | 36.5000V / 10.2000A | 72.5000V / 5.2000A | | | | | Programming Resolution | Voltage/Current | 5 digits / 6 digits | | | | | | Reedback Resolution | Voltage/Current | 6 digits / 6 digits | | | | | | | Voltage | ± (0.03% of reading + 10mV) | | | | | | Setting Accuracy | Current | ± (0.3% of reading + 10mA) | | | | | | 2 812 1786 | Voltage | ± (0.03% of reading + 10mV) | | | | | | Readback Accuracy | Current | ± (0.3% of reading + 10mA) | | | | | | OC LOAD MODE | | (| | | | | | | Voltage | 1 ~ 36.50V | 1 ~ 72.50V | | | | | Display | Current | 0 ~ 10.200A | 0 ~ 5.200A | | | | | | Power | 0 ~ 100.00W | 0 ~ 100.00W | | | | | | CH1 | 1.500V ~ 36.50V | 1.500V ~ 72.50V | | | | | CV Mode | Setting/Reedback Accuracy | ≤±(0.1% + 30mV) | ≤±(0.1% + 30mV) | | | | | 7.500.000 | Resoltion | 10mV | 10mV | | | | | | CH1 | 0 ~ 10.200A | 0 ~ 5.200A | | | | | CC Mode | Setting/Reedback Accuracy | ≤±(0.3% + 10mA) | ≤±(0.3% + 10mA) | | | | | | Resoltion | 1mA | 1mA | | | | | | CH1 | 1Ω ~ 1kΩ | $1\Omega \sim 1k\Omega$ | | | | | | | $\leq \pm (3\% + 1\Omega)$ | ≤±(3% + 1Ω) | | | | | CR Mode | Setting/Reedback Accuracy | (voltage≥0.1V, and current≥0.1A) | (voltage≥0.1V, and current≥0.1A) | | | | | | Resoltion | 1Ω | 1Ω | | | | | PROTECTION | | | | | | | | | Power Mode | OFF,ON(0.5V ~ 38.0V) | OFF,ON(0.5V ~ 75.0V) | | | | | | Load Mode | OFF,ON(1.5V ~ 38.0V) | OFF,ON(1.5V ~ 75.0V) | | | | | OVP | Setting Accuracy | ±100mV | | | | | | | Resoltion | 100mV | | | | | | | Power Mode | OFF,ON(0.05A ~ 10.5A) | OFF,ON (0.05A ~ 5.50A) | | | | | | Load Mode | OFF,ON(0.05A ~ 10.5A) | OFF,ON(0.05A ~ 5.50A) | | | | | OCP | Setting Accuracy | ±20mA | ,, | | | | | | Resoltion | 10mA | | | | | | Varior 1911 1911 1911 | | Between chassis and terminal : 20MΩ or above | (DC 500V) | | | | | nsulation Resistance | | Between chassis and DC power cord : 30MΩ or | | | | | | GENERAL | | | The same American Artists | | | | | | | Indoor use, Altitude: ≤ 2000m | | | | | | Operation Environment | | Ambient temperature: 0 ~ 40°C / Relative humidity: ≤ 80% | | | | | | - F | | Installation category: II / Pollution degree: 2 | | | | | | Storage Environment | | TEMPERATURE: -10°C ~ 70°C / HUMIDITY: ≤70°C | 9% | | | | | Power Input | | AC 100V/120V/220V/230V±10%, 50/60Hz | *** | | | | | Power Consumption | | 900VA, 680W | | | | | | Dimensions & Weight | | 213 (W) x 145 (H) x 362 (D) mm ; Approx. 10kg | | | | | | A CIBIT | | (11) A 1 13 (11) A 332 (D) HIIII , Approx. Tokg | | | | | ## ORDERING INFORMATION GPP-3610H 36V/10A Single Channel Programmable DC Power
Supply GPP-7250 72V/5A Single Channel Programmable DC Power Supply ACCESSORIES : Power Cord ; Test Lead : GTL-104A \times 1, GTL-105A \times 1 OPTIONAL ACCESSORIES GTL-246 USB Cable GRA-449-E Rack Mount Kit (EIA) GRA-449-J Rack Mount Kit (JIS) INTERFACE Optional (manufacturer installed only): LAN Interface; GPIB+LAN Interface ## A. OUTPUT MONITORING FUNCTION **Output Monitoring** The output monitoring function allows users to set the monitoring conditions according to the requirements, including voltage, current, and power greater than or less than the setting and the logical relationship of AND, OR. It also allows users to **Monitoring Function Setting** sound alarms or stop the output during the measurement process, stop the measurement, and protect the customer's DUT. #### SEQUENCE OUTPUT FUNCTION Output Waveform of the GPP-Series GPP-3610H and GPP-7250 provide the sequence output function, which not only allows users to edit the power output waveform, but also allows users to set a sequence of constant voltage (CV) or constant current (CC) load waveform for instance, a serial power output or a simulation test of a dynamic load. The sequence editing point can set up to 2048 steps, and the interval time of each step can be set from 1 to 300 seconds. In order to simplify the settings of waveform editing, the GPP series has 8 built-in waveforms in the templet waveform in the sequence output function, including Sine, Pulse, Ramp, Stair Up, Stair Dn, Stair UpDn, Exp Rise, Exp Fall waveforms for users to apply output directly. The edited data output by sequence can be stored in the instrument's internal 10 sets of memory, or can be accessed using a USB flash drive (Save/Recall) and saved as *.SEQ or *.CSV file. The saved *.CSV can be exported to Excel for editing and analysis. The edited files can be uploaded (Save/Recall) into the instrument using a USB flash drive. ## C. HARDWARE PROTECTION FUNCTION(OVP/OCP/OTP) **OVP Trigger** The protection mechanism of OVP/OCP/OTP is implemented by hardware circuit, which has the advantage of faster response time than competitors who use software to achieve protection. When it is detected that the voltage of the DUT exceeds the setting value of the OVP, the output of the power supply can be stopped in a short time to achieve the purpose of protecting the DUT. # Single Channel Programmable DC Power Supply ## D. LOAD FUNCTION **GPP-Series Application** GPP-3610H and GPP-7250 are designed with a load function of up to 100W. GPP-3610H has built-in maximum 36.5V constant voltage load (CV), maximum 10.2A constant current load (CC) and maximum $1k\Omega$ constant resistance load (CR) functions. GPP-7250 has built-in maximum 72.5V constant voltage load (CV), maximum 5.2A constant current load (CC) and maximum $1k\Omega$ constant resistance load (CR) functions, so users can perform discharge tests without using an additional electronic load. ## E. OUTPUT DELAY FUNCTION **GPP-Series Delayed Waveform** Output delay function (Delay) allows users to edit the power output on/off timing waveform while the front panel voltage and current settings remain unchanged. In order to simplify the settings of waveform editing, the GPP series has 3 built-in timing modes in the delay output function in a standalone instrument, including Fixtime, Increase, and Decline, for users to apply directly. The edited data output by output delay can be stored in the instrument's internal 10 sets of memory, or can be accessed using a USB flash drive (Save/Recall) and saved as *.DLY or *.CSV file. The saved *.CSV can be exported to Excel for editing and analysis. The edited files can be uploaded (Save/Recall) into the instrument using a USB flash drive. ## F. OUTPUT RECORDER FUNCTION GUINSTEK CHI REC OTP --- IN REC OTP --- IN REC Charmels : CHI CHZ REC Charmels : CHI CHZ REC Chard : 1001s REC Groups : 002048 REC Path : MEM:/RECORD00 **Schematic Diagram for Recorder Function** **Recorder Function Setting** Save as*.REC The output recorder function records the voltage & current parameters of the output process. The recording interval of each point can be set according to user's requirements, and the shortest interval is 1 second and the longest is 300 seconds. The results can be stored in *.REC or *.CSV format to the power supply or directly saved in a USB flash drive. The stored *.CSV can be exported into Excel to conduct the future analysis. (*.REC can record up to 2018 lots, *.CSV can record up to 614400 lots) # Multi-output Programmable DC Power Supply ## GPP-1326/2323/3323/4323 #### **FEATURES** - * 4.3" TFT LCD Display - * Supports Setting Value, Measurement Value and Output Waveform Display - * Load Function (CC, CV, CR Mode) - * Setting Resolution: 1mV/0.1mA; Read Back Resolution: 0.1mV/0.1mA - * Low Ripple Noise: ≦350µVrms/≦2mArms - * Transient Response Time: ≦50μs - * Tracking Series and Parallel Function without Additional External Wiring - * Utilizing Hardware to Realize Over Voltage Protection/Over Current Protection/Over Temperature Protection - * Delay Function/Output Monitoring Function/ Output Recorder Function - * Intelligent Temperature Control Fan Effectively Reduces Noise - * Sequential Output Function and Built-in 8 Template Waveforms - * The Output Recorder Function Records The Output Voltage & Current Parameters with A Minimum Recording Interval of 1 Second - * Provides 10 Sets of Memory for Each Sequence /Delay/Recorder/Panel Setting Condition - * GPP-3323 Supports A USB(Type A) Output Terminal - * Standard: RS-232, USB, Ext I/O; Optional (Manufacturer Installed Only): LAN, GPIB+LAN - * Compatible with Commands of GPD-X303S Series # With the maximum output power of 217W, the GPP-Series, the multi-channel programmable DC power supply, includes four models: GPP-1326 (0–32V/0–6A) for single-channel output and GPP-2323 for dual-channel output (CH1:0–32V/0–3A, CH2:0–32V/0–3A), GPP-3323 for three-channel output (CH1: 0–32V/0–3A, CH2:0–32V/0–3A, CH3: 1.8V, 2.5V, 3.3V, 5.0V/5A) and GPP-4323 for four-channel output (CH1:0–32V/0–3A, CH2:0–32V/0–3A, CH3:0–5V/0 ~1A, CH4: 0~15V/0–1A). This series not only provides high program resolution (1mV/0.1mA) and read back resolution (0.1mV/0.1mA), but also features optimal low-ripple noise characteristics \leq 350µVrms/ \leq 2mArms and output transient recovery capability \leq 50µs. Independent output on-off switch is provided for each channel. For series and parallel applications of CH1 and CH2, the tracking function of the GPP-Series utilizes the internal circuit to automatically switch the output to serial or parallel output without additional external wiring, providing users with convenience not only in operating procedures but also a more stable output. The tracking function design of other brands requires additional external wiring connections for the output in series or parallel. However, excessively long, thin or inconsistent external wiring may cause inaccurate voltage or current output. The GPP-Series offers a variety of display modes, including single or multi-channel setting values, measurement values, and waveform displays. The Monitor function of the GPP-Series allows users to set monitoring conditions according to requirements, sound alarms or stop output during the measurement process, and stop measurement and protect the customer's DUT. The GPP-Series provides output recorder function, which records the voltage/current of the output process to the internal memory, and the result can be stored as a (*.REC) or (*.CSV) file, which can then be transferred to the USB flash drive. The stored *.CSV can be exported to the Excel to conduct the future analysis. The CH1/CH2 of the GPP-Series are designed with the load function. A single power supply can set one channel as the power output, and one channel for the load function to consume the power of the DUT so as to meet the basic charging and discharging test requirements for battery. Channel 1 and channel 2 not only provide 32V/3A power output, but also feature built-in maximum 32V constant voltage load (CV), maximum 3.2A constant current load (CC) and maximum $1k\Omega$ constant resistance load (CR) function. The GPP-Series provides the sequential output function on Channel 1 and Channel 2. This function not only allows users to edit the power output waveform, but also allows users to set the sequential constant voltage (CV) or constant current (CC) load waveform, i.e. a serial power output or a simulation test of a dynamic load. In order to simplify the setting of waveform editing, the GPP-Series has 8 built-in Templet waveforms in the sequence output function for users to directly apply for output, including Sine, Pulse, Ramp, Stair Up, Stair Dn, Stair UpDn, Exp Rise, Exp Fall waveforms. The sound protection functions include OVP/OCP/OPP/OTP, in which the protection mechanism for OVP/OCP/OTP is implemented by hardware circuit that has the advantage of faster response time compared with competitors who adopt software to achieve protections. The OVP/OCP functions allow users to set the protection action point (except CH3 of GPP-3323) according to the conditions of the DUT. The OPP is only activated during the operation of the load function. The Delay Function sets the length of time during channel 1 or channel 2 power output on or during power output off. In addition, the Trigger In/Trigger Out functions synchronize external devices. The GPP-3323 channel 3 adds a 3A USB (Type A) output terminal for USB charging test. The intelligent temperature-controlled fan can adjust the speed according to the temperature of the power transistor so as to reduce unnecessary noise. The output value setting and the Sequence/Delay/Recorder functions provide 10 sets of internal memory for use, and can be loaded/stored using a USB flash drive. In addition to the standard RS-232 and USB remote interfaces, the GPP-Series also has an optional LAN or LAN+GPIB interface to facilitate different requirements. The
commands of the GPP-Series conform to SCPI requirements and are compatible with the commands of the GPD-X303S Series. ## European Type Jack Terminal ## Rear Panel (LAN+GPIB) #### Rear Panel (LAN) Rear Panel #### **OUTPUT FUNCTION LIST** | 4 | GPP-4323 | | | | | | | | | |---------------------------------------|----------|----------|--------------------------|-----|--|--|--|--|--| | Model | | GPP-3323 | | | | | | | | | Number | GPP- | 2323 | | | | | | | | | | GPP-1326 | | | | | | | | | | Number of
Outputs | СН1 | CH2 | CH3 | CH4 | | | | | | | Sequence Output
Function | 1 | 1 | | | | | | | | | Load Functions
(CC, CV, CR mode) | 1 | 1 | | | | | | | | | Output Delay
Function | 1 | 1 | | | | | | | | | Output Monitoring
Monitor(10 sets) | 1 | 1 | (CPP3323 not supported) | 1 | | | | | | | Output Recorder
Function | 1 | 1 | (CPP-3323 not supported) | 1 | | | | | | | Panel Save/Recall | 1 | 1 | 1 | 1 | | | | | | # **Multi-output Programmable DC Power Supply** | SPECIFICA | TIONS | | | | | | | | | | | |---|---|---|--|--|----------------------------|--------------------|-----------------------------|--|------------------------------------|-------------|---| | SPECIFICA | 110143 | GPP-1326 | GP | P-2323 | | GPP-33 | 323 | GPP-4323 | | | | | OUTPUT MODE | | | | | l . | | | | | | | | Number of Channel | | CH1 | CH1 | CH2 | CH1 | CH2 | CH3 | CH1 | CH2 | CH3 | CH4 | | Voltage | | 0 ~ 32.000V | 1.8V/2.5V/3.3V/5.0V, ±5% | 0 ~ 32.000V | 0 ~ 32.000V | 0 ~ 5.000V | 0 ~ 15.000V | | Current | | 0~6.0000A | 0 ~ 3.0000A | 0 ~ 3.0000A | 0 ~ 3.0000A | 0 ~ 3.0000A | 5A (USB Port 3A) | 0 ~ 3.0000A | 0 ~ 3.0000A | 0 ~ 1.0000A | 0 ~ 1.0000A | | Tracking Series Voltage/ | Current | c 4. | | / / 0 ~ 3.0000A | 0 ~ 64.000V / | | | 0 ~ 64.000V | | | - X | | Tracking Parallel Voltage | | . 32 | 0 ~ 32.000\ | / / 0 ~ 6.0000A | 0 ~ 32.000V / | 0 ~ 6.0000A | 12 | 0 ~ 32.000V | 0 ~ 6.0000A | | 17 | | | 23 output current from the 2 terminals | should Not exceed 5A. | | | | | | | | | | | CONSTANT VOLTAGE O | OPERATION | | | | | | | 1 | | | | | Line Regulation | | ≤ 0.01% + 3mV | | 1% + 3mV | ≤ 0.01%
≤ 0.01%+3mV(rat | | ≤ 3mV | | ≤ 0.01% + | | | | Load Regulation | | ≤ 0.01%+3mV (rating current≤ 3A)
≤ 0.02%+5mV (rating current>3A) | | rating current≤3A)
rating current>3A) | ≤ 0.01 %+3 mV (rail | | ≤ 5mV | | 0.01%+3mV(ratin
0.02%+5mV(ratin | | | | Ripple & Noise (5Hz-1M | (Hz) | ≤0.5mVrms | | 5mVrms | ≤0.35m | | ≤2mVrms | ≤0.35n | | | Vrms | | | - | ≤100µs | | 50µs | _0.5511 | | ≤100µs | _0.551 | ≤50µs | | *************************************** | | Transient Recovery Time | | | | | - | change · minimu | | | | | | | Temperature Coefficient | | ≤ 300ppm/°C | | | | | | | | | | | CONSTANT CURRENT | OPERATION | | | | | | | | | | | | Line Regulation | | ≤ 0.2% + 3mA | | | | | | | | | | | Load Regulation | | ≤ 0.2% + 3mA | | | | | | | | | | | Ripple & Noise | | ≤4mArms | ≤ 2 | mArms | | ≤ 2mArm | 15 | | ≤ 2mArr | ns | | | Resolution | 14. h | | 1 | 101-4 | 3 | | | I a | 3-1//03 | | | | Programming
Reedback | Voltage/Current | 1mV / 0.2mA
1mV / 0.2mA | | / 0.1mA
/ / 0.1mA | 1mV / 0.1mV / | | | 2 | 1mV / 0.1
0.1mV / 0. | | | | TRACKING OPERATION | Voltage/Current | Imv / 0.2mA | 0.1111 | v / 0.1mpc | v.imv/ | U.IIIIA | | | 0.1mv / 0. | IIIIA | | | TRACKING OPERATION | (CHI/CH2) | | <+/0.195+10mV | of Master(0~32V)) | ≤±(0.1%+10mV of | Master(032VI) | | ≤±(0.1%+10mV o | F.Master(0, 321/1) | | | | Tracking Error | | | | ith load add load | (No Load, with | 1 11 | | (No Load, with | | 1 | | | • | | | A CONTRACTOR OF THE PARTY TH | on≤100mV) | regulation | | | regulation | | | | | | Line | 1 | ≤ 0.01 | 1% + 3mV | ≤ 0.01% | + 3mV | | ≤ 0.01% | + 3mV | | | | Parallel Regulation | 11 | - | | rating current≤3A) | ≤ 0.01%+3mV(rat | | | | ting current≤3A) | 1 | - | | | Load | | ≤ 0.02%+5mV | (rating current>3A) | ≤ 0.02%+5mV(ra | ting current>3A) | | ≤ 0.02%+5mV(ra | ating current>3A) | 1 | | | Series Regulation | Line | | ≤ 0.01 | 1% + 5mV | ≤ 0.01% | + 5mV | | ≤ 0.01% | + 5mV |] | | | | Load | | ≤ 1 | 100mV | ≤ 100 |)mV | | ≤ 100mV | | | | | Ripple & Noise | | | ≤1mVrms | s(5Hz-1MHz) | ≤1mVrms (5 | Hz-1MHz) | | ≤1mVrms(5 | Hz-1MHz) | | | | | e Tracking function, and Tracking is no | t supported in LOAD mode. | | | | | | | | | | | METER | 14-h | | 22.0000 | | 33.0000V | 2 22224 | | | 33.0000V / 3. | 00004 | | | Full Scale | Voltage/Current | 33.0000V / 6.2000A | | V / 3.2000A
s / 5 digits | 5 digits / | 1,000,000 | 1.8V/2.5V/3.3V/5.0V | 3 | Carried Co Auto | | | | Programming Resolution
Reedback Resolution | Voltage/Current
Voltage/Current | 5 digits / 5 digits
6 digits / 5 digits | _ | s / 5 digits | 6 digits / | | | 5 digits / 5 digits
5 digits / 6 digits | | _ | | | er acestro a successión de | Voltage | ± (0.03% of reading + 10mV) | | reading + 10mV) | ± (0.03% of rea | | | ± (0.03% of readin | | | | | Setting Accuracy | Current | ± (0.3% of reading + 10mA) | | eading + 10mA) | ± (0.3% of rea | | | | ± (0.3% of reading | | | | | Voltage | ± (0.03% of reading + 10mV) | ± (0.03% of | reading + 10mV) | ± (0.03% of rea | ding + 10mV) | | , | ± (0.03% of reading | | | | Readback Accuracy | Current | ± (0.3% of reading + 10mA) | ± (0.3% of r | eading + 10mA) | ± (0.3% of read | ding + 10mA) | | | ± (0.3% of reading | g + 10mA) | | | DC LOAD MODE | | | | | | | | | | 12 | | | | Voltage | 1 ~ 33.00V | | 33.00V | 1 ~ 33 | | | 1 ~ 3: | | | | | Display | Current | 0 - 6.200A | | 3.200A | 0 ~ 3. | | | 0 ~ 3. | | | | | | Power | 0 – 100.00W | | 50.00W | 0 ~ 50 | V-1-12-V-V- | | 0 ~ 50 | 27-22-100 | | | | CV Mode | CH1/CH2 | 1.500V ~ 33.00V | | ~ 33.00V | 1.500V ~ | 22.00 (1.07) | | 1.500V - | | - | | | CV Mode | Setting/Reedback Accuracy
Resoltion | ≤±(0.1% + 30mV)
10mV | | % + 30mV)
0mV | ≤±(0.1% - | | | ≤±(0.1%
10r | | + | | | 1 | CH1/CH2 | 0 ~ 3.200A | | 3.200A | 0 - 3.: | | - Augretic | 0 - 3. | | 1 | | | CC Mode | Setting/Reedback Accuracy | ≤±(0.3% + 10mA) | | % + 10mA) | ≤±(0.3% - | | A993 | ≤±(0.3% | | 1 | | | prox.00000000 | Resoltion | 1mA | | 1mA | 1m | | | 1n | | 1 | | | | CH1/CH2 | 1Ω- 1kΩ | |)- 1kΩ | 1Ω- | | | 1Ω- | | 1 | | | CR Mode | Setting/Reedback Accuracy | ≤±(3% + 1Ω) | ≤±(3 | 1% + 1Ω) | ≤±(3% | +1Ω) | | ≤±(3% | + 1Ω) |] | | | Ch Widde | | (voltage≥0.1V, and current≥0.1A) | (voltage≥0.1V, | and current≥0.1A) | (voltage≥0.1V, ar | | | | nd current≥0.1A) | | | | | Resoltion | 10 | | 1Ω | 10 |) | | 1 | Ω | | | | PROTECTION | | | | | | | | - | | 055.00 | 055.51 | | | Power Mode | OFF,ON(0.5V - 35.0V) | OFF,ON(| 0.5V ~ 35.0V) | OFF,ON(0.5 | 5V ~ 35.0V) | Fixed 5.5V | OFF,ON(0. | 5V ~ 35.0V) | (0.5V-6.0V) | | | OVP | Load Mode | OFF,ON(1.5V ~ 35.0V) | OFF,ON(| 1.5V ~ 35.0V) | OFF,ON(1.5 | SV ~ 35.0V) | | OFF,ON(1. | 5V ~ 35.0V) | 10.00 | | | 70.00 | Setting Accuracy | ±100mV | | | | | | | | 100 | | | 1 | Resoltion | 100mV | | | | | | | | | | | | Power Mode | OFF,ON (0.05A ~ 7.00A) | | 0.05A - 3.50A) | OFF,ON(0.0 | | 3.1A(USB port) | OFF,ON(0.0 | | OFF,ON(0.0 | 05A – 1.20A) | | ОСР | Load Mode | OFF,ON (0.05A ~ 7.00A) | OFF,ON(0 | 0.05A - 3.50A) | OFF,ON(0.0 | 5A ~ 3.50A) | | OFF,ON(0.0 | 05A ~ 3.50A) | | | | 10/30/20 | Setting Accuracy | ±20mA | | | | | | | | | | | | Resoltion | 10mA | 10 h. /p.= | rom n | | | | | | | | | Insulation Resistance | | Between chassis and terminal : 20M | | | | | | | | | | | GENERAL | | Between chassis and DC power cor | u : 30IVE/ OF above | (DC 300V) | | | | | | | | | Operation Environment | | Indoor use, Altitude: ≤ 2000m; Am | hient temperature | r 0 = 40°C / Palatina | humidity < 2094 - I- | stallation categor | c II. / Pollution degree: 3 | | | | | | Storage Environment | 1 |
TEMPERATURE: -10°C ~ 70°C / HL | | 10 c / Neiative | | | , I omation degree 2 | | | | | | Power Input | | AC 100V/120V/220V/230V±10%, 5 | | | | | | (3 | | | | | Power Consumption | | 360W | | 160W | | 420W | 9 | | 420W | | | | Dimensions & Weight | | 213 (W) x 145 (H) x 312 (D) mm; | Approx. 7.5kg | | | | | | | | | | | | | | _ | _ | _ | | _ | _ | _ | | ## ORDERING INFORMATION CPP-1326 (32V/6A) Single-Output Programmable DC Power Supply CPP-2323 (32V/3A*2) Dual-Output Programmable DC Power Supply GPP-3323 (32V/3A*2; 1.8V or 2.5V or 3.3V or 5V/5A*1) Three-Output Programmable DC Power Supply CPP-4323 (32V/3A*2; 5V/1A; 15V/1A) Four-Output Programmable DC Power Supply ACCESSORIES: Power cord x 1 GPP-1326 Test Lead GTL-104A x 1, GTL-105A x 1 GPP-2323 Test Lead GTL-104A x 2, GTL-105A x 2 GPP-3323 Test Lead GTL-104A x 3 European Test Leads : GPP-1326 GTL-203A x 1, GTL-204A x 1, GTL-201A x 1 GPP-2323 GTL-204A x 2, GTL-201A x 1 GPP-4323 GTL-203A x 2, GTL-201A x 1 GPP-3323 GTL-204A x 3, GTL-201A x 1 OPTIONAL ACCESSORIES GRA-449-J Rack Mount Kit (JIS) GTL-246 USB Cable GRA-449-E Rack Mount Kit (EIA) OPTIONS (Manufacturer Installed Only) LAN Interface; GPIB+LAN Interface # GPD-2303S/3303S/ 4303S/3303D ## **FEATURES** - * 2, 3 and 4 Independent Isolated Output - * 4 LED Display Sets : 3 Digits After Decimal Point (GPD-2303S/3303S/4303S) - * Minimum Resolution: GPD-2303S/3303S/4303S (1mV/1mA) GPD-3303D (100mV/10mA) - * Digital Panel Control (Rotary Encoder Switch, Rubber Key With Indicator) - * User-Friendly Operation, Coarse / Fine Volume Control - * 4 Sets Save / Recall - * Key-Lock - * Output ON/OFF - * Tracking Series and Parallel Mode - * Smart Cooling Fan Achieving Low Noise - * Compact Design - * PC Software & USB Driver - * USB Standard Interface - * Optional European Jack Type Terminal ## **Rear Panel** ## **European Type Jack Terminal** The GPD-Series is a cutting edge, economical, high resolution programmable power supply, Which is equipped with 2, 3 and 4 independent output channels and support a maximum output from 180Watt to 195Watt. The power supplies include four sets of memory for voltage and current setting, a USB remote interface, high resolution (GPD-2303S / GPD-3303S / GPD-4303S) and intelligent fan control to reduce noise. The durable features along with the free output monitoring software make the GPD-Series suitable for any lab as well as the LED industry. | SPECIFICATIO | | | | | | | | | | | | | |---|---|----------------------------|---|----------|---------------|---------------|----------|------------|---------|-----------|------------|--------------| | | GPD-2303S GPD-3303S G | | GPD |)-4303S | | GPD-3303D | | | | | | | | OUTPUT | | | | | | | | | | | | | | Channel | CH1 | CH2 | CH1 | CH2 | CH3 | CH1 | CH2 | CH3 | CH4 | CH1 | CH2 | CH3 | | Voltage | 0~30V | 0~30V | 0~30V | 0~30V | 2.5/3.3/5.0V | 0~30V | 0~30V | 0~5V | 0~5V | 0~30V | 0~30V | 2.5/3.3/5.0 | | *** | | | | | | | | 5.001V~10V | | | | | | Current | 0~3A | 0~3A | 0~3A | 0~3A | 3A | 0~3A | 0~3A | 0~3A | 0~1A | 0~3A | 0~3A | 3A | | 304 Oc. 20 | 3577 | 12 W | 200 AV | - W | | 51.51 | 50 - 40. | or
0~1A | 0,000 | 007.5 | 30 10 | 874 | | CONSTANT VOL | TAGE | OPERA | TION | | | | | U~IA | | | | | | Regulation | Line re | ine regulation ≤ 0.01%+3mV | | | | | | | | | | | | | | | | | 3mV(rating | current | ≤ 3A); | ≤ 0.02% | +5mV | (rating | urrent | >3A) | | Ripple & Noise | | | Hz~1N | | | | | | | , , | | , | | Recovery Time | ≤100 p | us (50 | %Load | change | e, Minimum | load 0 | .5A) | | | | | | | Temp.Coefficient | ≤300p | pm / ° | С | | | | | | | | | | | CONSTANT CUR | RENT | OPERA | TION | | | | | | | | | | | Regulation | Line re | gulatio | n≤0.2 | %+3m | A; Load regi | ulation | ≤ 0.2% | +3mA | | | | | | Ripple Current | ≤3mA | | | | | | | | | | | | | TRACKING OPER | RATION | 1 | | | | | | | | | | | | Regulation of | | | on <u>≤</u> 0.0 | | | | | | | | | | | PAR. | Load regulation $\leq 0.01\%+3$ mV (rating current ≤ 3 A); $\leq 0.02\%+5$ mV (rating current > 3 A) | | | | | | | | | | | | | Regulation of | | | on ≤0.0 | | mV | | | | | | | | | SER. | Load regulation≤100mV
≤0.1%±10mV (10 ~ 30V) no load, with load added load regulation ≤100mV | | | | | | | | | | | | | Tracking Error | ≥ 0.19 | 6±10m | V (10 ~ | 30V) r | no load, with | i load a | idded l | oad regul | ation : | ≤100m\ | <u> </u> | | | METER | Carren | | | v | | | | | | | | | | Display | | | | | Display (full | | | | | | | 4"LED Displa | | | | | | " LED I | Display (full | scale:3 | 3.2A) | | - 15 | | - | 4"LED Displa | | Resolution | | e: 1mV
nt: 1mA | | | | | | | - 11 | Voltage: | | | | Program | | | | PDC. | +10 digits) | | | | - 18 | | 363.632.63 | RDG+2 digit | | _ | | | | | 10 digits) | | | | - 1 | | * | RDG+2 digit | | Readback | | | | | +10 digits) | | | | - 13 | | • | RDG+2 digit | | Aaccuracy(25±5°C) | | | | | . , | | | | | | | RDG+2 digit | | CH3 SPECIFICAT | | (0 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | ro digita) | | | | | Currentia | (0.570 01 | NDG12 digit | | | IONS | | / 2 EV | 112 21/1 | 5V)±8% | 0 51/ | / 5~10 | ۸/ | | (2.5V/ | 2 21//51 | / \+00/ | | Output Voltage Output Current | | | 3A | 13.541 | JV J±676 | 2012-0-200 | / 0~1A | | - 10 | 3A | 3.34/34 | 1-0/0 | | Regulation | | | 1.2 | egulati | on< | 35 65 9 | regulati | | - 10 | Line reg | ulation | < | | (25±5°C) | - | 200 | | +3mV | | | 6+3mV | | | 0.01%+ | | _ | | (23.5 0) | | | | regulat | | | regulat | | | Load re | | 1 ≤ | | SAVE TO PROTE MATERIALS | | | | +3mV | | | 6+3mV | | | 0.01%+ | | | | Repple & Noise | 3. | | <u> </u> | /rms(5 | Hz~1MHz) | <u><2m</u> | Vrms (5 | Hz~1MF | 1z) | < 1mVr | ms(5Hz | ~1MHz) | | KEY LOCK | | | | | | | | | | | | | | Yes | RECALI | | | | | | | | | | | | | MEMERY SAVE | LECALI | - | | | | | | | | | | | | MEMERY SAVE/I | | | | | | | | | | | | | | MEMERY SAVE/I
4 sets
POWER SOURCE | E | | | | | | | | | | | | | 4 sets | | 0V±10 | %, 50/ | 60Hz; | Power consu | umptio | n : 490 | VA max. | | | | | ## ORDERING INFORMATION GPD-2303S GPD-2303S 2 Channels, 180W Programmable Linear DC Power Supply GPD-3303S GPD-3303S 3 Channels, 195W Programmable Linear DC Power Supply GPD-4303S GPD-4303S 4 Channels, 195W Programmable Linear DC Power Supply GPD-3303D GPD-3303D 3 Channels, 195W Programmable Linear DC Power Supply ## ACCESSORIES: GPD-2303S Test Lead GTL-104A x 2, European Test Lead GTL-204Ax2, GTL-201A x 1 GPD-3303S Test Lead GTL-104A x 2,GTL-105A x 1; European Test Lead GTL-203A x 1, GTL-204A x 2, GTL-201A x 1 GPD-4303S Test Lead GTL-104A x 2,GTL-105A x 2; European Test Lead GTL-203A x 2, GTL-204A x 2, GTL-201A x 1 GPD-3303D Test Lead GTL-104A x 2,GTL-105A x 1; European Test Lead GTL-203A x 1, GTL-204A x 2, GTL-201A x 1 #### OPTIONAL ACCESSORIES GTL-246 USB Cable FREE DOWNLOAD PC Software including Data Log Labview Driver # **Programmable Linear DC Power Supply** ## PSS-2005/3203 #### **FEATURES** - * Digitized Programmable Interface - * High Resolution 10mV, 1mA - * High Stability, Low Drift - * Over-Voltage, Over-Current, Over Temperature Protection - * Intelligent Fan Control (Change by Output Power) - * Built-in Buzzer Alarm - * LabVIEW Driver - * Standard Interface: RS-232C - * Optional Interface : GPIB (IEEE-488.2) - * Optional European Jack Type Terminal ## **European Type Jack Terminal** ## Rear Panel The PSS-Series is a single output, 96W or 100W, programmable linear DC power supply. OVP, OCP, and OTP protect the PSS series and their loads from unexpected conditions. The LCD panel simultaneously displays output and other parameters and the regulated cooling fan ensures low noise for comfortable operation. RS232C and GPIB interfaces, SCPI command sets and LABVIEW drivers make remote control and ATE software development easier. (Note: only RS-232C or GPIB can be installed at one time) The compact PSS series is suitable for any high resolution bench-top or rack mount application. | SPECIFICATIONS | | | | | | |
--|---|--------------------|--|--|--|--| | SFECIFICATIONS | PSS-2005 | PSS-3203 | | | | | | OUTPUT | 133-2003 | 133-3203 | | | | | | Voltage | 0 ~ 20V | 0 ~ 32V | | | | | | Current | 0 ~ 5A | 0 ~ 3A | | | | | | OVP | 0 ~ 21V | 0 ~ 33V | | | | | | LOAD REGULATION | | | | | | | | Voltage | < 3mV (< 5mV, rating current > | | | | | | | Current | ≤ 3mA (≤ 5mA, rating current > | 3.0A) | | | | | | LINE REGULATION | | | | | | | | Voltage | ≤ 3mV | | | | | | | Current | ≤ 3mA | | | | | | | RESOLUTION | 1 | | | | | | | Voltage | 10mV | | | | | | | Current
OVP | 1mA (2mA, rating current > 3.0A | () | | | | | | PROGRAM ACCURACY (25 ± | 1974 C. SE. | | | | | | | The state of s | < 0.05%+20mV | | | | | | | Voltage
Current | ≤ 0.05%+20mV ≤ 0.1%+5mA (+10mA, rating cut) | rrent > 3 OA) | | | | | | OVP | < 0.05%+20mV | 1011 2 3.04) | | | | | | RIPPLE & NOISE (20Hz ~ 20M | _ | | | | | | | Voltage | Ripple ≤ 1mVrms/3mVp-p ; Nois | e < 2mVrms/30mVp-p | | | | | | Current | ≤ 3mArms (≤ 5mArms, rating co | | | | | | | TEMPERATURE COEFFICIEN | | | | | | | | Voltage | | | | | | | | Current | ≤ 100ppm+3mV
≤ 100ppm+3mA | | | | | | | READBACK RESOLUTION | ≤ reoppiii siiix | | | | | | | Voltage | 10mV | | | | | | | Current | 1mA (2mA, rating current > 3.0A | () | | | | | | READBACK ACCURACY(25 ± | | | | | | | | Voltage | < 0.05%+10mV | | | | | | | Current | ≤ 0.1%+5mA (10mA rating curre | ent > 3.0A) | | | | | | READBACK TEMPERATURE C | | | | | | | | Voltage | < 100ppm+10mV | | | | | | | Current | ≤ 100ppm+5mA (10mA rating c | urrent > 3.0A) | | | | | | RESPONSE TIME | 1 = 11 | | | | | | | Voltage Up (10%~90%) | < 100mS | | | | | | | Voltage Down (90%~10%) | ≤ 100mS (≥10% rating load) | | | | | | | DRIFT | | | | | | | | Voltage | < 100ppm+10mV | | | | | | | Current | ≤ 150ppm+10mA | | | | | | | INTERFACE | | | | | | | | Standard : RS-232C; Option : | GPIB | | | | | | | POWER SOURCE | T147 | | | | | | | AC 100V/120V/220V±10%, 23 | 30V (+10%/-6%), 50/60Hz | | | | | | | DIMENSIONS & WEIGHT | (,0,0,0,0,,00,00,00 | | | | | | | 108(W) x 142(H) x 318(D) mr | n. Approx. 4.8kg | | | | | | | (, | , Tr , | | | | | | #### ORDERING INFORMATION PSS-2005 100W Single Output Programmable DC Power Supply PSS-3203 96W Single Output Programmable DC Power Supply ACCESSORIES : Power cord x 1 Test lead GTL-104A x 1 (PSS-2005) or GTL-105A x 1 (PSS-3203) European Test Lead GTL-204A x 1 (PSS-2005) or GTL-203A x 1 (PSS-3203) OPTION Opt.01: GPIB Interface (factory installed) OPTIONAL ACCESSORIES GTL-232 RS-232C Cable, 9-pin Female to 9-pin, null Modem for Computer GRA-408 Rack Adapter Panel (19" 4U) GTL-248 GPIB Cable, Double Shielded, 2000mm FREE DOWNLOAD PC Software PC Software including Data Log; Remote Control Software **Driver** LabView Drive Note: When Opt.01 GPIB interface is ordered, the standard interface RS-232C will be deleted. ## PPE-3323 ## **FEATURES** - * Easy Operation with UP/DOWN Key - * High Resolution: 10mV, 1mA - * Over Voltage Protection (by Software) - * 50 Sets Memory - * Self Test and Software Calibration - * Auto Step Running With Timer Setting - * Triple Output - * Auto Tracking - * RS-232C Communication - * High Stability, Low Drift - * 4 Digit Display - * IEC Safety Regulation ## Rear Panel The PPE-Series is a 3-channel, programmable linear DC power supply with 207W output. The PPE-Series features OVP and OCP and is compliant with all major safety standards (UL, CSA, and IEC) for safe, reliable operation. The digital interface and smart features simplify operation and configuration with output limit store/recall functions, tracking, serial operation, and auto stepping for continuous testing. The series has PC software and SCPI commands as standard for remote control and PC interfacing via RS-232C. The versatile PPE-Series is ideal for high-level applications requiring high resolution, multiple outputs, and an extra level of safety. | SPECIFICATIONS | | |--|---| | OUTPUT | 0~+32V,0~ -32V,3.3V/5V FIXED | | Voltage
Current | 0~+3A,0~-3A,3A FIXED | | OVP | 0~+33V.0~-33V | | LOAD REGULATION | 0-+331,0331 | | Voltage | ≤6mV | | Current | ≦3mA | | LINE REGULATION | | | Voltage | ≤3mV | | Current | ≤3mA | | RESOLUTION | | | Voltage
Current | 10mV (20mV rating voltage > 36V) | | OVP | 1mA (2mA rating current > 3.5A) 10mV(20mV rating voltage > 36V) | | PROGRAM ACCURACY (25±5° | | | Voltage | ≤0.05% + 25mV (+ 50mV rating voltage > 36 V) | | Current | ≤0.2% + 10mA | | OVP | ≤2% + 0.6V | | RIPPLE & NOISE (20Hz ~ 20M | | | Voltage | Ripple 1mVrms / 3mVp-p
Noise 2mVrms / 30mVp-p | | Current | S3mA rms (≤5mA rms rating current > 3.5A) | | TEMPERATURE COEFFICIENT | | | Voltage | ≤100ppm + 3mV | | Current | ≤150ppm + 3mA | | READBACK RESOLUTION/AC | CURACY (25± 5°C) | | Voltage | 10mV (20mV rating voltage > 36V) | | Current | 1mA (2mA rating current > 3.5A) | | Voltage | ≤0.05% + 25mV (+ 50mV rating voltage > 36V) | | Current | ≤0.2% + 10mA | | RESPONSE TIME | 4100 O | | VOLTAGE UP 10% ~ 90%
VOLTAGE DOWN 90% ~ 10% | ≤100mS
≤100mS (≥ rating load) | | READBACK TEMPERATURE CO | | | Voltage | ≤100ppm + 10mV (+ 20mV rating voltage > 36V) | | Current | ≤150ppm + 10mA | | DRIFT | | | Voltage | ≤100ppm + 10mV | | Current | ≤150ppm + 10mA | | TRACK OPERATION | | | Tracking Error | ≤0.1% + 50mV | | Series Regulation | ≤50mV | | PARALLEL OPERATION (PPT-S | | | Program Accuracy | Voltage \leq 0.05% + 25mV (+ 50mV rating voltage > 36V)
Current \leq 0.2% + 20mA | | (25±5°C) | Current $\leq 0.2\% + 20$ mA
OVP $\leq 2\% + 0.6$ V | | Load Effect | Voltage ≤3mV rear output (≤6mV front output) | | | Current ≤6mA (≤12mA rating current > 3.5A) | | Source Effect | Voltage ≤3mV; Current ≤6mÅ | | MEMORY | | | Store/Recall | 50 sets | | TIMER | | | Setting Time | 1 second ~ 99 minutes (Max. 99 minutes x 50 sets) | | Resolution | 1 second | | Function | for output working loop (Auto Step running) | | STANDARD INTERFACE | | | RS-232C | | | POWER SOURCE | | | AC 100V/120V/ 220V/240V±10 | 0%, 50/60Hz | | DIMENSIONS & WEIGHT | | | 255(W) x 145(H) x 346(D) mm | ; Approx. 10kg | | . , . , . , . , | | | ORDERING INFORMATION | | | | | | | | | | | |--|--|--------|--------|-----|----|--|--|--|--|--| | PPE-3323 207W Triple Output Programmable DC Power Supply | | | | | | | | | | | | Model | Independent Series Parallel Display Type W | | | | | | | | | | | PPE-3323 | (0~32V/0~3A)x2,(5V/3A)FIXED | 64V/3A | 32V/6A | LED | 10 | | | | | | | ACCESSORIES : | | | | | | | | | | | | Power cord x 1 | , Test lead GTL-105A x 3 | | | | | | | | | | | OPTIONAL A | ACCESSORIES | | | | | | | | | | | GRA-401 Rac | k Mount Kit | | | | | | | | | | | FREE DOWN | ILOAD | | | | | | | | | | | PC Software R | emote Control Software | | | | | | | | | | ## PPT-1830/PPT-3615 #### **FEATURES** - * Easy Operation with UP/DOWN Key - * High Resolution: 10mV, 1mA - * Over Voltage Protection, Over Current Protection (PPT-Series by Hardware) - * 50 Sets Memory - * Self Test and Software Calibration - * Auto Step Running With Timer Setting - * FRONT/REAR Output and Sense Switch Selectable - * Triple Output - * Auto Series and Parallel Operation - * Auto Tracking - * IEEE-488.2 and SCPI Compatible Command set - * GPIB Standard Interface - * LabVIEW Driver - * High Stability, Low Drift - * 4 Digit Display - * IEC Safety Regulation ## Rear Panel The PPT-Series a is 3-channel, programmable linear DC power supply with 138W or 126W outputs. The PPT-Series features OVP and OCP and is compliant with all major safety standards(UL, CSA, and IEC) for safe, reliable operation. For extra precision, the PPT-Series includes remote sensing that adds an extra level of precision by compensating cable losses between
loads. The digital interface and smart features simplify operation and configuration with output limit store/recall functions, automatic tracking, automatic serial or parallel operation, and auto stepping for continuous testing. The series has Labview drivers and SCPI commands as standard for remote control and PC interfacing via GPIB. The versatile PPT-Series is ideal for high-level applications requiring high resolution, multiple outputs, and an extra level of safety. | SPECIFICATIONS | | | | | | | | |-----------------------------------|--|--|--|--|--|--|--| | MODEL | PPT-1830 | PPT-3615 | | | | | | | OUTPUT | | | | | | | | | Voltage | 0~18Vx2,0~6Vx1 | 0~36Vx2,0~6Vx1 | | | | | | | Current | 0~3Ax2,0~5Ax1 | 0~1.5Ax2,0~3Ax1 | | | | | | | OVP | 0~20Vx2,0~7Vx1 | 0~38.5Vx2,0~7Vx1 | | | | | | | LOAD REGULATION | < 2-V | +1 | | | | | | | Voltage
Current | ≤ 3mV rear output (≤ 6mV front output
≤ 3mA (≤ 6mA rating current > 3.5A) | it) | | | | | | | LINE REGULATION | , | | | | | | | | Voltage | ≤3mV | | | | | | | | Current | ≤3mA | | | | | | | | RESOLUTION | | | | | | | | | Voltage
Current | 10mV (20mV rating voltage > 36V)
1mA (2mA rating current >3.5A) | | | | | | | | OVP | 10mV(20mV rating voltage > 36V) | | | | | | | | PROGRAM ACCURACY (25 ±5° | C) | | | | | | | | Voltage | ≤0.05% + 25mV (+ 50mV rating voltag
≤0.2% + 10mA | ge > 36 V) | | | | | | | Current
OVP | ≤0.2% + 10mA
≤2% + 0.6V | | | | | | | | RIPPLE & NOISE (20Hz ~ 20M | | | | | | | | | Voltage | Ripple 1 mVrms / 3 mVp-p | | | | | | | | Current | Noise 2mVrms / 30mVp-p
≤3mA rms (≤5mA rms rating current | > 3.5A.) | | | | | | | TEMPERATURE COEFFICIENT | | ~ 3.3K j | | | | | | | Voltage | ≤100ppm + 3mV | | | | | | | | Current | ≤150ppm + 3mA | | | | | | | | READBACK RESOLUTION/AC | | | | | | | | | Voltage | 10mV (20mV rating voltage > 36V) | | | | | | | | Current
Voltage | 1mA (2mA rating current > 3.5A)
≤0.05% + 25mV (+ 50mV rating voltage | ze > 36V) | | | | | | | Current | ≤0.2% + 10mA | 50.7 | | | | | | | RESPONSE TIME | | | | | | | | | VOLTAGE UP 10% ~ 90% | ≤100mS | | | | | | | | VOLTAGE DOWN 90% ~ 10% | ≤100mS (≥ rating load) | | | | | | | | READBACK TEMPERATURE CO | EFFICIENT
≤100ppm + 10mV (+ 20mV rating vol | 261/1 | | | | | | | Voltage
Current | ≤150ppm + 10mV (+ 20mV rating voil
≤150ppm + 10mA | age > 30V) | | | | | | | DRIFT | | | | | | | | | Voltage | ≤0.03% + 6mV | | | | | | | | Current | ≤0.1% + 6mA | | | | | | | | TRACK OPERATION | | | | | | | | | Tracking Error Series Regulation | ≤0.1% + 50mV
≤50mV | | | | | | | | PARALLEL OPERATION | 1 = 301114 | | | | | | | | Program Accuracy | Voltage ≤ 0.05% + 25mV (+ 50mV ra | ating voltage > 36V) | | | | | | | (25±5°C) | Current ≤ 0.2% + 20mA | | | | | | | | Load Effect | OVP ≤2% + 0.6V
Voltage ≤3mV rear output (≤6mV f | ront output \ | | | | | | | | Current ≤6mA (≤12mA rating curre | | | | | | | | Source Effect | Voltage ≤3mV; Current ≤6mA | ** 1 (per 100 p = 7 * 0.00 p = 7 * 0.00 p | | | | | | | MEMORY | | | | | | | | | Store/Recall | 50 sets | | | | | | | | TIMER | | | | | | | | | Setting Time
Resolution | 1 second ~ 255 minutes (Max. 255 min
1 second | iutes x 50 sets) | | | | | | | Function | for output working loop (Auto Step rur | ning) | | | | | | | STANDARD INTERFACE | | | | | | | | | GPIB | | | | | | | | | POWER SOURCE | 20/ 50/6011- | | | | | | | | AC 100V/120V/ 220V/240V±10 | J%, 50/60Hz | | | | | | | | 255 (W) x 145 (H) x 346 (D) mm | : Approx. 10kg | | | | | | | | 255(11) x 145(11) x 540(D) 111111 | 1. Ab. o 1948 | | | | | | | | ORDERING INFORMATION | | | | | | | | | |---|---|--------|----------|--------------|-------------|--|--|--| | PPT-1830 138W Triple Output Programmable DC Power Supply PPT-3615 126W Triple Output Programmable DC Power Supply | | | | | | | | | | Model | Independent | Series | Parallel | Display Type | Weight (kg) | | | | | PPT-1830 | (0~18V/0~3A)x2,(0~6V/0~5A)x1 | 36V/3A | 18V/6A | LED | 10 | | | | | PPT-3615 | PPT-3615 (0~36V/0~1.5A)x2,(0~6V/0~3A)x1 | | 36V/3A | LED | 10 | | | | | | ACCESSORIES: Power cord x 1, Test lead GTL-105A x 3, GTL-104A x 3 | | | | | | | | | OPTIONAL | ACCESSORIES | | | | | | | | | GRA-401 Rack Mount Kit GTL-204A European test lead x 3 GTL-248 GPIB Cable, Double Shielded, 2000mm | | | | | | | | | | FREE DOW | NLOAD | | | | | | | | | Driver La | bView Driver | | | | | | | | ## PST-3201/3202 ## **FEATURES** - * Digitized Programmable Interface - * High Resolution 10mV, 1mA - * 192 x 128 LCD Display, Simultaneously **Shows Settings and Measuring Result** - * Over-Voltage, Over-Current, Over **Temperature Protection** - * Intelligent Fan Control (Changes by Output Power) - * 100 Sets Memory - * Auto Step Running With Timer Setting - * Auto Series and Parallel Function - * LabVIEW Driver - * Standard Interface : RS-232C - * Optional Interface : GPIB (IEEE-488.2) - * Optional European Jack Type Terminal ## **European Type Jack Terminal** ## Rear Panel PST-Series is a 3-channel, 96W or 158W, programmable linear DC power supply. High resolution is maintained at 10mV, 1mA (3A). OVP, OCP, and OTP protect the PST-Series and its loads from unexpected conditions. PST-Series is capable of independent, series or parallel operation for increased flexibility. The large LCD display conveniently displays all outputs and configurations simultaneously to simplify operation. The programmable interface allows automatic stepping, 100 sets of memory and comprehensive timing operations. GPIB and RS232C interfaces, Labview drivers and SCPI compatibility allow easy ATE software development and remote control. The versatile PST-Series is ideal for high resolution, multiple output, automated operations such as production testing and rack mounting systems. | SPECIFICATIONS | | | | | | | | |--|---|--|--|--|--|--|--| | SI ECH ICANONS | PST-3202 | PST-3201 | | | | | | | OUTPUT | F31-3202 | F31-3201 | | | | | | | - 779/22 | 0~32Vx2, 0~6Vx1 | 0.3314.3 | | | | | | | Voltage
Current | 0~2Ax2, 0~5Ax1 | 0~32Vx3
0~1Ax3 | | | | | | | OVP | 0~33Vx2, 0~7Vx1 | 0~33Vx3 | | | | | | | LOAD REGULATION | | 0 33173 | | | | | | | Voltage | ≤ 3mV (≤ 5mV rating current > | 3 OA) | | | | | | | Current | ≤ 3mA (≤ 5mA rating current > | | | | | | | | LINE REGULATION | | | | | | | | | Voltage | < 3mV | | | | | | | | Current | ≤ 3mA | | | | | | | | RESOLUTION | 231114 | | | | | | | | Voltage | 10mV | | | | | | | | Current | 1mA (2mA, rating current >3.0A | 1) | | | | | | | OVP | 10mV | | | | | | | | PROGRAM ACCURACY(25 | | | | | | | | | Voltage | ≤ 0.05%+20mV | | | | | | | | Current | ≤ 0.1%+5mA (+10mA, rating cu | irrent>3 0A) | | | | | | | OVP | ≤ 0.05%+20mV | inent/3.0A) | | | | | | | | | | | | | | | | RIPPLE & NOISE(20Hz~20 | | in a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | Voltage | Ripple: ≤ 1mVrms/3mVp-p; No | | | | | | | | Current | ≤ 3mArms (≤ 5mArms, rating o | current >3.0A) | | | | | | | | FEMPERATURE COEFFICIENT (0 ~ 40 °C) | | | | | | | | Voltage | ≤ 100ppm+3mV | | | | | | | | Current | ≤ 100ppm+3mA | | | | | | | | READBACK RESOLUTION | | | | | | | | | Voltage
Current | 10mV (20mV, rating voltage >36 | | | | | | | | eurrent | 1mA(2mA, rating current >3.0A |) | | | | | | | READBACK ACCURACY(25 | | h 200 | | | | | | | Voltage | ≤ 0.05%+10mV(+20mV, rating | | | | | | | | Current | ≤ 0.1%+5mA(+10mA, rating cu | rrent>3.0A) | | | | | | | READBACK TEMPERATUR | | 1. 200 | | | | | | | Voltage | ≤ 100ppm+10mV(+20mV, rating | | | | | | | | Current | ≤ 150ppm+10mA(+20mA, ratin | g current >3.0A)
 | | | | | | RESPONSE TIME | | | | | | | | | Voltage Up (10%~90%)
Voltage Down (90%~10%) | ≤ 100mS | | | | | | | | . , | ≤ 100mS (≥ 10% rating load) | | | | | | | | DRIFT | | | | | | | | | Voltage | ≤ 100ppm+10mV(+20mV, ratin | g voltage >36V) | | | | | | | Current | ≤ 150ppm+10mA | | | | | | | | TRACK OPERATION | | | | | | | | | Tracking Error | ≤ 0.1%+20mV | | | | | | | | Series(Load Effect) | ≤ 20mV | | | | | | | | PARALLEL OPERATION | | | | | | | | | Program Accuracy (25±5°C) | | ≤ 0.1%+10mA, OVP ≤ 0.05%+20mV | | | | | | | Load Effect | Voltage ≤ 3mV(≤ 5mV, rating co | urrent>3.0A); Current< 6mA | | | | | | | Source Effect | Voltage ≤ 3mV;Current ≤ 6mA | | | | | | | | MEMORY | | | | | | | | | Store/Recall | 100 Sets | | | | | | | | TIMER | | | | | | | | | Setting Time | 0.1 second~99 Minutes 59 second (Max. 99 Minutes 59 second x 100) | | | | | | | | Resolution | 0.1 second | | | | | | | | Function | Auto step running (for output w | orking loop) | | | | | | | INTERFACE | | | | | | | | | Standard: RS-232C; Option | on: GPIB (IEEE488.2) | | | | | | | | POWER SOURCE | | | | | | | | | AC 100V/120V/220V±109 | %, 230V(+10%/-6%), 50/60Hz | | | | | | | | DIMENSIONS & WEIGHT | | | | | | | | | 230(W) x 140(H) x 380(D) mm , Approx.10kg | | | | | | | | | | ORDERING | INFOR | MATION | | | | | |--|--|--------|----------|--------------|-------------|--|--| | PST-3202 158W Triple Output Programmable DC Power Supply PST-3201 96W Triple Output Programmable DC Power Supply | | | | | | | | | Model | Independent | Series | Parallel | Display Type | Weight (kg) | | | | PST-3201 | (0~32V/0~1A)x3 | 64V/1A | 32V/2A | LCD | 10 | | | | PST-3202 | (0~32V/0~2A)x2,(0~6V/0~5A)x1 | 64V/2A | 32V/4A | LCD | 10 | | | | | x 1, Test lead: GTL-104A x 3 (PST-3
est lead: GTL-204A x 3 (PST-3202) o | | | | | | | | Opt.01 G | PIB Interface (factory installed) | | | | | | | | OPTIONAL | ACCESSORIES | | | | | | | | GRA-407 Rack Mount Kit GTL-232 RS-232C Cable, 9-pin Female to 9-pin, null Modem for Computer | | | | | | | | | FREE DOWNLOAD | | | | | | | | | FREE DOW | 1120712 | | | | | | | ## GPE-3060/6030 #### **FEATURES** - * 1/2/3 Independent Isolated Output Channels - * GPE-3060 Provides CH1/CH2: 0~30V/0~6A Output; CH3 Supports 5.0V at 5A - * GPE-6030 Supports CH1/CH2: 0~60V/0~3A Output; CH3 Supports 5.0V at 5A - * Series/Parallel Tracking Function - * Setting/Read back Resolution: Voltage (4digits): 10mV (GPE-3060) / 20mV (GPE-6030) Current (4digits): 2mA (GPE-3060) / 1mA (GPE-6030) - * Output On/Off Function - * Simple Analog Control Interface - * Multiple Protection Apparatuses Such as Overvoltage and Overload Protection **Functions** ## **European Type Jack Terminal** #### Rear Panel The GPE-3060/6030 are high-resolution linear DC power supplies. Their primary aim is to replace the existing GPC-3060D/6030D models. The GPE-3060/6030 deliver 385 watts of output power and feature three independent isolated output channels. The GPE-3060 offers CH1/CH2 outputs of 0 to 30V and 0 to 6A, while the GPE-6030 supports CH1/CH2 outputs of 0 to 60V and 0 to 3A. Both models feature CH3 outputs 5.0V at 5A. Series/Parallel Operation Function - In addition to the independent output between each channel, GPE-3060/6030 can perform series/parallel automatic connection tracking function. Through the parallel or series function, the output of the power supply can be controlled at 30V/12A (parallel) (GPE-3060) or 120V/3A (series) (GPE-6030) and this function can be used on CH1/CH2. With respect to high resolution, GPE-3060 provides 10mV/2mA and GPE-6030 offers 20mV/1mA. GPE-3060/6030 adopts a new hybrid power supply design, which can save 13% of power consumption compared with the wattage of the conventional linear power supplies, and the volume and weight are significantly reduced. **GPE-6030** ## ORDERING INFORMATION GPE-3060 3-channel, 385W linear DC Power Supply **GPE-6030** 3-channel, 385W linear DC Power Supply #### ACCESSORIES . Power Cord Test Lead: GTL-104A x 3 European Test Leads: GTL-204A x 3, GTL-201A x 1 ## DIGITAL PANEL CONTROL The GPE-3060/6030 linear DC power supplies have a built-in digital panel control design. By long pressing and short pressing a single button, they provide efficient and user-friendly OVP (overvoltage protection) function. The OVP function provides overvoltage protection, and the panel lock function prevents voltage/current parameters from being tampered with by a third party to improve the protection of the DUT. The voltage and current setting knobs are changed to Encoder Switches to make the setting more accurate. In addition, the On/Off output button has a backlight display, which makes it easier for users to identify the current operating status of the power supply. | SPECIFICATIONS | | | | | | |-------------------------------|--|--|--------------------|--|--| | Model | | CDE 2060 / CDE 6020 | | | | | | | GPE-3060 / GPE-6030 | Louis | | | | Channel | Lyde | CH1&CH2 | CH3 | | | | Output | Voltage | 0 ~ 30.00V*2 (GPE-3060) /
0 ~ 60.00V*2 (GPE-6030) | 5V,±5% | | | | | Current | 0 ~ 6.000A*2 (GPE-3060) /
0 ~ 3.000A*2 (GPE-6030) | 5A | | | | | Voltage/Current(MAX) | 32V, 6.2A (GPE-3060) /
62V, 3.2A (GPE-6030) | | | | | | Tracking Series | 0 ~ 60V, 0 ~ 6A (GPE-3060)
0 ~ 120V, 0 ~ 3A (GPE-6030) | | | | | | Tracking Parallel | 0 ~ 30V, 0 ~ 12A (GPE-3060)
0 ~ 60V, 0 ~ 6A (GPE-6030) | | | | | Load Regulation | Voltage | ≤0.01%+5mV
≤0.02%+5mV (≥10A) | ≤5mV | | | | | Current | ≤0.1%+3mA | | | | | Line Regulation | Voltage | ≤0.01%+3mV | ≤3mV | | | | | Current | ≤0.1%+3mA | | | | | Ripple & Noise | Constant Voltage | ≤1mVrms (5Hz-1MHz) | ≤1mVrms (5Hz-1MHz) | | | | | Constant Current | ≤2mArms | | | | | Setting /Read back Resolution | Voltage(4digits) | 10mV (GPE-3060) / 20mV (GPE-6030) | | | | | | Current(4digits) | 2mA (GPE-3060) / 1mA (GPE-6030) | | | | | Setting /Read back Accuracy | Voltage | ±(0.1% of reading+30mV) (4digits)
±(0.1% of reading+200mV) (3digits) | | | | | | Current | \pm (0.3% of reading+10mA) (4digits)
\pm (0.3% of reading+20mA) (3digits) | | | | | Recovery Time | | \leq 100 μ s (50% load change, minimum load 0.5A) | ≤100μs | | | | Temperature Coefficient | | ≤300ppm/°C | | | | | Tracking Operation | Series Regulation | Tracking error: ≤ 0.1% +10mV of Master (GPE-3060) ≤ 0.2% +20mV of Master (GPE-6030) (No Load, with load add load regulation ≤ 200mV) | | | | | | | Line : ≤ 0.01% + 5mV | | | | | | | Load : ≤ 200mV | | | | | | Parallel Regulation | Line: $\leq 0.01\% + 3mV$
Load: $\leq 0.01\% + 5mV$
$\leq 0.02\% + 5mV (\geq 10A)$ | | | | | | Ripple & Noise | ≤2mVrms(5Hz~1MHz) | | | | | OVP | Voltage | OFF,ON (1V ~ 35.0V) (GPE-3060)
OFF,ON (1V ~ 65.0V) (GPE-6030) | 5.5V | | | | 1 | Resolution | 1V | | | | | | Setting Accuracy | ≤±1V | | | | | Protection | OVP | • | | | | | Insulation | Chassis and Terminal 20M Ω or all Chassis and AC cord 30M Ω or about | | | | | | Features | Display | 4.3"monochrome LCD | | | | | | Inter-channel Isolation | • | | | | | | Independent Output | • | | | | | | Key Lock | • | | | | | | Intelligent Cooling Fan | • | | | | | | Power ON/OFF State Setting | • | | | | | | EXT I/O Control | • | | | | | | Display | 4.3" single color LCD | | | | | Power | Consumption | 900VA,680W | | | | | | AC Input | 100V/120V/220V/230Vac±10%, 50/60Hz | | | | | Dimensions & Weight | | 210 (W) x 155 (H) x 362 (D) mm, 10kg | | | | ## B. SERIES/PARALLEL OPERATION FUNCTION In addition to the independent output between each channel, GPE-3060/6030 can perform series/parallel automatic connection tracking function. Through the parallel or series function, the output of the power supply can be controlled at 30V/12A (parallel) (GPE-3060) or 120V/3A (series) (GPE-6030) and this function can be used on CH1/CH2. #### C. OPTIMIZATION OF HEAT DISSIPATION There are air inlet ducks in front of the panel to efficiently dissipate heat. Temperature controlled fan can effectively reduce fan noise. ## HIGH MEASUREMENT RESOLUTION (SETTING AND READBACK FUNCTIONS) With respect to high measurement resolution, GPE-3060 provides 10mV/2mA and GPE-6030 offers 20mV/1mA with a readback accuracy of 30mV/10mA. GPE-3060/6030 ensure that the power output is pure and stable. Users can easily apply the series to simulate the DUT with very small voltages or currents. Conventional low-resolution linear DC power supplies cannot achieve this function. ## PANEL OUTPUT ON/OFF OR REAR PANEL REMOTE CONTROL OUTPUT ON/OFF FUNCTION GPE-3060/6030 provide the output On/Off function. This function can avoid unnecessary damage caused by pre-output when the DUT is connected to the power supply. Users can set the voltage and current parameters in advance and confirm all connections have been completed, and manually execute output On/Off function through the front panel. Furthermore, the series provides a simple analog control function to control external output On/Off through the Remote Control terminal on the rear panel. #### F. OPERATING MODE #### C.V. and C.C Operation Mode In constant voltage (CV) mode, the current limit must be set to determine its crossover point, and in constant current (CC) mode, the voltage limit must be set to determine its crossover point. When the current exceeds the crossover point, the power supply mode will switch to constant current (CC) mode. #### Series and Parallel Mode When the CH1/CH2 of GPE-3060/6030 linear DC power supply are in parallel connection, the total output current will increase. While in series conditions, the total output voltage will increase to twice the
original single channel rated output (maximum value). Users only need to press the required series or parallel button on the front panel to perform series or parallel operation. #### **Remote Control Settings** GPE-3060/6030 provide a simple Remote Control function. Remote Output On/Off control can be performed through this connector. The pin definitions are as follows: 7 & 8 Short circuit is the setting of remote control. At this time, the On/Off on the front panel will keep flashing. 9 & 10 Open circuit is the status of remote control Output On. Power 9 & 10 Open circuit is the status of remote control Output On. 9 & 10 Short circuit is the status of remote control Output Off. Remote Control Setting #### **Key Lock Function** When users output voltage and current under fixed conditions to the power supply for a long time, users can start the panel lock function to protect the safety of the DUT in order to prevent a third party other than the user from arbitrarily changing the setting parameters and causing damage to the DUT. # **Multiple Output Linear DC Power Supply** ## **GPE-X323 Series** #### **FEATURES** - * 1/2/3/4 Independent Isolated Output - * 4.3 Inch LCD Display - * Setting & Read Back Resolution 100mV/10mA (*1) - * Output ON/OFF Switch - * Analog Control (Remote I/O) for Output ON/OFF - * Set View Function for Checking an Original V/I Setting During Output On - * Key Lock Function - * Tracking Series and Parallel Operation - * Optional European Jack Type Terminal ## **European Type Jack Terminal** ## Rear Panel GPE-4323 The GPE-X323 series is a cutting edge, economical linear DC Power supply. The GPE-X323 series features output power from 192 to 217 watts, three independent isolated output channels (for GPE-3323), high resolution, low noise, high reliability, and compact size. The GPE-X323 series has a built-in digital panel control design to replace conventional control method. This unique design allows the GPE-X323 series linear DC power supply to provide users with more efficient functionalities, including set view and key lock so as to expedite the operation process. The key lock function protects DUTs by preventing others from changing voltage and current parameters. Additionally, output key light facilitates users in clearly reading the operational status of power supply. | SPECIFICATIONS | SPECIFICATIONS | | | | | | | | | | |---|--|----------------------|-----------------|---------|---------------------|-----------|-------|----------|-----------|---------------| | SPECIFICATIONS | | GPE-4 | 323 | | C | GPE-3323 | | GPE-2323 | | GPE-1326 | | OUTPUT MODE | 7 | O1 L-4 | 323 | | 0.23323 | | | GIL | 2323 | G1 L-1320 | | | CH1 | CH2 | CH3 | CH4 | CH1 | CH2 | СН3 | CH1 | CH2 | CH1 | | Number of Channel | | | | | 0~32V | | 5V | | 0~32V | | | Voltage
Current | | | | 0~1A | | 0~32V | 5A | | 0~32V | 0~32V
0~6A | | Tracking Series Voltage | | | U~IA | U~IA | | | JA. | | | U~0A | | Tracking Parallel Current | 0~6 | | | _ ; | | 64V
6A | - | | 64V
6A | | | CONSTANT VOLTAGE | | | | | 0~ | bA | | 0~ | ъΑ | | | Line Regulation | ≦0.01 | 250 St 450 S | ·/ | | | | | | | | | Load Regulation | 707-111-55-600-6 | | | na curr | ent ≦3 | (A) | | | | | | Load Regulation | | | | | ent ≥ 3 | | | | | | | Ripple & Noise | ≦0.02
≤1mV | | | | ciit > 3 | 'A) | | | | | | Recovery Time | | | | | ge, min | imum l | oad 0 | .5A) | | | | CONSTANT CURREN | | | (0.73), 7.07(0) | - | , , | | | | | | | Line Regulation | ≤0.2% | \$************* | | | | | | | | | | Load Regulation | | | | | | | | | | | | Ripple & Noise | | ≦0.2%+3mA
≤3mArms | | | | | | | | | | | GOPERATION (CH1,CH2) | | | | | | | | | | | | | , | | | 0 2010 | | 1 | | 1 . 111 | | | Tracking Error | | | | | 0~32V) | No Lo | ad, w | ith Loa | d add l | oad | | 5 11 5 1 | regulation≤100mV)
Line:≤0.01%+3mV | | | | | | | | | | | Parallel Regulation Line: ≤0.01%+3mV Load: ≤0.01%+3mV (rating current≤3A) | Series Regulation | | | | | ng curre
d : ≦10 | | A) | | | | | | ≤2mV | | | 3.00 | u . ≦ 10 | JOHN | | | | | | Ripple & Noise | 100000000000000000000000000000000000000 | | 112~1 | IVITIZ | | | | | | | | CH3 OPERATION FO | _ | | | | | | | | | | | Output Voltage | 5.0V, ± | 5% | | | | | | | | | | Output Current | 5A | | | | | | | | | | | Line Regulation | ≦3mV | | | | | | | | | | | Load Regulation | ≦5mV | | | | | | | | | | | Ripple & Noise | 1mVrn | ıs (5Hz | ~IMI | Hz) | | | | | | | | METER | | | | | | | | | | | | Voltage Resolution | 100mV | | | | | | | | | | | Current Resolution | 10mA | | | | | | | | | | | Setting Accuracy | | | | | | | | | | g +6mA) | | Readback Accuracy | Voltage | e±(0.19 | % of re | eading | +30mV |); Curr | ent±(| 0.3% of | readin | g +6mA) | | INSULATION | | | | | | | | | | | | Chassis and Terminal | 20ΜΩ | | | | | | | | | | | Chassis and AC Cord | | | ve (D | C 500V |) | | | | | | | ENVIRONMENT CON | | | | | | | | | | | | Operation Temp | 0~40°C | | | | | | | | | | | Storage Temp | -10~70 | | | | | | | | | | | Operating Humidity | ≦80% | | | | | | | | | | | Storage Humidity | ≦70% | RH | | | | | | | | | | OTHER | | | | | | | | | | | | Power Source | AC100 | V/120\ | //220\ | V±10% | ; 230V(| +10%~ | -6%); | 50/601 | Hz | | | Dimensions & Weight | AC100V/120V/220V±10%; 230V(+10%~-6%); 50/60Hz
210(W)x 155(H) x 306(D) mm; Approx. 7kg | | | | | | | | | | ## ORDERING INFORMATION | GPE-1326 | Single Channel, 192W Linear DC Power Supply | |------------|--| | GPE-2323 | 2 Channels, 192W Linear DC Power Supply | | GPE-3323 | 3 Channels, 217W Linear DC Power Supply | | GPE-4323 | 4 Channels, 212W Linear DC Power Supply | | ACCESSOR | IES : | | Power Cord | c1 | | GPE-1326 | Test Lead GTL-104A x 1; GTL-105A x 1; or European GTL-204A x 1, GTL-203A x 1 | | GPE-2323 | Test Lead GTL-104Ax 2; or European GTL-204A x 2 | | GPE-3323 | Test Lead GTL-104Ax 3 : or European GTL-204A x 3 | Test Lead GTL-104A x 2; GTL-105A x 2 or European GTL-204A x 2, GTL-203A x 2 Note: (*1) For a higher resolution (10mV/1mA), please follow the setting procedure of the user manual on p35. When using a higher resolution, the current or voltage adjustment may be limited by the knob sensibility. # **Multiple Output Linear DC Power Supply** The GPS Series linear power supplies have 2-4 independent output channels, 180W to 200W output, overload and reverse polarity protection as well as an output ON/OFF switch for safety. The tracking mode switches allow voltage/current to be output in parallel or series and the intelligent fan reduces noise. The GPS-Series is an entry level general purpose power supply recognized for their affordability in education, laboratories and industry. ## GPS-2303/3303/4303 ## **FEATURES** - * 2, 3 and 4 Independent Isolated Output - * Four "3 Digits" LED Displays - * 0.01% Load and Line Regulation - * Low Ripple and Noise - * Tracking Operation and Auto Series/Parallel Operation - * Output ON/OFF Switch - * Output Voltage and Current Setting When Output Disable (Except for GPS-2303) - * Fan Speed Control Circuit to Minimize Fan Noise - * Over Load and Reverse Polarity Protection - * Optional European Jack Type Terminal ## **European Type Jack Terminal** ## GPS-001 Voltage/Current protection Knob ## Rear Panel GPS-3303 | SPECIFICATIONS | | | | | | | | | | | | |---|--|--|----------------|-----------|----------|----------|--|--|--|--|--| | | | GPS-4303 | | GPS- | 3303 | GPS-2303 | | | | | | | OUTPUT MODE | | | | | | | | | | | | | | CH1 CH2 | CH3 | CH4 | CH1 CH2 | CH3 | CH1 CH2 | | | | | | | Voltage | 0 ~ 30V | 2.2 ~ 5.2V | 8 ~ 15V | 0 ~ 30V | 5V Fixed | 0 ~ 30V | | | | | | | Current | 0 ~ 3A | 1A Max. | 1A Max. | 0 ~ 3A | 3A Max. | 0 ~ 3A | | | | | | | Tracking Series Voltage | 0 ~ 60V | 0 ~ 60V 0 ~ 60V 0 ~ 0 | | | | | | | | | | | Tracking Parallel Current | 0 ~ 6A | | | | | | | | | | | | CONSTANT VOLTAGE | OPERATION (| PERATION (CH1, CH2) | | | | | | | | | | | Line Regulation | ≤ 0.01% + 3 | mV | | | | | | | | | | | Load Regulation | | \leq 0.01% + 3mV (rating current \leq 3A) \leq 0.02% + 5mV (rating current > 3A) | | | | | | | | | | | Ripple & Noise | | ≤ 1mVrms , 5Hz ~ 1MHz | | | | | | | | | | | Recovery Time | ≤ 100 µS (50 | % Load chang | ge, Minimum I | oad 0.5A) | | | | | | | | | CONSTANT CURRENT | OPERATION | (CH1, CH2) | | | | | | | | | | | Line Regulation | ≤ 0.2% + 3m | nΑ | | | | | | | | | | | Load Regulation | ≤ 0.2% + 3m | ıΑ | | | | | | | | | | | Ripple & Noise | ≤ 3mArms | | | | | | | | | | | | TRACKING OPERATIO | | | | | | | | | | | | | Tracking Error | ≤ 0.5% + 10 | | | | | | | | | | | | Series Regulation
Load Regulation | ≤ 0.01% + 5
< 300mV | mv | | | | | | | | | | | Ripple & Noise | | 5Hz ~ 1MHz | | | | | | | | | | | CH3 OPERATION (for | r GPS-3303/4 | 303) | | | | | | | | | | | CH3 Voltage | GPS-4303 : 2 | 2.2V ~ 5.2V , C | PS-3303 : 5V | Fix | | | | | | | | | Line Regulation | <u><</u> 5mV | | | | | | | | | | | | Load Regulation | ≤ 15mV | | | | | | | | | | | | Ripple & Noise | | Hz ~ 1MHz | | | | | | | | | | | Current Output | | A, GPS-3303 | : 3A | | | | | | | | | | CH4 OPERATION (fo | | | | | | | | | | | | | CH4 VOLTAGE
Line Regulation | 8V ~ 15V
< 5mV | | | | | | | | | | | | Load Regulation | < 10mV | | | | | | | | | | | | Ripple & Noise | | Hz~1MHz | | | | | | | | | | | Current Output | 1A | | | | | | | | | | | | METER | | | | | | | | | | | | | Digital | 3 digits 0.5" LED display
GPS-4303/3303 Out ON Accuracy ± (0.5% of rdg + 2
digits)
GPS-4303/3303 Out OFF Accuracy ± (0.5% of rdg + 8 digits) | | | | | | | | | | | | | GPS-2303 A | ccuracy <u>+</u> (0.5 | % of rdg + 2 d | ligits) | | | | | | | | | INSULATION | | | | | | | | | | | | | Chassis and Terminal
Chassis and AC Cord | | | | | | | | | | | | | POWER SOURCE | | | | | | | | | | | | | AC 100V/120V/220V±10 | 0%, 230V(+109 | %~-6%), 50/6 | OHz | | | | | | | | | | DIMENSIONS & WEIGH | нт | ## ORDERING INFORMATION GPS-4303 4-channels, 200W Multiple Output Linear DC Power Supply GPS-3303 3-channels, 195W Multiple Output Linear DC Power Supply GPS-2303 2-channels, 180W Multiple Output Linear DC Power Supply ACCESSORIES : Power cord x 1. GPS-4303 : Test lead GTL-104A x 2, GTL-105A x 2 ; European test lead GTL-203A x 2, GTL-204A x 2, GTL-201 x 1 GPS-3303 : Test lead GTL-104A x 2, GTL-105A x 1 ; European test lead GTL-203A x 1, GTL-204A x 2, GTL-201 x 1 GPS-2303 : Test lead GTL-104A x 2 ; European test lead GTL-204A x 2, GTL-201A x 1 OPTIONAL ACCESSORIES GPS-001 Voltage/Current Protection Knob 255 (W) x 145 (H) x 265 (D) mm, Approx. 7 kg # **Triple Output Linear DC Power Supply** GPC-3060D/6030D The GPC-Series is a triple output, 375W, linear DC power supply. Channel 1 and 2 are fully adjustable (model dependant) and channel 3 is fixed at 5V/3A with ripple and noise at less than 2mVrms. Overload and reverse polarity protection keep GPC-Series and its loads safe from unexpected conditions. GPC features continuous or dynamic internal load selection and series or parallel tracking for application flexibility. The GPC-Series is an ideal solution for inexpensive bench-top applications requiring low noise and multiple outputs. ## **FEATURES** - * Triple Output - * Auto Tracking - * Auto Series and Parallel Operation - * Constant Voltage and Constant Current Operation - * Low Ripple and Noise - * Internal Select for Continuous or Dynamic Load - * Overload and Reverse Polarity Protection - * 3 1/2 Digits 0.5" LED Display - * 5V, 3A Fixed Output | SPECIFICATIONS | | |--------------------------------|--| | OPERATION MODE | | | Independent | Two independent outputs and 5V fixed output | | | Output from 0 to rating volts and 0 to rating amperes | | Series | Output from 0 to ± rating volts at rating amperes each | | 35 650mm | Output from 0 to double rating volts at rating amperes | | Parallel | Output from 0 to double rating amperes at rating volts | | CONSTANT VOLTAGE OF | ERATION | | Regulation | Line regulation ≤ 0.01% + 3mV | | | Load regulation ≤0.01% + 3mV (rating current≤3A) | | | ≤0.01% + 5mV(rating current ≤10A) | | NAC 32 22 200 A | ≤ 0.02% + 5mV (rating current≥10A) | | Ripple & Noise | ≤1mVrms 5Hz ~ 1MHz | | Recovery Time | ≤100µS (50% Load change, Minimum load 0.5A) | | CONSTANT CURRENT OF | PERATION | | Regulation | Line regulation≤0.2% + 3mA | | 4.40 | Load regulation≤0.2% + 5mA | | Ripple Current | ≤3mArms | | 5V FIXED OUTPUT | | | Regulation | Line regulation ≤5mV | | 1779
Address 10 - 1870 - 18 | Load regulation ≤10mV | | Ripple & Noise | ≤2mVrms | | Voltage Accuracy | 5V±0.25V | | Output Current | 3A | | TRACKING OPERATION | | | Tracking Error | \leq 0.5% + 10mV of the master | | Series Regulation | ≤300mV | | METER | | | Digital | 3½ digits 0.5" LED display | | | Accuracy±(0.5% of rdg + 2 digits) | | INSULATION | | | Chassis and Terminal | 100M Ω or above (DC 1000V) | | Chassis and AC Cord | 100MΩ or above (DC 1000V) | | POWER SOURCE | | | AC 100V/120V/220V/240V | ±10%, 50/60Hz | | DIMENSIONS | | | 255(W) x 145(H) x 420(D) r | mm | | | ORDERING INFORMATION | | | | | | | | |--|----------------------|---|---------|----------|-------------|--|--|--| | | Model | Independent | Series | Parallel | Weight (kg) | | | | | GPC-6030D | 375W DC Power Supply | $(0\sim60V/0\sim3A)\times2$, (5V/3A MAX) $\times1$ | 120V 3A | 60V 6A | 18.5 | | | | | GPC-3060D | 375W DC Power Supply | $(0\sim30V/0\sim6A)~x~2$, (5V/3A MAX) x 1 | 60V 6A | 30V 12A | 18.5 | | | | | ACCESSORIES : User manual x 1 , Power cord x 1 Test lead GTL-105A x 1 (\leq 3A) or GTL-104A x 2 (\leq 10A) | | | | | | | | | | OPTIONAL ACCESSORIES | | | | | | | | | | GRA-401 | Rack Mount Kit | | | | | | | | ## **GPR-H Series** ## **FEATURES** - * 0.01% High Regulation - * Constant Voltage and Constant Current Operation - * Internal Select for Continuous or Dynamic Load - * Low Ripple and Noise - * Overload and Reverse Polarity Protection - * 3 1/2 Digit 0.5" LED Display - * Internal Select for Continuous or Dynamic Load (for GPR-3510HD/GPR-6060D/ GPR-7550D) ## Rear Panel The GPR-H Series consists of single output linear DC power supplies with voltage outputs rating from 8V to 300V. The series includes overload and reversed polarity protection to protect devices under test from being damaged due to impropriate operation. The internal select for dynamic loads is often used for amplifier testing. It can support high pulse current derived from dynamic processes as well as support low noise and noise, which make it suitable for high-end bench-top applications requiring precision. Its rear panel supports output wiring. These features combined into one assembly allow the GPR-H Series to predominate in applications requiring high voltage or high current. | SPECIFICATIONS | | |-----------------------------|--| | CONSTANT VOLTAGE OPER | RATION | | Regulation | Line regulation ≤0.01% + 3mV | | | Load regulation $\leq 0.01\% + 5$ mV (<10 A)
$\leq 0.02\% + 5$ mV (>10 A) | | Ripple & Noise | | | Recovery Time | ≤100 μS (50% load change, minimum load 0.5A) | | Output Range | 0 to rating voltage continuously adjustable | | CONSTANT CURRENT OPE | RATION | | Regulation | Line regulation≤0.2% + 3mA | | | Load regulation ≤ 0.2% + 5mA | | Ripple Current | ≤5mArms (≤20A),≤10mArms (≤30A) | | Output Range | | | | o to rating current continuously adjustable | | METER | | | Туре | 3 1/2 Digit 0.5" LED display | | Accuracy | \pm (0.5% of rdg + 2 digits) | | INSULATION | | | Chassis and Terminal | 100M Ω or above (DC 1000V) | | Chassis and AC Cord | 100M Ω or above (DC 1000V) | | POWER SOURCE | <u> </u> | | AC 100V/120V/220V/240V ±1 | 0%, 50/60Hz | | DIMENSIONS | | | 254(W) x 152(H) x 456(D) mr | n | | | ORDERING INFORMATION | | | | | | | | |---|----------------------------------|-----------------------|-----------------|-------------|--|--|--|--| | Model | | Output Volts (V) | Output Amps (A) | Weight (kg) | | | | | | GPR-0830HD | 240W DC Power Supply | 0 ~ 8 | 0 ~ 30 | 18.5 | | | | | | GPR-1820HD | 360W DC Power Supply | 0 ~ 18 | 0 ~ 20 | 18.5 | | | | | | GPR-3510HD | 350W DC Power Supply | 0 ~ 35 | 0~10 | 18.5 | | | | | | GPR-6060D | 360W DC Power Supply | 0 ~ 60 | 0 ~ 6 | 18.5 | | | | | | GPR-7550D | 375W DC Power Supply | 0 ~ 75 | 0~5 | 18.5 | | | | | | GPR-11H30D | 330W DC Power Supply | 0 ~ 110 | 0 ~ 3 | 13.5 | | | | | | GPR-30H10D | 300W DC Power Supply | 0 ~ 300 | 0~1 | 13.5 | | | | | | ACCESSORIES: Power cord x 1 Test lead GTL-105A x 1 (\le 3A) or GTL-104A x 1 (\le 10A) or Not Available (>10A) | | | | | | | | | | OPTIONAL AC | CESSORIES | | | | | | | | | GTL-122 | Test Lead, U-type to Alligator T | est Lead, Max. Curren | t 40A, 1200mm | | | | | | Note: C€ Approved Only for GPR-1820HD, GPR-3510HD, GPR-7550D, GPR-11H30D Rear-Panel Output Only for GPR-0830HD, GPR-1820HD # **Linear DC Power Supply** The GPR-M Series is a single output, 180W, linear DC power supply which featuring all the same functions as the GPR-H Series but for lower power demands. Like the GPR-H Series, the GPR-M Series is suitable for high-end precision bench top applications. Low load and line regulation for both constant voltage and constant current mode ensure reliable, predictable output. Overload and reverse polarity protection as well as internal selection for dynamic or constant load are standard. ## **GPR-M Series** #### **FEATURES** - * 0.01% High Regulation - * Constant Voltage and Constant Current Operation - * Internal Select for Continuous or Dynamic Load - * Low Ripple and Noise - * Overload and Reverse Polarity protection - * 3 1/2 Digit 0.5" LED Display | SPECIFICATIONS | | | | | |---|--|--|--|--| | CONSTANT VOLTAGE OPE | RATION | | | | | Regulation Line regulation ≤0.01% + 3mV | | | | | | 250.25 | Load regulation ≤ 0.01% + 5mV (<10A) | | | | | | Load regulation ≤ 0.02% + 5mV (≥10A) | | | | | Ripple & Noise | ≤1mVrms 5Hz ~ 1MHz | | | | | Recovery Time
Output Range | ≤100 μS (50% load change, minimum load 0.5A) 0 to rating voltage continuously adjustable | | | | | CONSTANT CURRENT OPE | ERATION | | | | | Regulation | Line regulation≤0.2% + 3mA | | | | | - | Load regulation≤0.2% + 3mA | | | | | Ripple Current | ≤3mArms | | | | | Output Range | 0 to rating current continuoulsy adjustable | | | | | METER | | | | | | Digital | 3 1/2 Digits 0.5" LED display | | | | | 8.7% | Accuracy ± (0.5% of rdg + 2 digits) | | | | | INSULATION | | | | | | Chassis and Terminal | 20M $Ω$ or above (DC 500V) | | | | | Chassis and AC Cord | 30 Μ Ω or above (DC 500V) | | | | | POWER SOURCE | | | | | | AC 100V/120V/220V/240V ±10%, 50/60Hz | | | | | | DIMENSIONS | | | | | | 254(W) x 152(H) x 349(D) mm | | | | | | ORDERING INFORMATION | | | | | | | | | |--|--------------------------|------------------|-----------------|-------------|--|--|--|--
 | Model | | Output Volts (V) | Output Amps (A) | Weight (kg) | | | | | | GPR-1810HD | 180W DC Power Supply | 0 ~ 18 | 0 ~ 10 | 11.5 | | | | | | GPR-3060D | 180W DC Power Supply | 0 ~ 30 | 0 ~ 6 | 11.5 | | | | | | GPR-6030D | 180W DC Power Supply | 0 ~ 60 | 0 ~ 3 | 11.5 | | | | | | ACCESSORIES: Power cord x 1 Test lead GTL-105A x 1 (GPR-6030D) GTL-104A x 1 (GPR-1810HD/3060D) | | | | | | | | | | OPTIONAL AC | OPTIONAL ACCESSORIES | | | | | | | | | GRA-401 Rack A | Adapter Panel (19" , 4U) | | | | | | | | The GPS-Series is a single output, 54W to 90W, linear DC power supply. The GPS-Series has digital display meters with varying power outputs. The GPS-Series features overload and reverse polarity protection as well as high regulation and low ripple/noise that are maintained at 0.01% and < 1mVrms, respectively. Continuous or dynamic internal load selection accommodates applications such as pulsed current. Remote control terminals offer programming and operation from an external device. ## GPS-1830D/1850D/3030D ## **GPS-3030DD** ## **FEATURES** - * Light and Compact Design - * 0.01% High Regulation - * Constant Voltage and Constant Current Operation - * Remote Control for External Programmability - * Internal Select for Continuous or Dynamic Load - * Low Ripple and Noise - * Overload and Reverse Polarity Protection - * Series or Parallel Operation - * Optional European Type Jack Terminal for GPS-3030D/GPS-3030DD ## **European Type Jack Terminal** | CDECIFICATIONS. | | | | | | | | |-------------------------------------|--|--|--|--|--|--|--| | SPECIFICATIONS | CONSTANT VOLTAGE OPERATION | | | | | | | | Regulation | Line regulation ≤ 0.01% + 3mV
Load regulation ≤ 0.01% + 3mV (rating current ≤ 3A)
≤ 0.01% + 5mV (rating current > 3A) | | | | | | | | Ripple & Noise | ≤0.5mVrms 5Hz ~ 1MHz (rating current≤3A)
≤1mVrms 5Hz ~ 1MHz (rating current>3A) | | | | | | | | Recovery Time | ≤ 100 µS (50% load change, minimum load 0.5A) | | | | | | | | Temp. Coefficient | ≤300 ppm /°C | | | | | | | | Output Range | 0 to rating voltage continuously adjustable | | | | | | | | CONSTANT CURRENT O | PERATION | | | | | | | | Regulation | Line regulation ≤0.2% + 3mA
Load regulation ≤0.2% + 3mA | | | | | | | | Ripple Current | ≤3mArms | | | | | | | | Output Range | 0 to rating current continuously adjustable
(Hi/Lo range switchable) | | | | | | | | METER | | | | | | | | | Digital | 3½ digits 0.5" LED display (GPS-1830D/1850D/3030D)
3½ digits 0.39" LED display (GPS-3030DD)
Accuracy ±(0.5% of rdg + 2 digits) | | | | | | | | INSULATION | | | | | | | | | Chassis and Terminal | 20M Ω or above (DC 500V) | | | | | | | | Chassis and AC Cord | $30M\Omega$ or above (DC 500V) | | | | | | | | POWER SOURCE | | | | | | | | | AC 100V/120V/220V/240V±10%, 50/60Hz | | | | | | | | | DIMENSIONS | | | | | | | | | 128(W) x 145(H) x 285(D) mm | | | | | | | | | ORDERING INFORMATION | | | | | | | | | |----------------------|---------------------|-----------------|----------------|-------------|--|--|--|--| | | Model | Output Volts(V) | Output Amps(A) | Weight (kg) | | | | | | GPS-1830D | 54W DC Power Supply | 0 ~ 18 | 0 ~ 3 | 4 | | | | | | GPS-1850D | 90W DC Power Supply | 0 ~ 18 | 0 ~ 5 | 5 | | | | | | GPS-3030D | 90W DC Power Supply | 0 ~ 30 | 0 ~ 3 | 5 | | | | | | GPS-3030DD | 90W DC Power Supply | 0 ~ 30 | 0 ~ 3 | 5 | | | | | | | | | | | | | | | ## ACCESSORIES: Power cord x 1 Test lead GTL-105A x 1 (\leq 3A) or GTL-104A x 1 (\leq 10A) European test lead GTL-203A x 1 (\leq 3A)or GTL-204A x 1 (\leq 10A) ## AC/DC POWER SOURCES GW Instek offers three types of AC Power Sources: Programmable AC/DC Power Source, Programmable Linear AC Power Source, and Linear AC Power Source. The ASR-3000/ASR-2000 Series serves as both a precision AC/DC power source and a powerful analyzer. It supports AC, DC, and AC+DC outputs, and measures Vrms, Vavg, Vpeak, Irms, IpkH, Iavg, Ipeak, P, S, Q, PF, CF, and harmonics up to the 40th order. It provides four signal sources (INT, EXT, ADD, SYNC) and features a sequence function for arbitrary waveform generation. The series also includes 16 waveform storage slots and 10 panel setting memory slots. The ASR-6000 Series is GW Instek's first unit supporting AC single/three-phase input/output and rated DC power output. It uses silicon carbide (SiC) technology to offer a high power density of 6kVA in a 4U form factor. The APS-7000 Series is a programmable linear AC power source with a 2U height and a frequency range of 45-500Hz. Output capacities are 500VA (APS-7050), 1000VA (APS-7100), 2000VA (APS-7200), and 3000VA (APS-7300). It offers nine measurement functions, a user interface similar to an AC power meter, and is ideal for applications requiring high accuracy and low ripple/noise. The APS-7000E Series is a non-programmable option with high precision and THD below 0.5%. ## PRODUCTS - High-performance AC/DC Power Supply - Programmable AC/DC Power Source - Programmable AC Power Source - AC Power Source # **AC POWER SOURCES** ## 4.5~24kVA HIGH-PERFORMANCE AC/DC POWER SUPPLY | Model | Output Capacity | Output Freq. | Output Voltage | Max. Current | Display Type | Weight(kg) | Page | |---------------|-------------------------|--------------|---|--------------|--------------|------------|--------| | ASR-6450 | AC 4.5kVA
DC 4.5kW | 1~2000Hz | Phase Voltage Range 0.0V-175.0V/0.0V-350.0V
Line Voltage Range 1P3W: 0.00V-350.0V/0.00V-700.0V
3P4W: 0.00V-303.1V/0.00V-606.2V
Setting Resolution 0.01V/0.1V
DC Voltage Range -250V-+250V/-500V-+500V | 45A/22.5A | LCD | 40 | | | ASR-6450-09 | AC 9kVA
DC 9kW | 1~1000Hz | Phase Voltage Range 0.0V-175.0V/0.0V-350.0V
Line Voltage Range 1P3W: 0.00V-350.0V/0.00V-700.0V
3P4W: 0.00V-303.1V/0.00V-606.2V
Setting Resolution 0.01V/0.1V
DC Voltage Range -250V-+250V/-500V-+500V | 90A/45A | LCD | 155 | | | ASR-6450-13.5 | AC 13.5kVA
DC 13.5kW | 1~1000Hz | Phase Voltage Range 0.0V-175.0V/0.0V-350.0V
Line Voltage Range 1P3W: 0.00V-350.0V/0.00V-700.0V
3P4W: 0.00V-303.1V/0.00V-606.2V
Setting Resolution 0.01V/0.1V
DC Voltage Range -250V-+250V/-500V-+500V | 135A/67.5A | LCD | 200 | | | ASR-6600 | AC 6kVA
DC 6kW | 1~2000Hz | Phase Voltage Range 0.0V-175.0V/0.0V-350.0V
Line Voltage Range 1P3W: 0.00V-350.0V/0.00V-700.0V
3P4W: 0.00V-303.1V/0.00V-606.2V
Setting Resolution 0.01V/0.1V
DC Voltage Range -250V-+250V/-500V-+500V | 60A/30A | LCD | 40 | D76-85 | | ASR-6600-12 | AC 12kVA
DC 12kW | 1~1000Hz | Phase Voltage Range 0.0V~175.0V/0.0V~350.0V
Line Voltage Range 1P3W: 0.00V~350.0V/0.00V~700.0V
3P4W: 0.00V~303.1V/0.00V~606.2V
Setting Resolution 0.01V/0.1V
DC Voltage Range -250V~+250V/-500V~+500V | 120A/60A | LCD | 155 | | | ASR-6600-18 | AC 18kVA
DC 18kW | 1~1000Hz | Phase Voltage Range 0.0V-175.0V/0.0V-350.0V
Line Voltage Range 1P3W: 0.00V-350.0V/0.00V-700.0V
3P4W: 0.00V-303.1V/0.00V-606.2V
Setting Resolution 0.01V/0.1V
DC Voltage Range -250V-+250V/-500V-+500V | 180A/90A | LCD | 200 | | | ASR-6600-24 | AC 24kVA
DC 24kW | 1~550Hz | Phase Voltage Range 0.0V-175.0V/0.0V-350.0V
Line Voltage Range 1P3W: 0.00V-350.0V/0.00V-700.0V
3P4W: 0.00V-303.1V/0.00V-606.2V
Setting Resolution 0.01V/0.1V
DC Voltage Range -250V-+250V/-500V-+500V | 240A/120A | LCD | 200 | | ## 2k-4kVA PROGRAMMABLE SWITCHING AC/DC POWER SOURCE | Model | Output Capacity | Output Freq. | Output Voltage | Max. Current | Display Type | Weight(kg) | Page | |------------|-----------------|--------------|---|--|--------------|------------|--------| | ASR-3200 | 2kVA | 1~999.9Hz | AC 100V Range 0.0V~200.0V DC 100V Range -285V~+285V AC 200V Range 0.0V~400.0V DC 200V Range -570V~+570V | AC 100V Range 20A DC 100V Range 20A
AC 200V Range 10A DC 200V Range 10A | LCD | 25 | | | ASR-3300 | 3kVA | 1~999.9Hz | AC 100V Range 0.0V~200.0V DC 100V Range -285V~+285V AC 200V Range 0.0V~400.0V DC 200V Range -570V~+570V | AC 100V Range 30A DC 100V Range 30A
AC 200V Range 15A DC 200V Range 15A | LCD | 25 | D86-90 | | ASR-3400 | 4kVA | 1~999.9Hz | AC 100V Range 0.0V~200.0V DC 100V Range -285V~+285V AC 200V Range 0.0V~400.0V DC 200V Range -570V~+570V | AC 100V Range 40A DC 100V Range 40A
AC 200V Range 20A DC 200V Range 20A | LCD | 25 | D86-90 | | ASR-3400HF | 4kVA | 1~5000Hz | AC 100V Range 0.0V~200.0V DC 100V Range -285V~+285V AC 200V Range 0.0V~400.0V DC 200V Range -570V~+570V | AC 100V Range 40A DC 100V Range 40A
AC 200V Range 20A DC 200V Range 20A | LCD | 25 | | ## PROGRAMMABLE SWITCHING AC/DC POWER SOURCE | Model | Output Capacity | Output Freq. | Output Voltage | Max. Current | Display Type | Weight(kg) | Page | |------------------------|-----------------|--------------|--|--|--------------|---|--------| | ASR-2050/
ASR-2050R | 500VA | 1~999.9Hz | AC 100V Range 0.0V-175.0V
AC 200V Range 0.0V-350.0V
DC 100V Range -250.0V-+250.0V
DC 200V Range -500.0V-+500.0V | AC 100V Range 5A
AC 200V Range 2.5A
DC 100V Range 5A
DC 200V Range 2.5A | LCD | 11.5 (ASR-2000 Series)
10.5 (ASR-2000R Series) | | | ASR-2100/
ASR-2100R | 1000VA | 1~999.9Hz | AC 100V Range 0.0V-175.0V
AC 200V Range 0.0V-350.0V
DC 100V Range -250.0V-+250.0V
DC 200V Range -500.0V-+500.0V | AC 100V Range
10A
AC 200V Range 5A
DC 100V Range 10A
DC 200V Range 5A | LCD | 11.5 (ASR-2000 Series)
10.5 (ASR-2000R Series) | D91-92 | ## PROGRAMMABLE LINEAR AC POWER SOURCE | Model | Output Capacity | Output Freq. | Output Voltage | Max. Current | Display Type | Weight(kg) | Page | |----------|-----------------|-----------------------------|-------------------------------|--------------|--------------|------------|--------| | APS-7050 | 500VA | 45~500Hz Option: 45~999.9Hz | 0-310V, 0-155V Option: 0-600V | 2.1A, 4.2A | LCD | 24 | | | APS-7100 | 1000VA | 45~500Hz Option: 45~999.9Hz | 0-310V, 0-155V Option: 0-600V | 4.2A, 8.4A | LCD | 38 | D93-96 | | APS-7200 | 2000VA | 45-500Hz Option: 45-999.9Hz | 0-310V, 0-155V Option: 0-600V | 8.4A, 16.8A | LCD | 90 | D93-96 | | APS-7300 | 3000VA | 45~500Hz Option: 45~999.9Hz | 0-310V, 0-155V Option: 0-600V | 12.6A, 25.2A | LCD | 128 | | ## LINEAR AC POWER SOURCE | Model | Output Capacity | Output Freq. | Output Voltage | Max. Current | Display Type | Weight(kg) | Page | |-----------|-----------------|--------------|----------------|--------------|--------------|------------|--------| | APS-7050E | 500VA | 45~500Hz | 0~310V, 0~155V | 2.1A, 4.2A | LCD | 24 | D97-98 | | APS-7100E | 1kVA | 45~500Hz | 0~310V, 0~155V | 4.2A, 8.4A | LCD | 38 | D97-98 | # 4.5/6/9/12/13.5/18/24 kVA High-Performance AC/DC Power Supply ## ASR-6000 Series **FEATURES** - * Adopts Third-generation Semiconductor Silicon Carbide (SiC) Technology to Create a 4U 6kVA High-performance AC/DC Power Source with High Power Density - * AC Input Supports Single-phase and Threephase, Phase Voltage 200V to 240V±10% (Delta or Y Connection) *1 - * 10 output Modes: Including External Input Signal Frequency and Mains Synchronization (SYNC), External Voltage Controlled Internal Amplifier Output (VCA) - * Multi-channel Output Function - * Supports AC 1P2W, 1P3W, 3P4W Output - * AC Maximum Output Phase Voltage: 350Vrms Line Voltage: 700Vrms - AC Balanced and Unbalanced Three-phase, Phase Failure Output Functions - * Programmable Output Impedance Adjustment - Dual-channel Voltage/Current Output Monitoring Function - * Voltage Output Rise Time Can be Adjusted in Three Ranges¹ - * Supports Sequence Editing and Emulation Output Mode - * Powerful Arbitrary Waveform Editing and Output Function, Built-in Over 253 Types of Arbitrary Waveform Outputs - * Advanced Web Server Control to Support Data Acquisition and Data Logger Both Functions - * 100th Order Harmonic Measurement Function - * Support Parallel Connection Type Up to 24kVA Maximum - * Interfaces: RS-232C, USB, LAN; Opt: CAN BUS, DeviceNet, GPIB Note: "1 Stand-alone models only. ## GRA-451-J Rack Mount Adapter(JIS) #### GRA-451-E Rack Mount Adapter(EIA) From the very moment Alpha Go defeated the human chess champion with its ultra-high-speed computing capability, artificial intelligence technology (AI) has developed rapidly around the world. Today, servers with advanced AI functions process tremendous amounts of data under the high-speed computing architecture of 2 CPUs + 8 GPUs. servers require a huge amount of power to maintain high-speed computing! In order to meet this demand, the power, density and efficiency of server power supplies have been greatly improved. High-power server power modules require high-efficiency conversion and saving of power consumption. AC single-phase input, HVDC 400V input or increased DC voltage output designs can be utilized to achieve this purpose. In order to ensure power stability when high-power servers are operating, power modules with hot-swappable redundant power supply specifications (such as CRPS) have been widely applied in server racks. Power modules with redundant functions require testing of multiple power modules at a time to ensure that all modules can maintain normal operation during high power output. Due to the rapid changes in the development of server power supplies GW Instek developed the brand new flagship model ASR-6000 series to meet customer needs. ASR-6000 series series has two models - ASR-6450 AC/DC 4.5kVA and ASR-6600 series AC/DC 6kVA. ASR-6000 series is the first stand-alone unit from GW Instek that supports AC single/three-phase input and output, and has rated DC power output. The series employs third-generation semiconductor silicon carbide (SiC) technology to create a 4U 6kVA high power density and high-performance AC/DC power source ASR-6000 series has the ability to emulate more diverse power environment changes, such as balanced three-phase and unbalanced three-phase, phase failure, and features multi-channel output function in three-phase output mode, programmable output impedance adjustment, and up to tens of thousands of arbitrary waveform outputs. The invincible launch of GW Instek flagship model ASR-6000 series demonstrates that GW Instek can provide a complete test solution for high-power AC sources. ASR-6000 series is the MVP of GW Instek power sources. ASR-6450-13.5/6600-18 (Three units) ## ASR-6450-24 (Four units) ## ASR-6450-09/6600-12 (Two units) ## ORDERING INFORMATION ASR-6450 4.5kVA High-Performance AC/DC Power Supply ASR-6450-09 ASR-6450-13.5 ASR-6600 ASR-6600-12 ASR-6600-18 ASR-6600-24 ASR-6450-09 ASR-6400-09 ASR-640 #### ACCESSORIES : Input terminal cover, Output terminal cover, Copper plate for delta connection input(Mark 1), Copper plate for single phase and Y connection input (Mark 2), Copper plate for delta connection input (Mark 3), Copper plate for 1P output (Mark 4) GRA-451-E Rack mount adapter(EIA) (Stand-alone models only), GTL-246 USB cable (USB 2.0 Type A - Type B cable, approx. 1.2M) ## OPTIONAL ACCESSORIES ASR-003 **GPIB** Interface Card ASR-004 DeviceNet Interface Card ASR-005 CAN BUS Interface Card ASR-C003 Modbus TCP feature GTL-232 RS-232C Cable, approx. 2M GTL-248 GPIB Cable, approx. 2M For ASR-6450/ASR-6600 use only: **GET-006** Universal Extension ASR-006 External Parallel Cable GRA-451-E Rack mount adapter(EIA) GRA-451-J Rack mount adapter (JIS) **GPW-008** 6RV3 Power Cord; 10AWG/3C, 3m Max Length, , RV5-5*3P, RV5-5*3P UL Type GPW-012 6RVV5 VDE Power Cord; 2.5mm2/5C, 3m Max Length, RVS3-5*5P, RVS3-5*5P VDE Type GPW-013 6RVT5 PSE Power Cord; 2.0mm2/5C, 3m Max Length, RVS2-5*5P, RVS2-5*5P PSE Type GPW-014 6RV4 UL Power Cord; 10AWG/4C, 3m, RV5-5*4P,RV5-5*4P UL TYPE GPW-015 6RVV4 VDE Power Cord; 2.5mm2/4C, 3m Max Length, RVS3-5*4P, RVS3-5*4P VDE Type # 4.5/6/9/12/13.5/18/24 kVA High-Performance AC/DC Power Supply | SPECIFICATIONS | | | | | | | |--|-----------------------------|--|---|---------------------------------|---|--| | Model | | ASR-6450 | | | ASR-6600 | | | Input Ratings | | , , , | 0430 | | 1311-0000 | | | | | Single-phase ; Three-phase, Delta or Y connection selectable | | | | | | Power type | | 200 Vac to 240 Vac ±10 % phase | | | | | | Voltage range Trequency range | | 47 Hz to 63 Hz | voltage (Delta: L-L, T: L-N) | | | | | Power factor ² | | 0.95 or higher (typ.) | | | | | | Efficiency ² | | 80 % or higher | | | | | | Maximum power consumption | | 6 kVA or lower | | 8 kVA or lower | | | | | | 6 KVA OF IOWER | | 8 KVA OF IOWER | | | | AC Output | | | | | | | | Multi-phase output | | Single-phase output | Polyphase output | Single-phase output | Polyphase output | | | Output capacity | | 4.5 kVA | 1P3W: 3 kVA ; 3P4W: 4.5 kVA | 6 kVA | 1P3W: 4 kVA ; 3P4W: 6 kVA | | | Mode *3 | | 1P2W | 1P3W; 3P4W (Y-connection) | 1P2W | 1P3W; 3P4W (Y-connection) | | | Setting mode ^{"3} | | 0.001/ 175 01/ / 0.01/ 250 0 | Independ, Balanced | -1-1 |
Independ, Balanced | | | nt t | Setting Range ^{°4} | | V (sine and square wave), Setting Re | | 10.314 | | | Phase voltage | | | to 1000 Vpp (triangle and arbitrary w | ave), Setting Resolution: 0.01 | Vpp / 0.1 Vpp / 1 Vpp | | | | Accuracy ³ | ±(0.3 % of set + 0.5 V / 1 V) | | | | | | Line voltage setting range ^{*6} | | | 1P3W: 0.00 V to 350.0 V /
0.00 V to 700.0 V
3P4W: 0.00 V to 303.1 V /
0.00 V to 606.2 V
(sine and square wave)
Setting Resolution: 0.01 V /
0.1 V | | 1P3W: 0.00 V to 350.0 V /
0.00 V to 700.0 V
3P4W: 0.00 V to 303.1 V /
0.00 V to 606.2 V
(sine and square wave)
Setting Resolution: 0.01 V /
0.1 V | | | | | - | 1P3W: 0.00 Vpp to 1000 Vpp /
0.00 Vpp to 2000 Vpp
3P4W: 0.00 Vpp to 866.0 Vpp /
0.00 Vpp to 1732 Vpp
(triangle and arbitrary wave)
Setting Resolution: 0.01 Vpp /
0.1 Vpp / 1 Vpp | | 1P3W: 0.00 Vpp to 1000 Vpp / 0.00 Vpp to 2000 Vpp 3P4W: 0.00 Vpp to 866.0 Vpp / 0.00 Vpp to 1732 Vpp (triangle and arbitrary wave) Setting Resolution: 0.01 Vpp / 0.1 Vpp / 1 Vpp | | | Maximum current ^{°7} | | 45 A / 22.5 A | 15 A / 7.5 A | 60 A / 30 A | 20 A / 10 A | | | Maximum peak current ¹⁸ | | Four times of the maximum RMS | Scurrent | | | | | Load power factor 9 | | 0 to 1 (leading phase or lagging phase, 45 Hz to 65Hz) | | | | | | - | Setting range | AC Mode: 15.00 Hz to 2000.0 Hz | , AC+DC Mode: 1.00 Hz to 2000.0 Hz | , Setting resolution: 0.01 Hz / | 0.1 Hz | | | Frequency | Accuracy | ± 0.01% of set | | | | | | | Stability 10 | ± 0.005% | | | | | | Output on phase setting range 11 | , | 0.0° to 359.9° variable (Free / Fix selectable), 0.1° (1 Hz to 500 Hz), 1° (500 Hz to 2000 Hz) | | | | | | Output off phase setting range 11 | | 0.0° to 359.9° variable (Free / Fix | selectable), 0.1° (1 Hz to 500 Hz), 1° | (500 Hz to 2000 Hz) | | | | Setting range of the phase angle *12 | | | 3P4W: L2 phase: 0° to 359.9°
L3 phase: 0° to 359.9°
Setting Resolution: 0.1° | | 3P4W: L2 phase: 0° to 359.9°
L3 phase: 0° to 359.9°
Setting Resolution: 0.1° | | | Phase angle accuracy *13 | | *** | 45 Hz to 65 Hz: ±1.0°
15 Hz to 2000 Hz: ±2.0° | *** | 45 Hz to 65 Hz: ±1.0°
15 Hz to 2000 Hz: ±2.0° | | | DC offset ^{°14} | | ± 20 mV (typ.) | | | | | | DC Output (Only Single Phase Output | rt) | | | | | | | Output capacity | -4 | 41 | 5 kW | | 6 kW | | | Mode | | Floating output, the N terminal of | | | 0.10 | | | | Setting Range | | +500.0 V, Setting Resolution: 0.01 V | /01V | | | | Voltage | Accuracy °15 | ±(0.3 % of set + 0.3 V / 0.6 V) | 7 7 7 7 7 7 1 Setting Resolution: 0.01 V | J V.1. T | | | | Maximum current °16 | | 45 A / 22.5 A | | 60 A / 30 A | | | | | | 45 A / 22.5 A 60 A / 30 A Four times of the maximum current | | | | | | Maximum peak current 17 | | | | | | | | Output Stability, Total Harmonic Distortion, Output Vo | | AND THE PROPERTY OF PROPER | | | | | | Line regulation | | ±0.1% or less (Phase voltage) ±0.1 V / ±0.2 V, @DC (only single-phase output) ±0.1 V / ±0.2 V, @45 Hz to 65 Hz (phase voltage, 0 to 100%, via output terminal) ±0.5 V / ±1.0 V, @all other frequencies (phase voltage, 0 to 100%, via output terminal) | | | | | | Distortion of Output 019 | | <0.3 % @1Hz to 100Hz, <0.5 % | @100.1 Hz to 500 Hz, <1 % @500.1 | Hz to 2000 Hz | | | | Output voltage response time 20 | | Fast: 50 µs (typ.); Middle:100µs (typ.); Slow: 300 µs (typ.) | | | | | | Ripple noise 21 | | 0.5 Vrms / 1 Vrms (TYP) | | | | | | | | | | | | | - 8. O.5 Vrms / 1 Vrms (TYP) *1 Y connection is three-phase, five-wire, Delta connection is three-phase, four-wire, (Accessories will be provided) *2. In the case of AC-INT mode, the rate output voltage, resistance load at maximum output current, 45 Hz to 65 Hz and sine wave output only. *3. Can be only set in polyphase mode. *4. For phase voltage setting in polyphase output. In balance mode all phase are collectively set and in unbalance mode each phase are individually set. *5. For an output voltage of 10 V to 175 V / 20 V to 350 V, sine wave, an output frequency of 45 Hz to 65 Hz, no load, DC voltage setting 0V (AC+DC mode) and 23°C ± 5°C. For phase voltage setting in the polyphase output. *6. Line voltage only can be set in balance mode. *7. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the DC superimmpositions, the active current of AC+DC satisfies the maximum current. In the case of 40 Hz or lower or 400 Hz or higher, and that the ambient temperature is 40 degree or higher, the maximum current may decrease. *8. With respect to the capacitor-input rectifying load. Limited by the maximum current. *9. External power injection or regeneration which is over short reverse power flow capacity is not available. *16. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the AC superimmpositions , the active current of AC+DC satisfies the maximum current. And the ambient temperature is 40 degree or higher, the maximum unrent may decrease. *17. Instantaneous within 3 ms , limited by the maximum current at rated output voltage. *18. For an output voltage of 75 V to 175 V / 150 V to 350 V, a load power factor of 1, stepwise change from an output current of 0 A to maximum current (or its reverse), using the output terminal on the rear panel. *19. 50 % or higher of the rated output voltage, the maximum current or work, AC and AC-DC modes, THD+N. For the polyphase it is a specification for phas | Measured Value Display (All accuracy of the measurement function is indicated for 23 °C±5 °C.) | | | | | | | |--|-----------------------------------|--|---|--|--|--| | | | Single-phase output | Polyphase output 16 | | | | | | Resolution | 0.01 V / 0.1 V | | | | | | 'oltage ^{°1°2} | RMS value accuracy | 45 Hz to 65 Hz and DC: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 2000 Hz: ± (0.7 % of rdg + 1 V / 2 V) | 45 Hz to 65 Hz: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 2000 Hz: ± (0.7 % of rdg + 1 V / 2 V) | | | | | | AVG value accuracy | DC: ± (0.5 % of rdg + 0.5 V / 1 V) | DC: ± (0.5 % of rdg + 0.5 V / 1 V) | | | | | | PEAK value accuracy ²³ | 45 Hz to 65 Hz and DC: ±(2 % of rdg + 1 V / 2 V) | 45 Hz to 65 Hz: ±(2 % of rdg + 1 V / 2 V) | | | | | | Resolution | 0.01 A / 0.1 A | | | | | | Current ^{°4} | RMS value accuracy | 45 Hz to 65 Hz and DC: ±(0.5 % of rdg + 0.1 A / 0.05 A)
15 Hz to 2000 Hz: ±(0.7 % of rdg + 0.2 A / 0.1 A) | 45 Hz to 65 Hz: ±(0.5 % of rdg + 0.05 A / 0.03 A)
15 Hz to 2000 Hz: ±(0.7 % of rdg + 0.1 A / 0.05 A) | | | | | | AVG value accuracy | DC: ± (0.5 % of rdg + 0.2 A / 0.1 A) | DC: ± (0.5 % of rdg + 0.1 A / 0.05 A) | | | | | | PEAK value accuracy*5 | 45 Hz to 65 Hz and DC: ±(2 % of rde + 1 A / 0.5 A) | 45 Hz to 65 Hz: ±(2 % of rde + 0.5 A / 0.25 A) | | | | | SPECIFICATIONS | | | | | | |---------------------------|-----------------------|-------------------------|---|---|--| | Model | | | ASR-6450 | ASR-6600 | | | | Active (W) | Resolution | 0.1 W /1 W | | | | | Active (w) | Accuracy*9 | ±(1 % of rdg + 3 W) | ±(1 % of rdg + 1 W) | | | Power*7*8 | Apparent (VA) | Resolution | 0.1 VA / 1 VA | | | | Power | Apparent (VA) | Accuracy | ±(2 % of rdg + 6 VA) | ±(2 % of rdg + 2 VA) | | | | Reactive (VAR) | Resolution | 0.1 VAR / 1 VAR | | | | | neactive (van) | Accuracy 10 | ±(2 % of rdg + 6 VAR) | ±(2 % of rdg + 2 VAR) | | | Power factor | Pan | | 0.000 to 1.000 | | | | rower ractor | | Resolution | 0.001 | | | | Harmonic voltage Effectiv | | Range | Up to 100th order of the fundamental wave | | | | value (rms) Percent (%) | • | Full Scale | 200 V / 400 V, 100% | | | | (AC-INT and 50/60 Hz on | M°11 | Resolution | 0.01 V /0.1 V, 0.1% | | | | (Ne litt and so/oo tiz on | 711 | Accuracy 12 | Up to 20th: ±(0.2 % of rdg + 0.5 V / 1 V) ; 20th to 100th: ±(0.3 % of rdg | (+ 0.5 V / 1 V) | | | Harmonic current | | Range
Full Scale | Up to 100th order of the fundamental wave | | | | | Effective value (rms) | | 63 A / 31.5 A, 100% | 21 A / 10.5 A, 100% | | | Percent (%) | | | 0.01 A / 0.1 A, 0.1% | | | | | | Accuracy ^{°13} | Up to 20th: ±(1 % of rdg + 1.5 A / 0.75 A)
20th to 100th: ±(1.5 % of rdg + 1.5 A / 0.75 A) | Up to 20th: ±(1 % of rdg + 0.5 A / 0.25 A)
20th to 100th: ±(1.5 % of rdg + 0.5 A / 0.25 A) | | - *1. In the polyphase output, the specification is for phase voltage, and the DC average value display cannot be selected. *2. Accuracy values are in the case that the output voltage is within voltage setting range. *3. The accuracy is for output waveform DC or sine wave only. *4. Accuracy values are in the case that the output current is 5% to 100% of the maximum current. *5. The accuracy is for output waveform DC or sine wave only. *6. In the polyphase output, these are the specifications for each phase. *7. For an output voltage of 50 V or greater, an output current in the range of 10 % to 100 % of the maximum current, DC or an output frequency of 45 Hz to 65 Hz. - *8. The apparent and reactive powers are not displayed in the DC mode. *9. For the load with the power factor 0.5 or higher. *10. For the load with the power factor 0.5 or lower. *11. The measurement does not conform to the IEC or other standard. Phase Voltage and Phase Current. *12. For an output voltage of 10 V to 175 V / 20 V to 350 V. *13. An output current in the range of 5 % to 100 % of the maximum current. | Others | | | | | | |------------------------|--|-----------
---|--|--| | Protections | | | UVP, OVP, OCP, OTP, OPP, Fan Fail, Peak and RMS Current Limit | | | | Parallel function | | | Up to 3 units | | | | Display | | | TFT-LCD, 7 inch | | | | Memory function | | | | | | | memory function | Number of m | | Store and recall settings, Basic settings: 10 | | | | | Number of memories | | 253 (nonvolatile) | | | | Arbitrary Wave | Waveform length | | 4096 words | | | | | Amplitude resolution | | 16 bits | | | | General Specificatio | ns | | | | | | | | USB | Type A: Host, Type B: Slave, Speed: 1.1/2.0, USB-CDC / USB-TMC | | | | | Standard. | LAN | MAC Address, DNS IP Address, User Password, Gateway IP Address, Instrument IP Address, Subnet Mask | | | | | Standard | External | External Signal Input; External Control I/O; V/I Monitor Output | | | | Interface | | RS-232C | Complies with the EIA-RS-232 specifications | | | | | Optional 1 | GPIB | SCPI-1993, IEEE 488.2 compliant interface | | | | | Optional 2 | CAN Bus | Complies with CAN 2.0A or 2.0B based protocol | | | | | Optional 3 | DeviceNet | Complies with CAN 2.0A or 2.0B based protocol | | | | Insulation resistance | | | DC 500 V, 30 MΩ or more | | | | Withstand voltage | Between input and chassis, output
and chassis, input and output | | AC 1500 V or DC 2130 V , 1 minute | | | | ЕМС | | | EN 61326-1 (Class A) EN 61326-2-1/-2-2 (Class A) EN 61000-3-2/-3-12 (Class A, Group 1) EN 61000-3-3/-3-11 (Class A, Group 1) EN 61000-4-2/-4-3/-4-4/-4-5/-4-6/-4-8/-4-11/-4-34 (Class A, Group 1) EN 55011 (Class A, Group 1) | | | | Safety | | | EN 61010-1 | | | | Vibration, Shock and 1 | ransportation Inte | egrity | ISTA 2A Test Procedure | | | | Environment | Operating environment | | Indoor use, Overvoltage Category II | | | | | Operating temperature range | | 0 °C to 40 °C | | | | | Storage temperature range | | -10 °C to 70 °C | | | | | Operating humidity range | | 20 %rh to 80 % RH (no condensation) | | | | | Storage humidity range | | 90 % RH or less (no condensation) | | | | | Altitude | | Up to 2000 m | | | | | Altitude | | | | | | Dimensions (mm) | Altitude | | 430(W)×176(H)×590(D) (not including protrusions) | | | A value with the accuracy is the guaranteed value of the specification. However, an accuracy noted as reference value shows the supplemental data for reference when the product is used, and is not under the guarantee. A value without the accuracy is the nominal value or representative value (shown as typ.). Product specifications are subject to change without notice. # 4.5/6/9/12/13.5/18/24 kVA High-Performance AC/DC Power Supply | CRECIPICATIONS. | | | | | | | | |--|--------------------------------------|--|---|--|---|--|--| | SPECIFICATIONS | | 150 5150 00 | | ACD ((00.30 | | | | | Model | | ASR-6450-09 ASR-6600-12 | | 6600-12 | | | | | Input Ratings | | | | | | | | | Power type | | Three-phase Three-wire Delta con
Three-phase Four-wire Y connection | | | | | | | Voltage range ^{*1} | | 200 Vac to 240 Vac (Phase Voltage)
380 Vac to 460 Vac (Line Voltage) | | | | | | | Frequency range | | 47 Hz to 63 Hz | | | | | | | Power factor *2 | | 0.95 or higher (typ.) | | | | | | | Efficiency ² | | 80 % or higher | | | | | | | Maximum power consumption | | 12 kVA or lower | | 16 kVA or lower | | | | | AC output | | | | | | | | | Multi-phase output | | Single-phase output | Polyphase output | Single-phase output | Polyphase output | | | | Output capacity | | 9 kVA | 1P3W: 6 kVA
3P4W: 9 kVA | 12 kVA | 1P3W: 8 kVA
3P4W: 12 kVA | | | | Mode | | 1P2W | 1P3W
3P4W (Y-connection) | 1P2W | 1P3W
3P4W (Y-connection) | | | | Setting mode ³ | | | Unbalance, Balanced | ,000 | Unbalance, Balanced | | | | | Catting Dance 14 | | V (sine and square wave), Setting Resoluti | | | | | | Phase voltage | Setting Range ^{*4} | | to 1000 Vpp (triangle and arbitrary wave), | Setting Resolution: 0.01 Vpp / 0.1 Vpp / | 1 Vpp | | | | | Accuracy ⁰⁵ | ±(0.3 % of set + 0.5 V / 1 V) | | | | | | | | , | | 1P3W: 0.00 V to 350.0 V / 0.00 V to 700.0 V and 700.0 V and 700.0 V to 303.1 V / 0.00 V to 606.2 V (sine and square wave) Setting Resolution: 0.01 V / 0.1 V | | 1P3W: 0.00 V to 350.0 V / 0.00 V to 700.0 V
3P4W: 0.00 V to 303.1 V / 0.00 V to 606.2 V
(sine and square wave)
Setting Resolution: 0.01 V / 0.1 V | | | | Line voltage setting range ⁴⁶ | | - | 1P3W: 0.00 Vpp to 1000 Vpp / 0.00 Vpp to 2000 Vpp 3P4W: 0.00 Vpp to 866.0 Vpp / 0.00 Vpp to 1732 Vpp (triangle and arbitrary wave) Setting Resolution: 0.01 Vpp / 0.1 Vpp / 1 Vpp | - | 1P3W: 0.00 Vpp to 1000 Vpp / 0.00 Vpp to 2000 Vpp 3P4W: 0.00 Vpp to 866.0 Vpp / 0.00 Vpp to 1732 Vpp (triangle and arbitrary wave) Setting Resolution: 0.01 Vpp / 0.1 Vpp / 1 Vpp | | | | Maximum current ^{°7} | | 90 A / 45 A | 30 A / 15 A | 120 A / 60 A | 40 A / 20 A | | | | Maximum peak current [®] | | Four times of the maximum RMS current | | | | | | | Load power factor*9 | Ta | 0 to 1 (leading phase or lagging phase, 45 Hz to 65Hz) | | | | | | | | Setting range | AC Mode: 15.00 Hz to 1000.0 Hz, AC+DC Mode: 1.00 Hz to 1000.0 Hz, Setting resolution: 0.01 Hz / 0.1 Hz | | | | | | | Frequency | Accuracy | ± 0.01% of set
± 0.005% | | | | | | | Output on phase setting range 111 | Stability 10 | ± 0.005% 0.0° to 359.9° variable (Free / Fix selectable), 0.1° (1 Hz to 500 Hz), 1° (500 Hz to 1000 Hz) | | | | | | | Output of phase setting range "11 | | 0.0° to 359.9° variable (Free / Fix selectable), 0.1° (1 Hz to 500 Hz), 1° (500 Hz to 1000 Hz) | | | | | | | Setting range of the phase angle 112 | | | 3P4W:
L2 phase: 0" to 359.9"
L3 phase: 0" to 359.9"
Setting Resolution: 0.1"
45 Hz to 65 Hz: ±1.0" | | 3P4W:
L2 phase: 0" to 359.9"
L3 phase: 0" to 359.9"
Setting Resolution: 0.1"
45 Hz to 65 Hz: ±1.0" | | | | Phase angle accuracy ^{*13} | | | 45 Hz to 65 Hz: ±1.0°
15 Hz to 1000 Hz: ±2.0° | | 45 Hz to 65 Hz: ±1.0°
15 Hz to 1000 Hz: ±2.0° | | | | DC offset*14 | | ± 20 mV (typ.) | | | | | | | | DC output (only single phase output) | | | | | | | | Output capacity | | 9 kW 12 kW | | | kW | | | | Mode | | Floating output, the N terminal can be grounded | | | | | | | Voltage | Setting Range | -250.0 V to +250.0 V / -500.0 V to +500.0 V, Setting Resolution: 0.01 V / 0.1 V | | | | | | | Accuracy 13 | | ±(0.3 % of set + 0.3 V / 0.6 V)
90 A / 45 A 120 A / 60 A | | | | | | | Maximum current ^{v16} | | | | | | | | | Maximum peak current 17 | Output voltage data | | Four times of the maximum current | | | | | | Output Stability, Total Harmonic Distortion, Output voltage risin
Line regulation | | g time and Ripple noise ±0.1% or less (Phase voltage) | | | | | | | | | ±0.5 V / ±1.0 V (phase voltage) | | | | | | | Load regulation "18 Distortion of Output" 13 | | ±0.5 V / ±1.0 V (phase voltage, 0 to 100%, via output terminal)
<0.3 % @1Hz to 100Hz, <0.5 % @100.1 Hz to 500 Hz, <1 % @500.1 Hz to 1000 Hz | | | | | | | Output voltage response time 20 | | Middle: 100 µs (typ.); Slow: 300 µs | | | | | | | Ripple noise ²²¹ | | 0.5 Vms / 1 Vms / 1 Vms / 1 Vms | | | | | | - *1 Y connection is three-phase, five-wire, Delta connection is three-phase, four-wire. (Accessories will be pro - *2. In the case of AC-INT mode, the rate output voltage, resistance load at maximum output current,45 Hz to 65 Hz and sine wave output only. *3. Can be only set in polyphase mode. - *4. For phase voltage setting in polyphase output. In balance mode all phase are collectively set and in unbalance mode each phase are individually set. *5. For an output voltage of 10 V to 175 V / 20 V to 350 V, sine wave, an output frequency of 45 Hz to 65 Hz, no load, DC voltage setting 0V (AC+DC mode) and 23 °C ± 5 °C. For phase voltage setting in the polyphase output. - *6. Line voltage only can be set in balance mode. - *6. Line voltage only can be set in basince mode. *7. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the DC superimmpositions, the active current of AC+DC satisfies the maximum current. In the case of 40 Hz or lower or 400 Hz or higher, and that the ambient temperature is 40 degree or higher, the maximum current may decrease. *8. With respect to the capacitor-input rectifying load. Limited by the maximum current. *9. External power injection or regeneration which is over short reverse power flow capacity is not available. *16. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the AC superimmpositions, the active current of AC+DC satisfies the maximum current. And the ambient - temperature is 40 degree or higher, the maximum current may decrease. *17. Instantaneous within 3 ms , limited by the maximum current at rated out - um current at rated output voltage. - *18. For an output voltage of 75 V to 175 V f 150 V to 350 V, a load power factor of 1, stepwise change from an output current of 0 A to maximum current (or its reverse), using the output terminal on the rear panel. *19. 50 % or higher of the rated output voltage, the maximum current or lower, AC and AC+DC modes, THD+N. For the polyphase it is a specification for phase voltage setting. *20. For an output voltage of
100 V / 200 V, a load power factor of 1, with respect to stepwise change from an output current of 0 A to the maximum current (or its reverse). 10% 90% of output voltage. *21. For 5 Hz to 1 MHz components in DC mode using the output terminal on the rear panel. | Measured value display (All accuracy of the measurement function is indicated for 23 °C±5 ° | |---| |---| | | | Single-phase output | Polyphase output ⁶ | | |-------------------------|----------------------------------|---|---|--| | | Resolution | 0.01 V / 0.1 V | | | | Voltage ^{e1+2} | RMS value accuracy | 45 Hz to 65 Hz and DC: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 1000 Hz: ± (0.7 % of rdg + 1 V / 2 V) | 45 Hz to 65 Hz: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 1000 Hz: ± (0.7 % of rdg + 1 V / 2 V) | | | | AVG value accuracy | DC: ± (0.5 % of rdg + 0.5 V / 1 V) | DC: ± (0.5 % of rdg + 0.5 V / 1 V) | | | | PEAK value accuracy ³ | 45 Hz to 65 Hz and DC: ±(2 % of rdg + 1 V / 2 V) | 45 Hz to 65 Hz: ±(2 % of rdg + 1 V / 2 V) | | | Current*4 | Resolution | 0.01 A / 0.1 A | | | | | RMS value accuracy | 45 Hz to 65 Hz and DC: ±(0.5 % of rdg + 0.2 A / 0.1 A)
15 Hz to 1000 Hz: ±(0.7 % of rdg + 0.4 A / 0.2 A) | 45 Hz to 65 Hz: ±(0.5 % of rdg + 0.1 A / 0.05 A)
15 Hz to 1000 Hz: ±(0.7 % of rdg + 0.2 A / 0.1 A) | | | | AVG value accuracy | DC: ± (0.5 % of rdg + 0.4 A / 0.2 A) | DC: ± (0.5 % of rdg + 0.2 A / 0.1 A) | | | | PEAK value accuracy 5 | 45 Hz to 65 Hz and DC: ±(2 % of rdg + 2 A / 1 A) | 45 Hz to 65 Hz: ±(2 % of rdg + 1 A / 0.5 A) | | | SPECIFICATIONS | | | | | | | |--|----------------|-------------------------|---|---|--|--| | Model | | | ASR-6450-09 | ASR-6600-12 | | | | Power*7*8 | Active (W) | Resolution | 0.1 W / 1 W / 10 W | | | | | | Active (w) | Accuracy 9 | ±(2 % of rdg + 6 W) | ±(2 % of rdg + 2 W) | | | | | Apparent (VA) | Resolution | 0.1 VA / 1 VA / 10VA | | | | | ower | Apparent (VA) | Accuracy | ±(2 % of rdg + 9 VA) | ±(2 % of rdg + 3 VA) | | | | | Reactive (VAR) | Resolution | 0.1 VAR / 1 VAR / 10VAR | | | | | | wearnie (Awa) | Accuracy 10 | ±(2 % of rdg + 9 VAR) | ±(2 % of rdg + 3 VAR) | | | | Power factor Ran | | Range | 0.000 to 1.000 | | | | | | | Resolution | 0.001 | | | | | farmonic voltage | | Range | Up to 100th order of the fundamental wave | | | | | iffective value (rms) | | Full Scale | 200 V / 400 V, 100% | | | | | Percent (%) | | Resolution | 0.01 V /0.1 V, 0.1% | | | | | | | Accuracy ^{*12} | Up to 20th: ±(0.2 % of rdg + 0.5 V / 1 V)
21th to 100th: ±(0.3 % of rdg + 0.5 V / 1 V) | | | | | Harmonic current | | Range | Up to 100th order of the fundamental wave | | | | | farmonic current
(ffective value (rms) | | Full Scale | 126 A / 63 A, 100% 42 A / 21 A, 100% | | | | | Percent (%)
(AC-INT and 50/60 Hz only)*11 | | Resolution | 0.01 A / 0.1 A, 0.1% | | | | | | | Accuracy*13 | Up to 20th: ±(1 % of rdg + 3 A / 1.5 A)
21th to 100th: ±(1.5 % of rdg + 3 A / 1.5 A) | Up to 20th: ±(1 % of rdg + 1 A / 0.5 A)
21th to 100th: ±(1.5 % of rdg + 1 A / 0.5 A) | | | - a1. In the polyphase output, the specification is for phase voltage, and the DC average value display cannot be selected. a2. Accuracy values are in the case that the output voltage is within voltage setting range. a3. The accuracy is for output waveform DC or sine wave only. a4. Accuracy values are in the case that the output current is 5% to 100% of the maximum current. 55. The accuracy is for output waveform DC or sine wave only. a6. In the polyphase output, these are the specifications for each phase. 77. For an output voltage of 50 V or greater, an output current in the range of 10 % to 100 % of the maximum current, DC or an output frequency of 4S Hz to 65 Hz. - *8. The apparent and reactive powers are not displayed in the DC mode. *9. For the load with the power factor 0.5 or higher. *10. For the load with the power factor 0.5 or lower. *11. The measurement does not conform to the IEC or other standard. Phase Voltage and Phase Current. *12. For an output voltage of 10 V to 175 V / 20 V to 350 V. *13. An output current in the range of 5 % to 100 % of the maximum current. | Others | | | | | | | |-----------------------|--|----------------|--|--|--|--| | Protections | | | UVP, OVP, OCP, OTP, OPP, Fan Fail, Peak and RMS Current Limit | | | | | Display | | | TFT-LCD, 7 inch | | | | | Memory function | | | Store and recall settings, Basic settings: 10 | | | | | | Number of me | mories | 253 (nonvolatile) | | | | | Arbitrary Wave | Waveform length | | 4096 words | | | | | | Amplitude rese | olution | 16 bits | | | | | General Specification | ıs | | | | | | | | | USB | Type A: Host, Type B: Slave, Speed: 2.0, USB-CDC / USB-TMC | | | | | | | LAN | MAC Address, DNS IP Address, User Password, Cateway IP Address, Instrument IP Address, Subnet Mask | | | | | | Standard | External | External Signal Input; External Control I/O; V/I Monitor Output | | | | | Interface | | RS-232C | Complies with the EIA-RS-232 specifications | | | | | | Optional 1 | GPIB | SCPI-1993, IEEE 488.2 compliant interface | | | | | | Optional 2 | CAN Bus | Complies with CAN 2.0A or 2.0B based protocol | | | | | | Optional 3 | Device Net | Complies with CAN 2.0A or 2.0B based protocol | | | | | Insulation resistance | | | DC 500 V, 30 MΩ or more | | | | | Withstand voltage | Between input and chassis, output
and chassis, input and output | | AC 1500 V or DC 2130 V , 1 minute | | | | | EMC | | | EN 61326-1 (Class A) EN 61326-2-1/-2-2 (Class A) EN 61300-3-2 (Class A, Group 1) EN 61000-3-3 (Class A, Group 1) EN 61000-4-2/-4-3/-4-6/-4-5/-4-6/-4-8/-4-11 (Class A, Group 1) EN 61000-4-2/-4-3/-4-6/-4-5/-4-6/-4-8/-4-11 (Class A, Group 1) | | | | | Safety | | | EN 61010-1 | | | | | Environment | Operating env | ironment | Indoor use, Overvoltage Category II | | | | | | Operating tem | perature range | 0 °C to 40 °C | | | | | | Storage temperature range | | -10 °C to 70 °C | | | | | | Operating humidity range | | 20 %rh to 80 % RH (no condensation) | | | | | | Storage humidity range | | 90 % RH or less (no condensation) | | | | | | Altitude | | Up to 2000 m | | | | | Dimensions (mm) | | | 598(W)×937(H)×906(D) (not including protrusions) | | | | | Weight | | | Approx. 155 kg | | | | A value without the accuracy is the nominal value or representative value (shown as typ.). Product specifications are subject to change without notice. #### ASR-6450-09/ASR-6600-12 Dimensions (mm) #### ASR-6450-13.5/ASR-6600-18 Dimensions (mm) #### ASR-6600-24 Dimensions (mm) # 4.5/6/9/12/13.5/18/24 kVA High-Performance AC/DC Power Supply | SPECIFICATIONS | | | | | | | | |--|-----------------------------|--|---|----------------------------|---|--|--| | Model | Model | | ASR-6450-13.5 | | ASR-6600-18 | | | | Input Ratings | Input Ratings | | | | | | | | Power type | | Three-phase Three-wire Do
Three-phase Four-wire Y o | | | | | | | Voltage range*1 | Voltage range*1 | | 200 Vac to 240 Vac (Phase Voltage)
380 Vac to 460 Vac (Line Voltage) | | | | | | Frequency range | | 47 Hz to 63 Hz | | | | | | | Power factor ² | | 0.95 or higher (typ.) | | | | | | | Efficiency ⁵² | | 80 % or higher | | 24 13/4 1 | | | | | Maximum power consumption | | 18 kVA or lower 24 kVA or lower | | | | | | | AC Output | | | | | | | | | Multi-phase output | | Single-phase output | Polyphase output | Single-phase output | Polyphase output | | | | Output capacity | - | 13.5 kVA | 1P3W: 9 kVA
3P4W: 13.5 kVA | 18 kVA | 1P3W: 12 kVA
3P4W: 18 kVA | | | | Mode | | 1P2W | 1P3W
3P4W (Y-connection) | 1P2W | 1P3W
3P4W (Y-connection) | | | | Setting mode "3 | | *** | Unbalance, Balanced | | Unbalance, Balanced | | | | | Setting Second | 0.00 V to 175.0 V / 0.0 V to | 350.0 V (sine and square wave), Setting | Resolution: 0.01 V / 0.1 V | | | | | Phase voltage | Setting Range ^{*4} | 0.00 Vpp to 500.0 Vpp / 0. | 00 Vpp to 1000 Vpp (triangle and arbitrar | | Vpp / 0.1 Vpp / 1 Vpp | | | | | Accuracy ⁵ | ±(0.3 % of set + 0.5 V / 1 | /) | | | | | | Line voltage setting range ^{*6} | | | 1P3W: 0.00 V to 350.0 V /
0.00 V to 700.0 V
3P4W: 0.00 V to 303.1 V /
0.00 V to 606.2 V
(sine and square wave)
Setting Resolution: 0.01 V / 0.1 V | | 1P3W: 0.00 V to 350.0 V /
0.00 V to 700.0 V
3P4W: 0.00 V to 303.1 V /
0.00 V to 606.2 V
(sine and square wave)
Setting Resolution: 0.01 V / 0.1 V | | | | | | | 1P3W: 0.00 Vpp to 1000 Vpp /
0.00 Vpp to 2000 Vpp
3P4W: 0.00 Vpp to
366.0 Vpp /
0.00 Vpp to 1732 Vpp
(triangle and arbitrary wave)
Setting Resolution: 0.01 Vpp /
0.1 Vpp / 1 Vpp | | 1P3W: 0.00 Vpp to 1000 Vpp /
0.00 Vpp to 2000 Vpp
3P4W: 0.00 Vpp to 866.0 Vpp /
0.00 Vpp to 1732 Vpp
(triangle and arbitrary wave)
Setting Resolution: 0.01 Vpp /
0.1 Vpp / 1 Vpp | | | | Maximum current*7 | | 135 A / 67.5 A | 45 A / 22.5 A | 180 A / 90 A | 60 A / 30 A | | | | Maximum peak current ^{°8} | | Four times of the maximu | | | | | | | Load power factor ^{*9} | | 0 to 1 (leading phase or lagging phase, 45 Hz to 65Hz) | | | | | | | | Setting range | AC Mode: 15.00 Hz to 1000.0 Hz, AC+DC Mode: 1.00 Hz to 1000.0 Hz, Setting resolution: 0.01 Hz / 0.1 Hz | | | 0.1 Hz | | | | Frequency | Accuracy | ± 0.01% of set | | | | | | | 0.1-1 | Stability*10 | ± 0.005% 0.0° to 350.0° veriable /Free / Fix colortable) 0.3° /3 Hz to 500 Hz) 3° /500 Hz to 3000 Hz) | | | | | | | Output on phase setting range *11 Output off phase setting range *11 | | 0.0° to 359.9° variable (Free / Fix selectable), 0.1° (1 Hz to 500 Hz), 1° (500 Hz to 1000 Hz) 0.0° to 359.9° variable (Free / Fix selectable), 0.1° (1 Hz to 500 Hz), 1° (500 Hz to 1000 Hz) | | | | | | | | | | 3P4W:
L2 phase: 0° to 359.9° | | 3P4W:
L2 phase: 0° to 359.9° | | | | Setting range of the phase angle*12 | | *** | L3 phase: 0° to 359.9°
Setting Resolution: 0.1° | *** | L3 phase: 0" to 359.9"
Setting Resolution: 0.1" | | | | Phase angle accuracy*13 | | | 45 Hz to 65 Hz: ±1.0°
15 Hz to 1000 Hz: ±2.0° | | 45 Hz to 65 Hz: ±1.0°
15 Hz to 1000 Hz: ±2.0° | | | | DC Offset ^{"14} | | ± 20 mV (typ.) | | | | | | | DC output (only single phase output) | | | | | | | | | Output Capacity | | 13.5 kW 18 kW | | 18 kW | | | | | Mode | | Floating output, the N ten | | | | | | | Voltage | Setting Range | | 0.0 V to +500.0 V, Setting Resolution: 0.01 | V / 0.1 V | | | | | Accuracy | | ±(0.3 % of set + 0.3 V / 0.6 V) 135 A / 67.5 A 180 A / 90 A | | | | | | | Maximum current ^{*16} Maximum peak current ^{*17} | | 135 A / 67.5 A 180 A / 90 A Four times of the maximum current | | | | | | | | ion Output volto | | | | | | | | Output Stability, Total Harmonic Distortion, Output voltage rising time and Ripple noise | | | | | | | | | Line regulation | | ±0.1% or less (Phase voltage) | | | | | | | Load regulation of Output 119 | | ±0.5 V / ±1.0 V (phase voltage, 0 to 100%, via output terminal) <0.3 % @1Hz to 100Hz, <0.5 % @100.1 Hz to 500 Hz, <1 % @500.1 Hz to 1000 Hz | | | | | | | Distortion of Output 138 Output voltage response time 29 | | Middle: 100 µs (typ.); Slow: 300 µs (typ.) | | | | | | | Ripple noise *21 | | 0.5 Vrms / 1 Vrms (TYP) | | | | | | | ruppine mones | | | | | | | | - P1 Y connection is three-phase, five-wire, Delta connection is three-phase, four-wire. (Accessories will be provided) 2. In the case of AC-INT mode, the rate output voltage, resistance load at maximum output current,45 Hz to 65 Hz and sine wave output only. - *3. Can be only set in polyphase mode. *4. For phase voltage setting in polyphase output. In balance mode all phase are collectively set and in unbalance mode each phase are individually set. - *5. For an output voltage of 10 V to 175 V / 20 V to 350 V, sine wave, an output frequency of 45 Hz to 65 Hz, no load, DC voltage setting 0V (AC+DC mode) and 23 °C ± 5 °C. For phase voltage setting in the polyphase output. - *6. Line voltage only can be set in balance mode. *7. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the DC superimmpositions, the active current of AC+DC satisfies the maximum current. In the case of 40 Hz or higher, and that the ambient temperature is 40 degree or higher, the maximum current may decrease. *8. With respect to the capacitor-input rectifying load. Limited by the maximum current. *9. External power injection or regeneration which is over short reverse power flow capacity is not available. *16. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the AC superimmpositions, the active current of AC+DC satisfies the maximum current. And the ambient temperature is 40 degrees or higher than rated value, this is limited to satisfy the power capacity. If there is the AC superimmpositions are current of AC+DC satisfies the maximum current. - temperature is 40 degree or higher, the maximum current may decrease, †17. Instantaneous within 3 ms , limited by the maximum current at rated output voltage. - *18. For an output voltage of 75 V to 175 V / 150 V to 350 V, a load power factor of 1, stepwise change from an output current of 0 A to maximum current (or its reverse), using the output terminal on the rear panel. *19. 50 % or higher of the rated output voltage, the maximum current or lower, AC and AC+DC modes, THD+N. For the polyphase it is a specification for phase voltage setting. *20. For an output voltage of 100 V / 200 V, a load power factor of 1, with respect to stepwise change from an output current of 0 A to the maximum current (or its reverse). 10% 90% of output voltage. *21. For 5 Hz to 1 MHz components in DC mode using the output terminal on the rear panel. | Model | | | ASR-6450-13.5 | ASR-6600-18 | | |---|-----------------------|-------------------------|--|--|--| | Measured value dis | play (All accuracy o | f the measureme | ent function is indicated for 23 °C±5 °C.) | | | | measured value dis | pia) (riii accaiac) o | Tine measureme | Single-phase output | Polyphase output*6 | | | | Resolution | | 0.01 V / 0.1 V | r oryphase output | | | Voltage*1°2 | RMS value accur | асу | 45 Hz to 65 Hz and DC: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 1000 Hz: ± (0.7 % of rdg + 1 V / 2 V) | 45 Hz to 65 Hz: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 1000 Hz: ± (0.7 % of rdg + 1 V / 2 V) | | | | AVG value accur | acy | DC: ± (0.5 % of rdg + 0.5 V / 1 V) | DC: ± ([0.5 % of rdg] + 0.5 V / 1 V) | | | | PEAK value accu | racy ^{°3} | 45 Hz to 65 Hz and DC: ±(2 % of rdg + 1 V / 2 V) | 45 Hz to 65 Hz: ±(2 % of rdg + 1 V / 2 V) | | | | Resolution | | 0.01 A / 0.1 A | | | | Current ^{°4} | RMS value accur | асу | 45 Hz to 65 Hz and DC: ±(0.5 % of rdg + 0.3 A / 0.15 A)
15 Hz to 1000 Hz: ±(0.7 % of rdg + 0.6 A / 0.4 A) | 45 Hz to 65 Hz: ±(0.5 % of rdg + 0.15 A / 0.08 A)
15 Hz to 1000 Hz: ±(0.7 % of rdg + 0.3 A / 0.15 A) | | | | AVG value accur | acy | DC: ± (0.5 % of rdg + 0.6 A / 0.4 A) | DC: ± ([0.5 % of rdg] + 0.3 A / 0.15 A) | | | | PEAK value accu | racy ⁵ | 45 Hz to 65 Hz and DC: ±(2 % of rdg + 3 A / 1.5 A) | 45 Hz to 65 Hz: ±(2 % of rdg + 1.5 A / 0.75 A) | | | | Active (W) | Resolution | 0.1 W / 1 W / 10 W | • | | | | Active (w) | Accuracy 19 | ±(2 % of rdg + 6 W) | ±(2 % of rdg + 2 W) | | | Power*7*8 | Apparent (VA) | Resolution | 0.1 VA / 1 VA / 10VA | No. 1990 Personal Property Co. | | | Power | Apparent (VA) | Accuracy | ±(2 % of rdg + 9 VA) | ±(2 % of rdg + 3 VA) | | | | Reactive (VAR) | Resolution | 0.1 VAR / 1 VAR / 10VAR | A CONTRACTOR OF THE PROPERTY O | | | | Reactive (VAR) | Accuracy *10 | ±(2 % of rdg + 9 VAR) | ±(2 % of rdg + 3 VAR) | | | Power factor | | Range | 0.000 to 1.000 | | | | ower mesor | | Resolution | 0.001 | | | | Harmonic voltage | | Range | Up to 100th order of the fundamental wave | | | | Effective value (rms) | | Full Scale | 200 V / 400 V, 100% | | | | Percent (%) | | Resolution | 0.01 V /0.1 V, 0.1% | | | | (AC-INT and 50/60 Hz only)*11 Accuracy*12 | | Accuracy ^{°12} | Up to 20th: ±(0.2 % of rdg + 0.5 V / 1 V)
21th to 100th: ±(0.3 % of rdg + 0.5 V / 1 V) | | | | | | Range | Up to 100th order of the fundamental wave | | | | Harmonic current | | Full Scale | 189 A / 94.5 A, 100% | 63 A / 31.5 A, 100% | | | Effective value (rms)
Percent (%) | | Resolution | 0.01 A / 0.1
A, 0.1% | | | | (AC-INT and 50/60 Ha | c only)*11 | Accuracy*13 | Up to 20th: ±(1 % of rdg + 3 A / 1.5 A)
21th to 100th: ±(1.5 % of rdg + 3 A / 1.5 A) | Up to 20th: ±(1 % of rdg + 1 A / 0.5 A)
21th to 100th: ±(1.5 % of rdg + 1 A / 0.5 A) | | | | | | | | | - *1. In the polyphase output, the specification is for phase voltage, and the DC average value display cannot be selected. - *1. In the polyphase output, the specification is for phase voltage, and the DC average value display cannot be selected \$2. Accuracy values are in the case that the output voltage is within voltage setting range. *3. The accuracy is for output waveform DC or sine wave only. *4. Accuracy values are in the case that the output current is 5% to 100% of the maximum current. *5. The accuracy is for output waveform DC or sine wave only. *6. In the polyphase output, these are the specifications for each phase. *7. For an output voltage of 50 V or greater, an output current in the range of 10 % to 100 % of the maximum current, DC or an output frequency of 45 Hz to 65 Hz. - *8. The apparent and reactive powers are not displayed in the DC mode. *9. For the load with the power factor 0.5 or higher. *10. For the load with the power factor 0.5 or lower. *11. The measurement does not conform to the IEC or other standard. Phase Voltage and Phase Current. *12. For an output voltage of 10 V to 175 V / 20 V to 350 V. *13. An output current in the range of 5 % to 100 % of the maximum current. | Others | | | | | |------------------------------|---|---------------------------------------|--|--| | Protections | | | UVP, OVP, OCP, OTP, OPP, Fan Fail, Peak and RMS Current Limit | | | Display | | | TFT-LCD, 7 inch | | | Memory function | | | Store and recall settings, Basic settings: 10 | | | Number of memories | | mories | 253 (nonvolatile) | | | Arbitrary Wave | Waveform length | | 4096 words | | | | Amplitude reso | lution | 16 bits | | | General Specification | is | | | | | | | USB | Type A: Host, Type B: Slave, Speed: 2.0, USB-CDC / USB-TMC | | | | Standard | | MAC Address, DNS IP Address, User Password, Gateway IP Address, Instrument IP Address, Subnet Mask | | | 8-A-38-97 | Standard | External | External Signal Input; External Control I/O; V/I Monitor Output | | | Interface | | RS-232C | Complies with the EIA-RS-232 specifications | | | | Optional 1 | GPIB | SCPI-1993, IEEE 488.2 compliant interface | | | | Optional 2 | CAN Bus | Complies with CAN 2.0A or 2.0B based protocol | | | | Optional 3 | Device Net | Complies with CAN 2.0A or 2.0B based protocol | | | Insulation resistance | Between input
and chassis, in | and chassis, output
put and output | DC 500 V, 30 MΩ or more | | | Withstand voltage | Between input
and chassis, in | and chassis, output
put and output | AC 1500 V or DC 2130 V , 1 minute | | | EMC | | | EN 61326-1 (Class A) EN 61326-2-1/-2-2 (Class A) EN 61000-3-2 (Class A, Group 1) EN 61000-3-3 (Class A, Group 1) EN 61000-4-2/-4-3/-4-45/-4-6/-4-8/-4-11 (Class A, Group 1) EN 55011 (Class A, Group1) | | | Safety | | | EN 61010-1 | | | Environment | Operating envi | ronment | Indoor use, Overvoltage Category II | | | | Operating temp | perature range | 0 °C to 40 °C | | | | Storage temperature range -10 °C to 70 °C | | -10 °C to 70 °C | | | | Operating hum | nidity range | 20 %rh to 80 % RH (no condensation) | | | | Storage humidi | ity range | 90 % RH or less (no condensation) | | | | Altitude | | Up to 2000 m | | | Dimensions (mm) | | | 598(W)×1116(H)×906(D) (not including protrusions) | | | Weight | | | Approx. 200 kg | | A value with the accuracy is the guaranteed value of the specification. However, an accuracy noted as reference value shows the supplemental data for reference when the product is used, and is not under the guarantee. A value without the accuracy is the nominal value or representative value (shown as typ.). Product specifications are subject to change without notice. # 4.5/6/9/12/13.5/18/24 kVA High-Performance AC/DC Power Supply | SPECIFICATIONS | | | | | |--|------------------------|--|--|--| | Model | | ASR-6 | 600-24 | | | Input Ratings | | | | | | Power type | | Three-phase Three-wire Delta connection Three-phase Four-wire Y connection | | | | Voltage range ^{*1} | | 200 Vac to 240 Vac (Phase Voltage)
380 Vac to 460 Vac (Line Voltage) | | | | Frequency range | | 47 Hz to 63 Hz | | | | Power factor*2 | | 0.95 or higher (typ.) | | | | Efficiency*2 | | 80 % or higher | | | | Maximum power consumption | | 32 kVA or lower | | | | AC Output | | | | | | Multi-phase output | | Single-phase output | Polyphase output | | | Output capacity | | 24 kVA | 1P3W: 18 kVA
3P4W: 24 kVA | | | Mode | | 1P2W | 1P3W
3P4W (Y-connection) | | | Setting mode ⁺³ | | *** | Unbalance, Balanced | | | | Setting Range*4 | 0.00 V to 175.0 V / 0.0 V to 350.0 V (sine and square wave), Setting | | | | Phase voltage | Setting Kange | 0.00 Vpp to 500.0 Vpp / 0.00 Vpp to 1000 Vpp (triangle and arbitrary wave), Setting Resolution: 0.01 Vpp / 0.1 Vpp / 1 Vpp | | | | | Accuracy ¹⁵ | ±(0.3 % of set + 0.5 V / 1 V) | | | | Line voltage setting range*6 | | ins | 1P3W: 0.00 V to 350.0 V / 0.00 V to 700.0 V
3P4W: 0.00 V to 303.1 V / 0.00 V to 606.2 V
(sine wave only)
Setting Resolution: 0.01 V / 0.1 V | | | Maximum current ^{*7} | | 240 A / 120 A | 80 A / 40 A | | | Maximum peak current ¹⁸ | | Four times of the maximum RMS current | | | | Load power factor*9 | | 0 to 1 (leading phase or lagging phase, 45 Hz to 65Hz) | | | | | Setting range | AC Mode: 15.00 Hz to 550.0 Hz, AC+DC Mode: 1.00 Hz to 550.0 Hz, Setting resolution: 0.01 Hz / 0.1 Hz | | | | Frequency | Accuracy | ± 0.01% of set | | | | 0.10.10.10.10.10.10.10.10.10.10.10.10.10 | Stability*10 | ± 0.005% | 1° (500 H= to 550 H=) | | | Output on phase setting range 111 Output off phase setting range 111 | | 0.0° to 359.9° variable (Free / Fix selectable), 0.1° (1 Hz to 500 Hz), 1° (500 Hz to 550 Hz) 0.0° to 359.9° variable (Free / Fix selectable), 0.1° (1 Hz to 500 Hz), 1° (500 Hz to 550 Hz) | | | | Setting range of the phase angle *12 | | | 3P4W:
L2 phase: 0* to 359.9*
L3 phase: 0* to 359.9*
Setting Resolution: 0.1* | | | Phase angle accuracy*13 | | ne. | 45 Hz to 65 Hz: ±1.0°
15 Hz to 550 Hz: ±2.0° | | | DC offset ^{*14} | | ± 20 mV (typ.) | | | | DC output (only single phase output) | | | | | | Output Capacity | | 24 | kW | | | Mode | | Floating output, the N terminal can be grounded | | | | Voltage Setting Range | | -250.0 V to +250.0 V / -500.0 V to +500.0 V, Setting Resolution: 0.01 V / 0.1 V | | | | Maximum current ^{e16} | Accuracy*15 | ±(0.3 % of set + 0.3 V / 0.6 V)
240 A / 120 A | | | | Maximum current Maximum peak current 17 | | Four times of the maximum current | | | | Output Stability, Total Harmonic Distort | ion. Output volta | | | | | Line regulation | ion, output voita | ±0.1% or less (Phase voltage) | | | | Load regulation*18 | | ±1 V / ±2 V (phase voltage, 0 to 100%, via output terminal) | | | | Distortion of Output ^{*19} | | <0.3 % @1Hz to 100Hz, <0.5 % @100.1 Hz to 550 Hz | | | | Output voltage response time*20 | | Medium: 100 μs (typ.) ; Slow: 300 μs (typ.) | | | | Ripple noise*21 | | 0.5 Vrms / 1 Vrms (TYP) | | | - *1 Y connection is three-phase, five-wire, Delta connection is three-phase, four-wire. (Accessories will be provided) *2. In the case of AC-INT mode, the rate output voltage, resistance load at maximum output current,45 Hz to 65 Hz and sine wave output only. - *3. Can be only set in polyphase mode. *4. For phase voltage setting in polyphase output. In balance mode all phase are collectively set and in unbalance mode each phase are individually set. *5. For an output voltage of 10 V to 175 V / 20 V to 350 V, sine wave, an output frequency of 45 Hz to 65 Hz, no load, DC voltage setting 0V (AC+DC mode) and 23°C ± 5°C. For phase voltage setting in the - 6. Line voltage only can be set in balance mode. - *6. Line voltage only can be set in balance mode. *7. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the DC superimmpositions, the active current of AC+DC satisfies the maximum current. In the case of 40 Hz or lower or 400 Hz or higher, and that the ambient temperature is 40 degree or higher, the maximum current may decrease. *8. With respect to the capacitor-input rectifying load. Limited by the maximum current. *9. External power injection or regeneration which is over short reverse power flow capacity is not available. *16. If the output voltage is higher than rated value, this is limited to satisfy the power capacity. If there is the AC superimmpositions, the active current of AC+DC satisfies the maximum current. And the ambient temperature is 40 degree or higher, the maximum current may decrease. *17. Instantaneous within 3 ms, limited by the maximum current at rated output voltage. *18. For an output voltage of 75 V to 175 V / 150 V to 350 V, a load power factor of 1, stepwise change from an output current of 0 A to maximum current (or its reverse), using the output terminal on the rear panel. *19. 50 % or higher of the rated output voltage, the maximum current or lower, AC and AC+DC modes, THD+N. For the polyphase it is a specification for phase voltage setting. *20. For an output voltage of 100 V / 200 V, a load power
factor of 1, with respect to stepwise change from an output current of 0 A to the maximum current (or its reverse). 10% 90% of output voltage. | Measured value display (All accuracy of the measurement function is indicated for 23 °C±5 °C.) | | | | | |--|-----------------------------------|---|--|--| | | | Single-phase output | Polyphase output | | | | Resolution | 0.01 V / 0.1 V | ' ' | | | Voltage*1+2 | RMS value accuracy | 45 Hz to 65 Hz and DC: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 550 Hz: ± (0.7 % of rdg + 1 V / 2 V) | 45 Hz to 65 Hz: ± (0.5 % of rdg + 0.5 V / 1 V)
15 Hz to 550 Hz: ± (0.7 % of rdg + 1 V / 2 V) | | | | AVG value accuracy | DC: ± (0.5 % of rdg + 0.5 V / 1 V) | DC: ± (0.5 % of rdg + 0.5 V / 1 V) | | | | PEAK value accuracy ⁶³ | 45 Hz to 65 Hz and DC: ±([2 % of rdg] + 1 V / 2 V) | 45 Hz to 65 Hz: ±(2 % of rdg + 1 V / 2 V) | | | | Resolution | 0.01 A / 0.1 A | | | | Current*4 | RMS value accuracy | 45 Hz to 65 Hz and DC: ±(0.5 % of rdg + 0.3 A / 0.15 A)
15 Hz to 550 Hz: ±(0.7 % of rdg + 0.6 A / 0.4 A) | 45 Hz to 65 Hz: ±(0.5 % of rdg + 0.15 A / 0.08 A)
15 Hz to 550 Hz: ±(0.7 % of rdg + 0.3 A / 0.15 A) | | | | AVG value accuracy | DC: ± (0.5 % of rdg + 0.6 A / 0.4 A) | DC: ± (0.5 % of rdg + 0.3 A / 0.15 A) | | | | PEAK value accuracy*5 | 45 Hz to 65 Hz and DC: +(12 % of rdal + 3 A / 1.5 A) | 45 Hz to 65 Hz: +/12 % of rdel + 1.5 A / 0.75 A) | | | SPECIFICATION | NS | | | | | |--------------------------------------|----------------|-------------------------|---|---|--| | Model | | | ASR-6600-24 | | | | Active (W) | | Resolution | 0.1 W / 1 W / 10 W | | | | | Accuracy*9 | ±(2 % of rdg + 9 W) | ±(2 % of rdg + 3 W) | | | | | Apparent (VA) | Resolution | 0.1 VA / 1 VA / 10VA | | | | rower | Apparent (VA) | Accuracy | ±(2 % of rdg + 18 VA) | ±(2 % of rdg + 6 VA) | | | | Reactive (VAR) | Resolution | 0.1 VAR / 1 VAR / 10VAR | | | | | reactive (VAR) | Accuracy ^{*10} | ±(2 % of rdg + 18 VAR) | ±(2 % of rdg + 6 VAR) | | | Power factor Range | | Range | 0.000 to 1.000 | | | | ower factor | | Resolution | 0.001 | | | | | | Range | Up to 100th order of the fundamental wave | | | | Harmonic voltage | | Full Scale | 200 V / 400 V, 100% | | | | Effective value (rms)
Percent (%) | | Resolution | 0.01 V /0.1 V, 0.1% | | | | AC-INT and 50/60 Hz | only)*11 | Accuracy*12 | Up to 20th: ±(0.2 % of rdg + 0.5 V / 1 V)
21th to 100th: ±(0.3 % of rdg + 0.5 V / 1 V) | | | | | | Range | Up to 100th order of the fundamental wave | | | | Harmonic current | | Full Scale | 252 A / 126 A, 100% | 84 A / 42 A, 100% | | | ffective value (rms) | | Resolution | 0.01 A / 0.1 A / 1 A, 0.1% | 04 N / 42 N, 100/0 | | | Percent (%) | | Kesolution | | | | | (AC-INT and 50/60 Hz | only)*11 | Accuracy*13 | Up to 20th: ±(1 % of rdg + 3 A / 1.5 A)
21th to 100th: ±(1.5 % of rdg + 3 A / 1.5 A) | Up to 20th: ±(1 % of rdg + 1 A / 0.5 A)
21th to 100th: ±(1.5 % of rdg + 1 A / 0.5 A) | | - *1. In the polyphase output, the specification is for phase voltage, and the DC average value display cannot be selected. *2. Accuracy values are in the case that the output voltage is within voltage setting range. *3. The accuracy is for output waveform DC or sine wave only. *4. Accuracy values are in the case that the output current is 5% to 100% of the maximum current. *5. The accuracy is for output waveform DC or sine wave only. *6. In the polyphase output, these are the specifications for each phase. - *7. For an output voltage of 50 V or greater, an output current in the range of 10 % to 100 % of the maximum current, DC or an output frequency of 45 Hz to 65 Hz. - *8. The apparent and reactive powers are not displayed in the DC mode. *9. For the load with the power factor 0.5 or higher. *10. For the load with the power factor 0.5 or lower. *11. The measurement does not conform to the IEC or other standard. Phase Voltage and Phase Current. *12. For an output voltage of 10 V to 175 V / 20 V to 350 V. *13. An output current in the range of 5 % to 100 % of the maximum current. | Others | | | | | |--------------------------------|---------------------|--|--|--| | Protections | | | UVP, OVP, OCP, OTP, OPP, Fan Fail, Peak and RMS Current Limit | | | Display | | | TFT-LCD, 7 inch | | | Memory function | | | Store and recall settings, Basic settings: 10 | | | Number of memories | | mories | 253 (nonvolatile) | | | Arbitrary Wave Waveform length | | gth | 4096 words | | | | Amplitude rese | olution | 16 bits | | | General Specification | s | | | | | | | USB | Type A: Host, Type B: Slave, Speed: 2.0, USB-CDC / USB-TMC | | | | | LAN | MAC Address, DNS IP Address, User Password, Gateway IP Address, Instrument IP Address, Subnet Mask | | | Standard
Interface | | External | External Signal Input External Control I/O V/I Monitor Output | | | | | RS-232C | Complies with the EIA-RS-232 specifications | | | | Optional 1 | GPIB | SCPI-1993, IEEE 488.2 compliant interface | | | | Optional 2 | CAN Bus | Complies with CAN 2.0A or 2.0B based protocol | | | | Optional 3 | Device Net | Complies with CAN 2.0A or 2.0B based protocol | | | Insulation resistance | | and chassis, output
iput and output | DC 500 V, 30 MΩ or more | | | Withstand voltage | | and chassis, output
iput and output | AC 1500 V or DC 2130 V , 1 minute | | | EMC | | | EN 61326-1 (Class A) EN 61326-2-1/-2-2 (Class A) EN 61000-3-2 (Class A, Group 1) EN 61000-3-3 (Class A, Group 1) EN 61000-4-2/-4-3/-4-4/-4-5/-4-6/-4-8/-4-11 (Class A, Group 1) EN 55011 (Class A, Group1) | | | Safety | | | EN 61010-1 | | | Environment | Operating envi | ironment | Indoor use, Overvoltage Category II | | | | Operating tem | perature range | 0 °C to 40 °C | | | | Storage tempe | rature range | -10 °C to 70 °C | | | | Operating hun | nidity range | 20 %rh to 80 % RH (no condensation) | | | | Storage humid | lity range | 90 % RH or less (no condensation) | | | | Altitude | | Up to 2000 m | | | Dimensions (mm) (not | including protrusio | ons) | 598(W)×1294(H)×906(D) | | | Weight | | | Approx. 250 kg | | A value with the accuracy is the guaranteed value of the specification. However, an accuracy noted as reference value shows the supplemental data for reference when the product is used, and is not under the guarantee. A value without the accuracy is the nominal value or representative value (shown as typ.). Product specifications are subject to change without notice. # 4.5/6/9/12/13.5/18/24 kVA High-Performance AC/DC Power Supply #### SINGLE UNIT PROVIDES AC SINGLE/THREE-PHASE INPUT FUNCTION ASR-6000 AC Three-phase Input (Delta Connection) ASR-6000 AC Three-phase Input (Y Connection) The ASR-6000 series is GW Instek's first programmable AC/DC power source that supports AC single/three-phase input. AC three-phase input supports delta (Delta) and star (Y) wiring methods a .ASR-6000 can use mains in most countries around the world (ex. Mainland China, Southeast. Asia, India, Europe...) AC single-phase 220V input can help test software development engineers work with the ASR-6000 on mains in the office. No additional three-phase power source is required. b. ASR-6000 can be used immediately in various regions around the world and is not affected by differences in power grids in different countries. Note: 1. The AC input three-phase Y connection method must be connected to the N wire, otherwise the ASR-6000 cannot be turned on. 2. ASR-6000 AC voltage input range AC 200V ~ AC240V. #### 10 OUTPUT MODES ### ASR-6000 Has 10 Output Modes **AC-VCA Output Mode** | Output Phase | Output Mode | | | Signal Source | | | |--------------|-------------|-----------|-----------|---------------|-------------|--------| | | | INT | EXT | ADD | Sync. | VCA | | 1P | AC+DC | AC+DC-INT | AC+DC-EXT | AC+DC-ADD | AC+DC-Sync. | N/A | | | AC | AC-INT | AC-EXT | AC-ADD | AC-Sync. | AC-VCA | | | DC | DC-INT | N/A | N/A | N/A | N/A | | 193W | AC+DC | AC+DC-INT | AC+DC-EXT | AC+DC-ADD | AC+DC-Sync. | N/A | | | AC | AC-INT | AC-EXT | AC-ADD | AC-Sync. | AC-VCA | | | DC | DC-INT | N/A | N/A | N/A | N/A | | 3P | AC+DC | AC+DC-INT | AC+DC-EXT | AC+DC-ADD | AC+DC-Sync. | N/A | | | AC | AC-INT | AC-EXT | AC-ADD | AC-Sync. | AC-VCA | | | DC | DC-INT | N/A | N/A | N/A | N/A | - AC+DC-INT AC & DC Internal output - AC-INT AC Internal output - DC-INT DC Internal output - AC+DC-EXT AC & DC External output - AC-EXT AC External output - AC+DC-ADD AC & DC Additional output - AC-ADD AC Additional output - AC+DC-Sync AC & DC Synchronal output - AC-Sync AC Synchronal output - AC-VCA AC Voltage Control Amplifier output A high-performance AC power source = amplifier + signal source It has: internal output + external input signal to control internal output + amplify external input signal. and output, and other diversified output functions. ASR-6000 has up to 10 output modes, including: - 1.Internal output (INT) - 2. External input controls internal output (EXT) - 3.Sum output of external and internal signal sources (ADD) - 4. Mains frequency synchronous output (SYNC) - 5. External DC signal controls internal AC amplitude (VCA) #### AC SINGLE/THREE-PHASE OUTPUT + MULTI-CHANNEL OUTPUT FUNCTION The ASR-6000 series has diverse output functions, including three modes: 1P2W, 1P3W and 3P4W. The maximum output for phase voltage is 350Vrms and the maximum output for
line voltage is 700Vrms. In AC three-phase output (3P4W) mode, each phase supports independent output settings. Taking ASR-6600 as an example, The maximum output of each phase reaches 2kVA, supporting power supply testing of up to three DUTs to meet the needs of server power modules, Testing requirements for high-power AC power products such as electric vehicle chargers and uninterruptible power supply systems.independent output settings. Taking ASR-6600 as an example, The maximum output of each phase reaches 2kVA, supporting power supply testing of up to three DUTs to meet the needs of server power modules, Testing requirements for high-power AC power products such as electric vehicle chargers and uninterruptible power supply systems. #### D. AC BALANCED/UNBALANCED THREE-PHASE OUTPUT MODES AC Balanced Three-phase The ASR-6000 series has unbalanced and balanced three-phase output modes. In the AC three-phase output mode, users can set the phase angles of L1, L2 and L3 for control. #### AC Unbalanced Three-phase Main applications: Three-phase input power supply products, when emulating unbalanced three-phase input and phase loss, the ability of three-phase power input products to restore balanced three-phase. #### E. OUTPUT IMPEDANCE ADJUSTMENT FUNCTION ASR-6000 has an output impedance adjustment function, which is mainly used to change the output inductance value and output impedance value of each phase to emulate the output voltage drop of each phase due to line loss. The adjustable range of the output impedance of ASR-6000 is as follows: | L1, L2, L3 Output Inductance | 0.0 ~ 2000 μH | |------------------------------|----------------------| | L1, L2, L3 Output Resistance | 0.0 ~ 1Ω | Note: This function only supports stand-alone applications. This function is automatically turned off in external parallel connection. #### **VOLTAGE AND CURRENT OUTPUT MONITORING FUNCTIONS** ASR-6000 provides dual-channel voltage and current monitoring, allowing instant output of voltage and current signals of each phase to an oscilloscope for measurement. #### G. OUTPUT VOLTAGE RISE TIME IS ADJUSTABLE In order to meet the test requirements of different DUT output voltages, it is necessary to adjust the rise time of different output voltages. The ASR-6000 offers users up to three adjustable settings: typical values are fast (50 microseconds), medium (100 microseconds) and slow (300 microseconds). ASR-6000 is initially set to medium speed. Note: When using 1P2W output, impedance adjustment or external parallel connection, the fast range setting will be automatically turned off. Application: It can output high-speed arbitrary waveforms to emulate various changes in the power system caused by transient high-speed rising voltage, etc. #### ADVANCED WEB SERVER CONTROL FEATURES ASR-6000 provides a full range of web control functions, including: - * View system and information, and network configuration - * Monitor measurements - * Set/Operate ASR-6000 - * Sequence Function/Simulate Function/Edit Waveform - * Data logger function #### **DIVERSE WAVEFORM OUTPUT FUNCTION** ASR-6000 provides more than 40 built-in waveforms, including: TRI, STAIR, CLIP, CF-1, CF-2, SURGE, DST01-22, RIPPLE, DIP, LF-RING. Each waveform also provides a change setting function, which can modulate thousands of combined waveforms and quickly emulate different AC output environments. Users can adjust the required waveform type through the panel (the screen is displayed simultaneously), then load it into the ARB 1~16 waveform register through the access step, and return to the main menu output mode to perform ARB Waveform output. Users can also edit waveform through ASR-6000 software and then import it into ASR-6000 for execution. # Programmable AC/DC Power Source #### ASR-3000 Series #### **FEATURES** - * Output Rating: AC 0 ~ 400 Vrms, DC 0 ~ ± 570 V - * Output Frequency up to 999.9 Hz (5kHz for ASR-3400HF only) - * DC Output (100% of Rated Power) - * Measurement Items: Vrms, Vavg, Vpeak, Irms, IpkH, lavg, Ipeak, P, S, Q, PF, CF - * Voltage and Current Harmonic Analysis (THDv, THDi) - * Remote Sensing Capability - * OCP, OPP, OTP, AC Fail Detection and Fan Fail Alarm - * Support Arbitrary Waveform Function - * Output Capacity: 2kVA/3kVA/4kVA - * Customized Phase Angle for Output On/Off - * Sequence and Simulation Function - * Interface(std): USB, LAN, RS-232, GPIB - * Built-in External Control I/O and External Signal Input - * Built-in Output Relay Control - * Memory Function (up to 10 sets) - * Built-in Web Server The ASR-3000 Series is an AC+DC power source, featuring high-speed DC voltage rising and falling time (≤100us). There are four models of the series: ASR-3200(2kVA), ASR-3300(3kVA) and ASR-3400/3400HF (4kVA). The series can provide rated power output during AC output and DC output. Ten ASR-3000 Series output modes are available, including 1) AC power output mode (AC-INT Mode), 2) DC power output mode (DC-INT Mode), 3) AC/DC power output mode (AC+DC-INT Mode), 4) External AC signal source mode (AC-EXT Mode), 5) External AC/DC signal source mode (AC+DC-EXT Mode), 6) External AC signal superimposition mode (AC-ADD Mode), 7) External AC/DC signal superimposition mode (AC+DC-ADD Mode), 8) External AC signal synchronization mode (AC-SYNC Mode), 9) External AC/DC signal synchronization mode (AC+DC-SYNC Mode)10) External DC voltage control of AC output mode (AC-VCA). ASR-3000 Series is ideal for the development of On-board Chargers, Server Powers, LED modules, AC Motors, AC Fans, UPS and various electronic components, as well as for testing applications of automotive electrical equipment and home appliances. The ASR-3000 Series provides users with waveform output capabilities including 1) Sequence mode generates waveform fallings, surges, sags, changes and other abnormal power line conditions; 2) Arbitrary waveform function allows users to store/upload user-defined waveforms; and 3) Simulate mode simulates power outage, voltage rise, voltage fall, and frequency variations. When the ASR-3000 Series power source outputs, it can also measure Vrms, Vavg, Vpeak, Irms, Iavg, Ipeak, IpkH, P, S, Q, PF, CF, 100th-order Voltage Harmonic and Current Harmonic. In addition, the remote sensing function ensures accurate voltage output, and the Customized Phase Angle for Output On/Off function can set the start and end angles of the voltage output according to the test requirements. The protection limits of V-Limit, Ipeak-Limit and F-Limit can be set according to user requirements. Over voltage limit, OCP, OPP will protect the DUT during the output process. The Fan Fail Alarm function and the AC fail alarm function are also designed in the ASR-3000 Series. The front panel of the ASR-3000 Series provides a universal socket or a European socket, which allows users to plug and use so as to save wiring time. Since the power socket specification has a maximum current of 15A, the rear panel of ASR-3000 Series is designed with a current circuit breaker. When the socket current is greater than 15A, it will automatically open the circuit to protect users. The ASR-3000 Series supports I/O interface and is standardly equipped with USB, LAN, External I/O, RS-232C and ASR-002 External three phase control unit - * Basis Requirement of ASR-002 to ASR-Series - 1. Must be the three same models of ASR-Ser - 2. To ASR-2000 Series, the Opt01: RS-232+GPIB interface is required - Functions of ASR-Series are limited when conducts to ASR-002 - No DC Output Measurement Items: only current(A), power(W) and PF for each phase - 3. No Voltage and Current Harmonic Analysis - No Remote Sensing Capability No Arbitrary Waveform Function No Sequence and Simulation Function - 7 Not supported External Control I/O - No memory Function Only support USB, no LAN port for communication #### GRA-442-J Rack Mount Adapter(JIS) GRA-442-E Rack Mount Adapter(EIA) #### GTL-137 Output power wire APS-008 Air inlet filter GET-006 Universal extension (AC signel phase 250V/13Amps) GPW-005 Power cord GPW-006 Power cord (ASR-3200, ASR-3300 Ues Only) GPW-007 Power cord # Programmable AC/DC Power Source | | | ASR-3200 | ASR-3300 | ASR-3400 | ASR-3400HF | |
---|--|--|---|--|--|---| | INPUT RATING (AC |) | | 33.55.55.55.55.55 | | | | | NOMINAL INPUT V | | | 200 Vac to 240 Vac | | | | | NPUT VOLTAGE R | ZANGE | | 180 Vac to 264 Vac
Single phase, Two-wire | | | | | NOMINAL INPUT F | FREOUENCY | | 50 Hz to 60 Hz | | | | | NPUT FREQUENCY | | | 47 Hz to 63 Hz | | | | | MAX. POWER CON: | | | 2500 VA or less | 3750 VA or less | 5000 VA or less | 5000 VA or less | | POWER FACTOR "1 200Vac MAX. INPUT CURRENT 200Vac | | 0.95 (TYP) | 22.5.4 | 30 A | 30 A | | | | EN I
100 V / 200 V (100V / 200V range), r | | 15 A
over factor of 1. | 22.5 A | 30 A | 30 A | | | RATINGS (AC rms) | | | | | | | VOLTAGE Setting Range *1 | | 0.0 V to 200.0 V / 0.0 V to 400.0 V | | | | | | | | Setting Resolution | 0.1 V | | | | | OUTPUT PHASE | | Accuracy 12 | ±(1 % of set + 1 V / 2 V)
Single phase, Two-wire | | | | | MAXIMUM CURRE | NT *3 | 100 V | 20 A | 30 A | 40 A | 40 A | | | 9736
 | 200 V | 10 A | 15 A | 20 A | 20 A | | MAXIMUM PEAK C | URRENT *4 | 100 V
200 V | 120 A | 180 A | 240 A | 160 A | | LOAD POWER FACT |
TOR | 200 V | 60 A
0 to 1 (leading phase or lagging phas | 90 A | 120 A | 80 A | | POWER CAPACITY | | | 2000 VA | 3000 VA | 4000 VA | 4000 VA | | FREQUENCY | | Setting Range | AC Mode: 40.0 Hz to 999.9 Hz, | | VA0-340. | AC Mode: 40.0 Hz to 5000 I | | | | | AC+DC Mode: 1 Hz to 999.9 Hz | | | AC+DC Mode: 1 Hz to 5000 | | | | Setting Resolution | 0.01 Hz (1.00 to 99.99 Hz),
0.1 Hz (100.0 to 999.9 Hz) | | | 0.01 Hz (1.00 to 99.99 Hz),
0.1 Hz (100.0 to 999.9 Hz) | | | | | 0.1112 (100.0 to 355.5112) | | | 1 Hz (1000 to 5000 Hz) | | | | Accuracy | 0.02% of set (23 °C ± 5 °C) | | | , | | | | Stability *5 | ± 0.005% | 3.01 | | | | OUTPUT ON PHAS | E | | 0° to 359° variable (setting resolution
Within ± 20 mV (TYP) | 17) | | | | *1. 100 V / 200 V range. | | | WIGHT E 20 HIV (TTP) | | | | | | 20 V to 200 V / 40 V to 400 V, an out | | | | | | | If there is the DC superin | mposition, the current of AC+DC mod | de satisfies the maximum currer | output voltage is 100 V to 200 V / 200 V to 400 V.
it. In the case of lower than 40 Hz, and the power rating | emperature, the maximum current will be decrease. | | | | 4. With respect to the capa | citor-input rectifying load. Limited by | the maximum current. | m current, and the operating temperature. | | | | | 6. In the case of the AC mo | | resistance load for the maximu | m current, and the operating temperature. | | | | | OUTPUT RATING F | OR DC MODE | | | | | | | VOLTAGE | | Setting Range | -285 V to +285 V / -570 V to +570 V
0.1 V | | | | | | | Setting Resolution Accuracy *2 | ±(1 % of set + 1 V / 2 V) | | | | | MAXIMUM CURRE | NT " | 100 V | 20 A | 30 A | 40 A | 40 A | | | | 200 V | 10 A | 15 A | 20 A | 20 A | | | | 200 ¥ | 10 A | 13 /1 | 20 /1 | 20 A | | MAXIMUM PEAK C | URRENT *4 | 100 V | 120 A | 180 A | 240 A | 160 A | | | URRENT ⁴ | | 120 A
60 A | 180 A
90 A | 240 A
120 A | 160 A
80 A | | POWER CAPACITY | URRENT ⁴ | 100 V | 120 A | 180 A | 240 A | 160 A | | POWER CAPACITY *1. 100 V / 200 V range. *2. For an output voltage of | 7-285 V to -28.5 V, +28.5 V to +285 V | 100 V
200 V
/ -570 V to -57 V, +57 V to +570 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. | 180 A
90 A | 240 A
120 A | 160 A
80 A | | POWER CAPACITY *1. 100 V / 200 V range. *2. For an output voltage of *3. For an output voltage of | 7-285 V to -28.5 V, +28.5 V to +285 V
11.4 V to 100 V / 2.8 V to 200 V. Limi | 100 V
200 V
/ -570 V to -57 V, +57 V to +570 | 120 A
60 A
2000 W | 180 A
90 A | 240 A
120 A | 160 A
80 A | | POWER CAPACITY *1. 100 V / 200 V range. *2. For an output voltage of *3. For an output voltage of *4. Limited by the maximum | 7-285 V to -28.5 V, +28.5 V to +285 V
71.4 V to 100 V / 2.8 V to 200 V. Limi
n current. | 100 V
200 V
/ -570 V to -57 V, +57 V to +570 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. | 180 A
90 A | 240 A
120 A | 160 A
80 A | | POWER CAPACITY 1. 100 V / 200 V range. 2. For an output voltage of 3. For an output voltage of 4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION | 7-285 V to -28.5 V, +28.5 V to +285 V
71.4 V to 100 V / 2.8 V to 200 V. Limi
n current.
STABILITY | 100 V
200 V
/ -570 V to -57 V, +57 V to +570 | 120 A 60 A 2000 W V, no load, and 23 ℃ ± 5℃. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less | 180 A
90 A
3000 W | 240 A
120 A | 160 A
80 A | | POWER CAPACITY *1.100 V / 200 V range. *2. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION | 7-285 V to -28.5 V, +28.5 V to +285 V
71.4 V to 100 V / 2.8 V to 200 V. Limi
n current.
STABILITY | 100 V
200 V
/ -570 V to -57 V, +57 V to +570 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output vi | 180 A
90 A
3000 W | 240 A
120 A | 160 A
80 A | | POWER CAPACITY *1.100 / 200 V range. *2. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION RIPPLE NOISE *9 | 7-285 V to -28.5 V, +28.5 V to +285 V
-2.4 V to 100 V / 2.8 V to 200 V. Limi
current.
STABILITY | 100 V
200 V
/ 370 V to -57 V, +57 V to +570 to to 1570 tet by the power capacity when | 120 A 60 A 2000 W V, no load, and 23 ℃ ± 5℃. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less | 180 A
90 A
3000 W | 240 A
120 A | 160 A
80 A | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 14. United by the maximum OUTPUT VOLTAGE LINE REGULATION RIPPLE NOISE 19. Power source input voltage 17. Power source input voltage 27. For an output voltage of | 7-285 V to -28.5 V, +28.5 V to +28.5 V
73.4 V to 100 V / 2.8 V to 200 V. Limi
courrent.
STABILITY
1
1
1
100 V to 200 V / 200 V, or 240 V, no load
1:00 V to 200 V / 200 V to 4:00 V, a lo | 100 V 200 V (.370 V to .37 V, +57 V to +570 to to 570 W the power capacity when when the power capacity when the power factor of 1, stepwise c | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output vi | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A | | POWER CAPACITY *1. 100 V J 200 V range. *2. For an output voltage of *3. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION REPULATION RIPPLE NOISE *1. Power source input voltage *1. For S Hz to 1 MHz com; *3. For 5 Hz to 1 MHz com; | 7-285 V to -28.5 V, +28.5 V to +285 V
7-1.4 V to 100 V / 2.8 V to 200 V. Limi
current.
STABILITY
91
N 92
age is 200 V, 220 V, or 240 V, no load
100 V to 200 V / 200 V to 400 V, a lo
ponents in DC mode using the outpe | 100 V 200 V / 370 V to -57 V , +57 V to +570 to +570 to to +570 to to by the power capacity when the power capacity when the power factor of 1, stepwise c at terminal on the rear panel. | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A | | POWER CAPACITY *1.100 V / 200 V range. *2. For an output voltage of *3. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION RPPLE NOISE *1. Power source input voltage *2. For an output voltage of *3. For 5H to 1 MHz comp OUTPUT VOLTAGE | F-285 V to -28.5 V, +28.5 V to +285 V
1.4 V to 100 V / 2.8 V to 200 V. Limi
CUTTEN COURTER STABILITY 1 1 10 10 10 10 10 10 10 10 | 100 V 200 V / 370 V to -57 V , +57 V to +570 to +570 to to +570 to to by the power capacity when the power capacity when the power factor of 1, stepwise c at terminal on the rear panel. | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A
4000 W | | POWER CAPACITY *1. 100 V / 200 V range. *2. For an output voltage of *3. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION RIPPLE NOISE *1. Power source input voltage *2. For an output voltage of *3. For 5 Hz to 1 MHz comp OUTPUT VOLTAGE | 7-285 V to -28.5 V, +28.5 V to +285 V
7-1.4 V to 100 V / 2.8 V to 200 V. Limi
current.
STABILITY
91
N 92
age is 200 V, 220 V, or 240 V, no load
100 V to 200 V / 200 V to 400 V, a lo
ponents in DC mode using the outpe | 100 V 200 V / 370 V to -57 V , +57 V to +570 to +570 to to +570 to to by the power capacity when the power capacity when the power factor of 1, stepwise c at terminal on the rear panel. | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A | | POWER CAPACITY *1. 100 V / 200 V range. *2. For an output voltage of *3. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION RIPPLE NOISE *1. Power source input voltage *2. For an output voltage of *3. For 5 Hz to 1 MHz comp OUTPUT VOLTAGE | F-285 V to -28.5 V, +28.5 V to +285 V
1.4 V to 100 V / 2.8 V to 200 V. Limi
CUTTEN COURTER STABILITY 1 1 10 10 10 10 10 10 10 10 | 100 V 200 V / 370 V to -57 V , +57 V to +570 to +570 to to +570 to to by the power capacity when the power capacity when the power factor of 1, stepwise c at terminal on the rear panel. | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output to 1 Vrms / 2 Vrms (TVP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 3. For an output voltage of 4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION RIPPLE NOISE 1. Power source input voltage of 3. For 3 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC | T-285 V to -28.5 V, +28.5 V to +285 V T1.4 V to 100 V / 2.8 V to 200 V. Limi in current. STABILITY 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 100 V 200 V / 370 V to -57 V , +57 V to +570 to +570 to to +570 to to by the power capacity when the power capacity when the power factor of 1, stepwise c at terminal on
the rear panel. | 120 A 60 A 2000 W V, no load, and 23 ℃ ± 5℃. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less 0.596 or less (0 to 10096, via output to 1 V rms / 2 V rms (TVP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @<500Hz < 0.5% @500.1Hz~999.9Hz | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION RIPPLE NOISE 11. Power source input voltage 12. For an output voltage of 13. For 5 Hz to 1 MHz comp OUTPUT VOLTAGE OUTPUT VOLTAGE OUTPUT VOLTAGE | F-285 V to -28.5 V, +28.5 V to +285 V
1.4 V to 100 V / 2.8 V to 200 V. Limi
CUTTEN COURTER STABILITY 1 1 10 10 10 10 10 10 10 10 | 100 V 200 V / 370 V to -57 V , +57 V to +570 to +570 to to +570 to to by the power capacity when the power capacity when the power factor of 1, stepwise c at terminal on the rear panel. | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output to 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @<500Hz < 0.5% @500.1Hz~999.9Hz 100 µs (TYP) | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY *1.100 V J 200 V range. *2. For an output voltage of *3. For an output voltage of *3. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION RIPPLE NOISE *3 *1. Power source input voltage *3. For 5 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY *3 ** OUTPUT VOLTAGE EFFICIENCY ** ** ** ** ** ** ** ** ** | 17-285 V to -28.5 V, +28.5 V to +285 | 100 V 200 V , 370 V to 37 V, 457 V to 4570 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2%6 or less 0.5%6 or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) 1 Vrms / 2 Vrms (TYP) 2 0.2% @50/60Hz < 0.3% @500Hz < 0.5% @5000Hz < 0.5% @5000Hz 100 µs (TYP) 80 %6 or more | 180 A
90 A
3000 W | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY *1.100 V J 200 V range. *2. For an output voltage of *3. For an output voltage of *4. End an output voltage of *4. End an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION RIPPLE NOISE *5. For an output voltage of *3. For 5 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY *1. At an output voltage of 5 *2. For *3. For an output voltage of 5 *4. | 7-285 V to -28.5 V, +28.5 V to +28.5 V 13.4 V to 100 V / 2.8 V to 200 V. Limi courrent. STABILITY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100 V 200 V , 370 V to 37 V, 457 V to 4570 ted by the power capacity when ted by the power capacity when a power factor of 1, stepwise c terminal on the rear panel. N RATIO, OUTPUT VO | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% ⊚500/Hz < 0.3% ⊚-500Hz < 0.5% ⊚500.1Hz~999.9Hz 100 µs (TYP) 80 % or more det. desge from an output current of 0 A to the maximum current ded. | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGUL | 7-285 V to -28.5 V, +28.5 V to +285 V 71 At V to 100 V / 2.8 V to 200 V. Lim in current. STABILITY 19 19 10 10 10 10 10 10 10 10 | 100 V 200 V , 370 V to 37 V, 457 V to 4570 ted by the power capacity when ted by the power capacity when the power factor of 1, stepwise c terminal on the rear panel. N RATIO, OUTPUT VO | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% ⊚500/Hz < 0.3% ⊚-500Hz < 0.5% ⊚500.1Hz~999.9Hz 100 µs (TYP) 80 % or more det. desge from an output current of 0 A to the maximum current ded. | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 12. For an output voltage of 13. For 36 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 19. It am output voltage of 19. For AC mode, at an outp MEASURED VALUE MEASURED VALUE MEASURED VALUE MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE VAL | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi nourrent. STABILITY 19 N **2 age is 200 V, 220 V, or 240 V, no load 100 V to 200 V, 200 V to 400 V, a lo ponents in DC mode using the output (EWAVEFORM DISTORTIO) C DISTORTION(THD) 10 V to 200 V / 100 V to 400 V, a load 1100 V / 200 V, a load power factor o pot voltage of 100 V / 200 V, maximu DISPLAY DISPLAY | 100 V 200 V (.370 V to .37 V, +57 V to +570 ted by the power capacity when the power capacity when the power factor of 1, stepwise contemporary to terminal on the rear parel. N RATIO, OUTPUT VO power factor of 1, and in AC m. f1, with respect to stepwise cham current, and load power factor m. current, and load power factor m. current, and load power factor m. current, and load power factor of 1, fact | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% ⊚500/Hz < 0.3% ⊚-500Hz < 0.5% ⊚500.1Hz~999.9Hz 100 µs (TYP) 80 % or more det. desge from an output current of 0 A to the maximum current ded. | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 12. For an output voltage of 13. For 36 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 19. It am output voltage of 19. For AC mode, at an outp MEASURED VALUE MEASURED VALUE MEASURED VALUE MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE VAL | 7-285 V to -28.5 V, +28.5 V to +285 V 71 At V to 100 V / 2.8 V to 200 V. Lim in current. STABILITY 19 19 10 10 10 10 10 10 10 10 | 100 V 200 V , 370 V to 37 V, +57 V to +570 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @<500.1Hz~999.9Hz 100 µs (TYP) 30 % or more ode. nge from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±{0.5% | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 12. For an output voltage of 13. For 36 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 19. It am output voltage of 19. For AC mode, at an outp MEASURED VALUE MEASURED VALUE MEASURED VALUE MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE VAL | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi in current. STABILITY 19 N **2 age is 200 V, 220 V, or 240 V, no load 1:00 V to 200 V, 200 V to 400 V, a lo ponents in DC mode using the output 1: WAVEFORM DISTORTIO C DISTORTION(THD) 1: RESPONSE TIME 20 1: 00 V / 200 V / 100 V to 400 V, a load 1:00 V / 200 V, a load power factor o and voltage of 1:00 V / 200 V, maximu DISPLAY RMS, AYG Value 91 | 100 V 200 V 200 V (-370 V to -37 V, +57 V to +570 | 120 A 60 A 2000 W V, no load, and 23 °C±5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less 0.596 or less (0 to 10096, via output to 1 V rms / 2 V rms (TYP) hange from an output current of 0 A to maximum current V = (0.2% ⊕50/60Hz < 0.3% ⊕5000Hz < 0.3% ⊕5000Hz < 0.5% ⊕500.1Hz~999.9Hz 100 µs (TYP) 80 % or more december of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1. 100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 12. For an output voltage of 13. For 36 Hz to 1 MHz comp
OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 19. It am output voltage of 19. For AC mode, at an outp MEASURED VALUE MEASURED VALUE MEASURED VALUE MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE 15. For AC mode, at an outp MEASURED VALUE VAL | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi nourrent. STABILITY 19 N **2 age is 200 V, 220 V, or 240 V, no load 100 V to 200 V, 200 V to 400 V, a lo ponents in DC mode using the output (EWAVEFORM DISTORTIO) C DISTORTION(THD) 10 V to 200 V / 100 V to 400 V, a load 1100 V / 200 V, a load power factor o pot voltage of 100 V / 200 V, maximu DISPLAY DISPLAY | 100 V 200 V 200 V , 370 V to 37 V, 457 V to 4570 ted by the power capacity when , rated output. ad power factor of 1, stepwise c to terminal on the rear panel. N RATIO, OUTPUT VO power factor of 1, and in AC m Current, and load power factor Resolution Accuracy **2* Resolution | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @500Hz < 0.5% @500.1Hz-999.9Hz 100 µs (TYP) 80 % or more dol. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V) | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p at (or its reverse). | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1-1.00 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 17. Power source input voltage of 17. For S Hz to 1 MHz company OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 12. For a noutput voltage of 5 Medical at an output woltage of 5 14. For A Composit, at an output woltage of 5 MEASURED VALUE VOLTAGE | 17-285 Y to -28.5 V, +28.5 V to +285 V 17.4 V to 100 V / 2.8 V to 200 V. Limi in current. STABILITY 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 100 V 200 V 200 V , 370 V to 37 V, +57 V to +570 + | 120 A 60 A 2000 W V, no load, and 23 ℃ ± 5℃. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @<500Hz < 0.5% @500.1Hz~999.9Hz 100 µs (TYP) 30 % or more dde. uge from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p at (or its reverse). | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1-1.00 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 17. Power source input voltage of 17. For S Hz to 1 MHz company OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 12. For a noutput voltage of 5 Medical at an output woltage of 5 14. For A Composit, at an output woltage of 5 MEASURED VALUE VOLTAGE | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi in current. STABILITY 19 N **2 age is 200 V, 220 V, or 240 V, no load 1:00 V to 200 V, 200 V to 400 V, a lo ponents in DC mode using the output 1: WAVEFORM DISTORTIO C DISTORTION(THD) 1: RESPONSE TIME 20 1: 00 V / 200 V / 100 V to 400 V, a load 1:00 V / 200 V, a load power factor o and voltage of 1:00 V / 200 V, maximu DISPLAY RMS, AYG Value 91 | 100 V 200 V 200 V , 370 V to 37 V, 457 V to 4570 ted by the power capacity when , rated output. ad power factor of 1, stepwise c to terminal on the rear panel. N RATIO, OUTPUT VO power factor of 1, and in AC m Current, and load power factor Resolution Accuracy **2* Resolution | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @500Hz < 0.5% @500.1Hz-999.9Hz 100 µs (TYP) 80 % or more dol. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V) | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p at (or its reverse). | 240 A
120 A
4000 W | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz | | POWER CAPACITY 1-1.00 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 17. Power source input voltage of 17. For S Hz to 1 MHz company OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 12. For a noutput voltage of 5 Medical at an output woltage of 5 14. For A Composit, at an output woltage of 5 MEASURED VALUE VOLTAGE | 17-285 Y to -28.5 V, +28.5 V to +285 V 17.4 V to 100 V / 2.8 V to 200 V. Limi in current. STABILITY 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 100 V 200 V 200 V 200 V 200 V 200 V 4.370 V to .37V, .457 V to .4570 ted by the power capacity when 4. rated output. 4. ad power factor of 1, stepwise of 4. reminal on the rear panel. 6. N RATIO, OUTPUT VO 4. power factor of 1, and in AC mr 7. with respect to stepwise cha 6. m current, and load power factor 6. Resolution 6. Accuracy 6. Resolution 7. | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) 1 Vrms / 2 Vrms (TYP) 2 Vo.2% @50/60Hz < 0.3% @-500Hz < 0.3% @-500Hz < 0.3% @500.1Hz~999.9Hz 100 μs (TYP) 80 % or more deb. 7 or all other frequencies: ± (0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ± (0.5 % For all other frequencies: ± (0.7 % of 0.0.1 V For 45 Hz to 65 Hz and DC: ± (0.5 % For 45 Hz to 65 Hz and DC: ± (0.5 % For 45 Hz to 65 Hz and DC: ± (0.5 % For 45 Hz to 65 Hz and DC: ± (0.5 % of reading+0.1 A/0.05 A) | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p it (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) | 240 A 120 A 4000 W 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A | 160 A
80 A
4000 W
<0.2% @50/60Hz
<0.5% @<500Hz
<1.0% @500.1Hz-2000Hz
<2.0% @2100Hz-5000Hz | | POWER CAPACITY 1-1.00 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 17. Power source input voltage of 17. For S Hz to 1 MHz company OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 12. For a noutput voltage of 5 Medical at an output woltage of 5 14. For A Composit, at an output woltage of 5 MEASURED VALUE VOLTAGE | 17-285 Y to -28.5 V, +28.5 V to +285 V 17.4 V to 100 V / 2.8 V to 200 V. Limi in current. STABILITY 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 100 V 200 V 200 V 200 V 200 V 200 V 4.370 V to .37V, .457 V to .4570 ted by the power capacity when 4. rated output. 4. ad power factor of 1, stepwise of 4. reminal on the rear panel. 6. N RATIO, OUTPUT VO 4. power factor of 1, and in AC mr 7. with respect to stepwise cha 6. m current, and load power factor 6. Resolution 6. Accuracy 6. Resolution 7. | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @<500.1Hz~999.9Hz 100 µs (TYP) 30 % or more de. ge from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % of 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A)(0.05 A) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A)(0.05 A) For all other frequencies: | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: | 240 A 120 A 4000 W 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: | 160 A
80 A
4000 W
 | | POWER CAPACITY 1-1.00 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 17. Power source input voltage of 17. For S Hz to 1 MHz company OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 12. For a noutput voltage of 5 Medical at an output woltage of 5 14. For A Composit, at an output woltage of 5 MEASURED VALUE VOLTAGE | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi ocurrent. STABILITY 1 N *** age is 200 V, 220 V, or 240 V, no load 1100 V to 200 V 200 V to 400 V, a load 1100 V to 200 V 200 V to 400 V, a load 1100 V to 200 V 200 V to
400 V, a load 1100 V / 200 V, a load power factor o tot voltage of 100 V / 200 V, a load 1100 V / 200 V, a load power factor o tot voltage of 100 V / 200 V, a load 1100 V / 200 V, a load 1100 V / 200 2 | 100 V 200 V 200 V 200 V 200 V 200 V , 370 V to 37 V, +57 V to +570 ted by the power capacity when the power factor of 1, stepwise of the rear panel. N RATIO, OUTPUT VO Power factor of 1, and in AC m 17, with respect to stepwise chain current, and load power factor of m current, and load power factor of 200 Million Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50.0Hz < 0.3% @-500Hz < 0.3% @-500Hz < 0.5% @-500.1Hz-999.9Hz 100 µs (TYP) 80 % or more ode. gage from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ± (0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % of 50.0 Hz | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p it (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) | 240 A 120 A 4000 W 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A | 160 A
80 A
4000 W
 | | POWER CAPACITY 1-1.00 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 17. Power source input voltage of 17. For S Hz to 1 MHz company OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 12. For a noutput voltage of 5 Medical at an output woltage of 5 14. For A Composit, at an output woltage of 5 MEASURED VALUE VOLTAGE | 17-285 Y to -28.5 V, +28.5 V to +285 V 17.4 V to 100 V / 2.8 V to 200 V. Limi in current. STABILITY 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 100 V 200 V 200 V 200 V 200 V , 370 V to 37 V, +57 V to +370 to +370 to +570 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @<500.1Hz~999.9Hz 100 µs (TYP) 30 % or more de. ge from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % of 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A)(0.05 A) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A)(0.05 A) For all other frequencies: | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: | 240 A 120 A 4000 W 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: | 160 A
80 A
4000 W
 | | POWER CAPACITY 1-1.00 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 17. Power source input voltage of 17. For S Hz to 1 MHz company OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY 12. For a noutput voltage of 5 Medical at an output woltage of 5 14. For A Composit, at an output woltage of 5 MEASURED VALUE VOLTAGE | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi ocurrent. STABILITY 1 N *** age is 200 V, 220 V, or 240 V, no load 1100 V to 200 V 200 V to 400 V, a load 1100 V to 200 V 200 V to 400 V, a load 1100 V to 200 V 200 V to 400 V, a load 1100 V / 200 V, a load power factor o tot voltage of 100 V / 200 V, a load 1100 V / 200 V, a load power factor o tot voltage of 100 V / 200 V, a load 1100 V / 200 V, a load 1100 V / 200 2 | 100 V 200 V 200 V 200 V 200 V 200 V , 370 V to 37 V, +57 V to +570 ted by the power capacity when the power factor of 1, stepwise of the rear panel. N RATIO, OUTPUT VO Power factor of 1, and in AC m 17, with respect to stepwise chain current, and load power factor of m current, and load power factor of 200 Million Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.296 or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) 1 Vrms / 2 Vrms (TYP) 2 Vo.2% @50/60Hz < 0.3% @500Hz < 0.3% @500Hz < 0.3% @500Hz < 0.5% @500Hz < 0.5% @500Hz 100 μs (TYP) 80 % or more de. 70 for all other frequencies: ± (0.7 % of For all other frequencies: ± (0.7 % of For 45 Hz to 65 Hz and DC: ± (0.5 % For 45 Hz to 65 Hz and DC: ± (0.5 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (0.7 % of or all other frequencies: ± (0.7 % of reading+0.1 A/0.05 A) For 41 Hz to 65 Hz and DC: ± (0.5 % of reading+0.1 A/0.05 A) For 41 Hz to 65 Hz and DC: ± (0.5 % of reading+0.2 A/0.1 A) 0.1 A | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tit (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) | 240 A 120 A 4000 W 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A | 160 A 80 A 4000 W | | POWER CAPACITY **1.100 V J 200 V range. **2. For an output voltage of **4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION I Power source input voltage **3. For 3 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY **3 **1. At an output voltage of 5 **2. For AC mode, at an outp MEASURED VALUE VOLTAGE CURRENT | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi ocurrent. STABILITY 1 N *** age is 200 V, 220 V, or 240 V, no load 1100 V to 200 V 200 V to 400 V, a load 1100 V to 200 V 200 V to 400 V, a load 1100 V to 200 V 200 V to 400 V, a load 1100 V / 200 V, a load power factor o tot voltage of 100 V / 200 V, a load 1100 V / 200 V, a load power factor o tot voltage of 100 V / 200 V, a load 1100 V / 200 V, a load 1100 V / 200 2 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) 1 Vrms / 2 Vrms (TYP) 2 Vrms (PS) 1 Vrms / 2 Vrms (FYP) 30 % or more de. 40.3% @500.1 Hz ~999.9 Hz 100 µs (TYP) 30 % or more de. 7 Or 10 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.0 1 V For 45 Hz to 65 Hz and DC: ±(2.8 % of 0.0 1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % of 0.0 1 V For 45 Hz to 65 Hz and DC: ±(0.7 % of 0.0 1 V For 45 Hz to 65 Hz and DC: ±(0.7 % of 0.0 1 V For 45 Hz to 65 Hz and DC: ±(0.7 % of 0.0 1 V For 45 Hz to 65 Hz and DC: ±(0.7 % of 0.0 1 V For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.2 A/0.1 A) 0.1 A | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(2 % of reading +0.8 A/0.4 A) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(2 % of reading + 1 A/0.5 A) | 160 A 80 A 4000 W | | POWER CAPACITY **1.100 V J 200 V range. **2. For an output voltage of **4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION I Power source input voltage **3. For 3 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY **3 **1. At an output voltage of 5 **2. For AC mode, at an outp MEASURED VALUE VOLTAGE CURRENT | 17-285 V to -28.5 V to +28.5 17.4 V to 100 V / 2.8 V to 200 V . Limi is current. 18 TABILITY 19 1 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @<500Hz < 0.5% @500.1 Hz~999.9 Hz 100 µs (TYP) 30 % or more dols, nge from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ± (0.5 % For all other frequencies: ± (0.7 % of 0.0.1 V For 45 Hz to 65 Hz and DC: ± (0.5 % of reading+0.1 A/0.05 A) For all other frequencies: ± (0.7 % of feading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ± (12 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ± (12 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ± (12 % of reading+0.2 A/0.1 A) 1 W ± (2 % of reading+0.2 A/0.25 A) | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: | 240 A 120 A 4000 W 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: | 160 A 80 A 4000 W | | POWER CAPACITY **1.100 V J
200 V range. **2. For an output voltage of **4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION I Power source input voltage **3. For 3 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY **3 **1. At an output voltage of 5 **2. For AC mode, at an outp MEASURED VALUE VOLTAGE CURRENT | 7-285 V to -28.5 V, +28.5 V to +285 V 73.4 V to 100 V / 2.8 V to 200 V. Limi nourrent. STABILITY 1 N 12 age is 200 V, 220 V, or 240 V, no load 100 V to 200 V, 200 V to 400 V, a lo poments in DC mode using the output 12 WAVEFORM DISTORTIO 12 DISTORTION(THD) 13 14 15 17 17 18 18 19 19 19 19 19 19 19 19 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output to 1 V rms / 2 V rms (TYP) 1 V rms / 2 V rms (TYP) 2 0.2% ⊕50/60Hz < 0.2% ⊕50/60Hz < 0.3% ⊕500.1Hz~999.9Hz 100 µs (TYP) 80 % or more does not not suppose the maximum current of 0 A to the maximum current of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(2.5 % 0.0 A V for all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % 0.0 A V for all other frequencies: ±(0.7 % of 5 A V for 45 Hz to 65 Hz and DC: ±(0.5 % of 5 A V for all other frequencies: ±(0.7 % of 5 A V for 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.25 A) 1 W ±(2 % of reading+0.5 A/0.25 A) | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(1.2 % of reading+0.3 A/0.4 A) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(2 % of reading + 1 A/0.5 A) | 160 A 80 A 4000 W | | POWER CAPACITY **1.100 V J 200 V range. **2. For an output voltage of **4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION I Power source input voltage **3. For 3 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY **3 **1. At an output voltage of 5 **2. For AC mode, at an outp MEASURED VALUE VOLTAGE CURRENT | F-225 Y to -225 V, +225 V to +225 V T-3.4 V to 100 V / 2.8 V to 200 V. Lim no current. STABILITY T T T T T T T T T T T T T T T T T T | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) 1 Vrms / 2 Vrms (TYP) 2 Vrms (PTP) 80 % of TYP) 80 % of TYP) 80 % of TYP) 80 % of TYP | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(2 % of reading +0.8 A/0.4 A) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(2 % of reading + 1 A/0.5 A) | 160 A 80 A 4000 W | | POWER CAPACITY **1.100 V J 200 V range. **2. For an output voltage of **4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION I Power source input voltage **3. For 3 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY **3 **1. At an output voltage of 5 **2. For AC mode, at an outp MEASURED VALUE VOLTAGE CURRENT | 17-285 V to -28.5 V to +28.5 17.4 V to 100 V / 2.8 V to 200 V . Limi is current. 18 TABILITY 19 1 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output to 1 V rms / 2 V rms (TYP) 1 V rms / 2 V rms (TYP) 2 0.2% ⊕50/60Hz < 0.2% ⊕50/60Hz < 0.3% ⊕500.1Hz~999.9Hz 100 µs (TYP) 80 % or more does not not suppose the maximum current of 0 A to the maximum current of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(2.5 % 0.0 A V for all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % 0.0 A V for all other frequencies: ±(0.7 % of 5 A V for 45 Hz to 65 Hz and DC: ±(0.5 % of 5 A V for all other frequencies: ±(0.7 % of 5 A V for 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.25 A) 1 W ±(2 % of reading+0.5 A/0.25 A) | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(1.2 % of reading+0.3 A/0.4 A) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(2 % of reading + 1 A/0.5 A) | 160 A 80 A 4000 W | | POWER CAPACITY 1-1.100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION 12. For an output voltage of 13. For share to the total output voltage of 14. Total Armonic OUTPUT VOLTAGE FOR an output voltage of 15. For Share to The total output voltage of 16. For Share to The total output voltage of 17. For Share to The total output voltage of 18. For AC model at an output voltage of 18. For AC model at an output voltage of 18. For AC model at an output voltage of 18. For AC model at an output voltage of 18. For AC model at an output voltage of 18. For AC model at an output voltage of CURRENT POWER | 7-285 V to -28.5 V, +28.5 V to -28.5 V 73.4 V to 100 V / 2.8 V to 200 V. Lim in current. STABILITY 19 N **2 ange is 200 V, 220 V, or 240 V, no load 1:00 V to 200 V, 200 V to 400 V, a lo poments in DC mode using the output (EWAVEFORM DISTORTIO) C DISTORTION(THD) RESPONSE TIME 2 100 V to 200 V / 100 V to 400 V, a load 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load power factor of 1:00 V / 200 V, a load V / 200 V, a load 1:00 V / 200 V, a load 1:00 V / 200 V, a load 1:00 V / 200 V / 200 V, a load 1:00 V / 200 V / 200 V / 200 V, a load 1:00 V / 200 V / 200 V / 200 V, a load 1:00 V / 200 V | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @500Hz < 0.3% @500.1Hz~999.9Hz 100 µs (TYP) 80 % or more de. gage from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % of 1 Hz to 65 Hz and DC: ±(0.5 % of 1 Hz to 65 Hz and DC: ±(0.5 % of 1 Hz to 65 Hz and DC: ±(0.5 % of 65 Hz to 65 Hz and DC: ±(0.5 % of 65 Hz to 65 Hz and DC: ±(0.5 % of 65 Hz to 65 Hz and DC: ±(0.5 % of a | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) for adding + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.8 A/0.4 A) ±(2 % of reading+3 W) ±(2 % of reading+3 VA) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.4 A/0.4 A) ±(2 % of reading+4 W) ±(2 % of reading+4 VA) | 160 A 80 A 4000 W | | POWER CAPACITY 1-1.100 V J 200 V range. 12. For an output voltage of 14. Limited by the maximum OUTPUT VOLTAGE UNE REGULATION LOAD REGULATION LOAD REGULATION PIPPLE NOISE 19. Power source input voltage of 2. For an output voltage of 2. For an output voltage of 19. For S Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE FEICHENCY 19. Power source in output voltage of 2. For an output voltage of 5. Power source, and | T-285 V to -28.5 V to +28.5 10.0 V / 2.8 V to 200 V / Limi is current. STABILITY 19 19 19 19 19 10 10 10 10 10 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) 1 Vrms / 2 Vrms (TYP) 2 Voys (50 foOHz < 0.3% @>S00.1 Hz~999.9 Hz 100 μs (TYP) 30 % or more des. the food of the frequencies: ± (0.7 % of on all other frequencies: ± (0.7 % of on 1) V For 45 Hz to 65 Hz and DC: ± (0.5 % for all other frequencies: ± (0.7 % of on 1) V For 45 Hz to 65 Hz and DC: ± (0.5 % of reading +0.1 A / 0.05 A) For all other frequencies: ± (0.7 % of on 1) V For 45 Hz to 65 Hz and DC: ± (12 % of one of one of | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading
+ 1 V / 2 V) for adding + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.8 A/0.4 A) ±(2 % of reading+3 W) ±(2 % of reading+3 VA) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.4 A/0.4 A) ±(2 % of reading+4 W) ±(2 % of reading+4 VA) | 160 A 80 A 4000 W | | POWER CAPACITY *1.100 V J 200 V range. *2. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION *2. For an output voltage of *3. For 5 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE EFFICIENCY *3. For 5 m output voltage of *5. For an output voltage of *5. For an output voltage of *5. For A model, an output voltage of *5. For A model, an output voltage of *5. For A model, an output voltage of *5. For A Complex, an output voltage of *5. For A Complex, an output voltage of *5. For A Complex, an output voltage CURRENT POWER LOAD POWER FACTION POW | T-285 V to -28.5 V to +28.5 10.0 V / 2.8 V to 200 V / Limi is current. STABILITY 19 19 19 19 19 10 10 10 10 10 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% ⊕50/60Hz < 0.3% ⊕500.1Hz~999.9Hz 100 µs (TYP) 80 % or more de. ger from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % for 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.2 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(2 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(2 % of reading+2 VA) 1 VA ±(2 % of reading+2 VA) 1 VA ±(2 % of reading+2 VAR) 0.000 to 1.000 0.001 0.00 to 50.00 | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tt (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) for adding + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.8 A/0.4 A) ±(2 % of reading+3 W) ±(2 % of reading+3 VA) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.4 A/0.4 A) ±(2 % of reading+4 W) ±(2 % of reading+4 VA) | 160 A 80 A 4000 W | | POWER CAPACITY 1-100 V J 200 V range. 12- For an output voltage of 24- Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION LOAD REGULATION 1- Power source input voltage of 3- For 5- Hz to 1 MHz comp OUTPUT VOLTAGE EFFICIENCY 1- At an output voltage of 5- 2- For a | F225 Y to -28.5 V, +28.5 V to +285 V 13.4 V to 100 V / 2.8 V to 200 V. Lim no current. STABILITY To age is 200 V, 220 V, or 240 V, no load 1100 V to 200 V, 220 V, or 240 V, no load 1100 V to 200 V / 200 V to 400 V, a load 1100 V to 200 V / 200 V to 400 V, a load 1100 V to 200 V / 100 V to 400 V, a load 1100 V / 200 V, no load power factor of out voltage of 100 V / 200 V, maximu DISPLAY RMS, AVG Value PEAK Value PEAK Value Active (W) Apparent (VA) Reactive (VAR) TOR | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @50/60Hz < 0.3% @500.Hz > 999.9Hz 100 µs (TYP) 80 % or more de. gref from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 V} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 Hz and DC: ±{0.7 % of 0.1 N} For 45 Hz to 65 H | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.3 A/0.4 A) ±(2 % of reading+3 W) ±(2 % of reading+3 VA) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.4 A/0.4 A) ±(2 % of reading+4 W) ±(2 % of reading+4 VA) | 160 A 80 A 4000 W | | POWER CAPACITY *1.100 V J 200 V range. *2. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION RIPPLE NOISE *3. For an output voltage of *3. For she to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE FFICIENCY *3. For she to 1 MHz comp *4. For an output voltage of 5 *5. For she to 1 MHz comp OUTPUT VOLTAGE CURRENT **CONTROL TAPE CURRENT POWER LOAD POWER FACT LOAD POWER FACT LOAD CREST FACTO HARMONIC VOLTA | T-285 V to -28.5 V to +28.5 10.0 V / 2.8 V to 200 V / Limi is current. STABILITY 19 19 10 10 10 10 10 10 10 10 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% ⊕50/60Hz < 0.3% ⊕500.1Hz~999.9Hz 100 µs (TYP) 80 % or more de. ger from an output current of 0 A to the maximum current of 1. 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For all other frequencies: ±(0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ±(0.5 % For 45 Hz to 65 Hz and DC: ±(0.5 % for 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.7 % of reading+0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ±(0.2 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(2 % of reading+0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ±(2 % of reading+2 VA) 1 VA ±(2 % of reading+2 VA) 1 VA ±(2 % of reading+2 VAR) 0.000 to 1.000 0.001 0.00 to 50.00 | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.3 A/0.4 A) ±(2 % of reading+3 W) ±(2 % of reading+3 VA) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.4 A/0.4 A) ±(2 % of reading+4 W) ±(2 % of reading+4 VA) | 160 A 80 A 4000 W | | POWER CAPACITY **1.100 V / 200 V range. **2. For an output voltage of st. Emitted by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION RIPPLE NOISE ** **1. Power source input voltage of st. For an output AC mode, at an output voltage of st. For AC mode, at an output
voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of st. For AC mode, at an output voltage of | 17-285 V to -28.5 V, +28.5 V to +285 V 17.4 V to 100 V / 2.8 V to 200 V. Limi no current. 18 TABILITY 19 10 N **2 age is 200 V, 220 V, or 240 V, no lead 100 V to 200 V 1000 V to 400 V, a lo poments in DC mode using the output 10 WAVEFORM DISTORTIO 10 DISTORTION(THD) 10 V to 200 V / 100 V to 400 V, a lo 1100 V / 200 V, a load power factor or 1100 V / 200 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 °C ± 5°C. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) 1 Vrms / 2 Vrms (TYP) 2 Voys (50 / 60 Hz < 0.3% (60 × 500 50 | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.3 A/0.4 A) ±(2 % of reading+3 W) ±(2 % of reading+3 VA) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.4 A/0.4 A) ±(2 % of reading+4 W) ±(2 % of reading+4 VA) | 160 A 80 A 4000 W | | POWER CAPACITY *1.100 V J 200 V range. *2. For an output voltage of *3. For an output voltage of *4. Limited by the maximum OUTPUT VOLTAGE LINE REGULATION LOAD REGULATION RIPPLE NOISE *1. For an output voltage of *3. For \$3 Hz to 1 MHz comp OUTPUT VOLTAGE TOTAL HARMONIC OUTPUT VOLTAGE **TOTAL HARM | 17-285 V to -28.5 V, +28.5 V to +285 V 17.4 V to 100 V / 2.8 V to 200 V. Limi no current. 18 TABILITY 19 10 N **2 age is 200 V, 220 V, or 240 V, no lead 100 V to 200 V 1000 V to 400 V, a lo poments in DC mode using the output 10 WAVEFORM DISTORTIO 10 DISTORTION(THD) 10 V to 200 V / 100 V to 400 V, a lo 1100 V / 200 V, a load power factor or 1100 V / 200 | 100 V 200 | 120 A 60 A 2000 W V, no load, and 23 ℃ ± 5℃. the output voltage is 100 V to 250 V / 200 V to 500 V. 0.2% or less 0.5% or less (0 to 100%, via output t 1 Vrms / 2 Vrms (TYP) hange from an output current of 0 A to maximum current LTAGE RESPONSE TIME, EFFICIENCY < 0.2% @ 50 / 60 Hz < 0.3% @ <500.1 Hz~999.9 Hz 100 µs (TYP) 30 % or more de. nge from an output current of 0 A to the maximum current of 0.1 V For 45 Hz to 65 Hz and DC: ± (0.5 % For all other frequencies: ± (0.7 % of 0.1 V For 45 Hz to 65 Hz and DC: ± (0.5 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (0.5 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (0.5 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (0.7 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (2.6 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (2.7 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (2.7 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (2.7 % of reading +0.1 A/0.05 A) For 45 Hz to 65 Hz and DC: ± (2.7 % of reading +0.1 A/0.05 A) 1 W ± (2.7 % of reading +0.2 A/0.1 A) 0.1 A For 45 Hz to 65 Hz and DC: ± (2.8 % of reading +2 VA) 1 VA ± (2.8 % of reading +2 VA) 1 VA ± (2.9 % of reading +2 VAR) 0.000 to 1.000 0.001 Up to 100th order of the fundamental 200 V / 400 V, 100% | 180 A 90 A 3000 W erminal) (or its reverse), using the output terminal on the rear p tit (or its reverse). of reading + 0.5 V / 1 V) reading + 1 V / 2 V) For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.15 A/0.08 A) For all other frequencies: ±(0.7 % of reading+0.3 A/0.15 A) For 45 Hz to 65 Hz and DC: ±(2 % of reading+0.3 A/0.4 A) ±(2 % of reading+3 W) ±(2 % of reading+3 VA) ±(2 % of reading+3 VA) | 240 A 120 A 4000 W For 45 Hz to 65 Hz and DC: ±(0.5 % of reading+0.2 A/0.1 A For all other frequencies: ±(0.7 % of reading+0.4 A/0.2 A For 45 Hz to 65 Hz and DC: ±(12 % of reading+0.4 A/0.4 A) ±(2 % of reading+4 W) ±(2 % of reading+4 VA) | 160 A 80 A 4000 W | #### Rear Panel ### **ASR-3000 Series** | | | | ASR-3200 | ASR-3300 | ASR-3400 | ASR-3400HF | | | | | |--|---|---|--|---|---|---|--|--|--|--| | HARMONIC CURREN | - | B | 7.5.1.0.200 | 1.0.1.0000 | 7.51.5100 | rwit-5400111 | | | | | | EFFECTIVE VALUE (RI | | Range
Full Scale | Up to 100th order of the fundaments
20 A / 10 A, 100% | 30 A / 15 A, 100% | 40 A / 20 A, 100% | | | | | | | | мэ) | | 0.01 A. 0.1% | 30 A / 15 A, 100% | 40 A / 20 A, 100% | | | | | | | PERCENT (%) Resolution (AC-INT and 50/60 Hz only) Accuracy *9 | | | | | | | | | | | | | | Accuracy " | Up to 20th
±(1 % of reading+0.4 A/0.2 A)
20th to 100th
±(1.5 % of reading+0.4 A/0.2 A) | Up to 20th
±(1 % of reading+0.6 A/0.3 A)
20th to 100th
±(1.5 % of reading+0.6 A/0.3 A) | Up to 20th
±(1 % of reading+0.8 A/0.4 A)
20th to 100th
±(1.5 % of reading+0.8 A/0.4 A) | | | | | | | An output current in the rar An output current in the rar For an output voltage of 50 The apparent and reactive p The reactive power is for th An output voltage in the rar | Itage of 20 V to 200 V / 40 V
nge of 5 % to 100 % of the r
nge of 5 % to 100 % of the r
V or greater, an output cun
sowers are not displayed in
e load with the power factor | V to 400 V and 23 °C ± 5 °C. DC mo
maximum current, and 23 °C ± 5 °C
maximum peak current in AC modi
rent in the range of 10 % to 100 %
the DC mode.
r 0.5 or lower. | de: For an output voltage of 28.5 V to 285 V / 57 V to 570 V
, an output current in the range of 5 % to 100 % of the max
of the maximum current, DC or an output frequency of 45 H | imum instantaneous current in DC mode, and
23 °C ± | 5 °C. The accuracy of the peak value is for a waveform | of DC or sine wave. | | | | | | THERS | | | | | | | | | | | | ROTECTIONS | | | UVP, OCP, OTP, OPP, Fan Fail | | | | | | | | | HSPLAY | | | TFT-LCD, 4.3 inch | | | | | | | | | MEMORY FUNCTION | | | Store and recall settings, Basic settings: 10 (0-9 numeric keys) | | | | | | | | | RBITRARY WAVE | Number of Mer | | 16 (nonvolatile) | | | | | | | | | | Waveform Leng | th | 4096 words | | | | | | | | | ITERFACE | Standard | USB | Type A: Host, Type B: Slave, Speed: 1.1/2.0, USB-CDC, USB-TMC | | | | | | | | | | 20004-03-47-46 | LAN | MAC Address, DNS IP Address, User Password, Gateway IP Address, Instrument IP Address, Subnet Mask | | | | | | | | | | | RS-232C | Complies with the EIA-RS-232 specifi | | | | | | | | | | | EXT Control | External Signal Input; External Control I/O | | | | | | | | | 2000, CODE, C. 100, M. C. Asto. 100 | 960 000 | GPIB | SCPI-1993, IEEE 488.2 compliant interface | | | | | | | | | NSULATION RESISTA | | | 500 Vdc, 30 MΩ or more | | | | | | | | | etween input and chassis | | nput and output | 1.4 TE W | | | | | | | | | VITHSTAND VOLTAG | (T) 1 | | 1500 Vac, 1 minute | | | | | | | | | etween input and chassis | , output and chassis, ir | nput and output | | | | | | | | | | EMC | | | EN 61326-1, EN 61326-2-1, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN 61000-3-12 | | | | | | | | | | | | EN 61000-4-2/-4-3/-4-4/-4-5/-4-6/-4-8/-4-11/-4-34, EN 55011 (Class A), EN 55032 | | | | | | | | | SAFETY | | | EN 61010-1 | | | | | | | | | NVIRONMENT | Operating Envir | | Indoor use, Overvoltage Category II | | | | | | | | | | Operating Tem | | 0 °C to 40 °C | | · | | | | | | | | Storage Temper | | -10 °C to 70 °C | | | | | | | | | | Operating Hum | | 20 % to 80 % RH (no condensation |) | | | | | | | | | Storage Humid | ity Range | 90 % RH or less (no condensation) | | | | | | | | | | Altitude | | Up to 2000 m | · | · | | | | | | | DIMENSIONS & WEIG | SHT | | 430(W)×176(H)×530(D) mm (not in | cluding protrusions); Approx. 25kg | | 430(W)x176(H)x530(D) mm (not including protrusions); Approx. 25kg | | | | | #### ORDERING INFORMATION | ASR-3200 | 2kVA Programmable AC/DC Power Source | |------------|--------------------------------------| | ASR-3300 | 3kVA Programmable AC/DC Power Source | | ASR-3400 | 4kVA Programmable AC/DC Power Source | | ASR-3400HF | 4kVA Programmable AC/DC Power Source | #### ACCESSORIES : Safety guide, Input Terminal Cover, Output terminal cover include remote sensing, GRA-442-E Rack mount adapter (EIA), GTL-246 USB Cable #### OPTIONAL ACCESSORIES | GPW-005 | Power cord, 3m, 105°C, UL/CSA type | GTL-232 | RS232C Cable, approx. 2m | |------------|------------------------------------|----------|---| | GPW-006 | Power cord, 3m, 105°C, VDE type | GTL-248 | GPIB Cable, approx. 2m | | | (ASR-3200, ASR-3300 Ues Only) | GTL-137 | Output power wire(load wire_10AWG:50A, 600V/sense wire_16AWG:20A, 600V) | | GPW-007 | Power cord, 3m, 105°C, PSE type | ASR-002 | External three phase control unit for IP2W, IP3W, 3P4W output | | GRA-442-J | Rack mount adapter(JIS) | APS-008 | Air inlet filter | | GRA-442-E | Rack mount adapter (EIA) | GET-006 | Universal Extension | | | | ASR-C003 | Modbus TCP feature | | * European | output outlet(factory installed) | | | # Programmable AC/DC Power Source #### **OPERATING AREA FOR ASR-3000 SERIES** AC Output for ASR-3200 DC Output for ASR-3200 AC Output for ASR-3300 DC Output for ASR-3300 | ш | | | | |---|--|---|--| | | | 4 | | | | | | | | | | | | | Model Name | Power Rating | Max. Output Current | Max. Output Voltage | |------------|--------------|---------------------|---------------------| | ASR-3200 | 2k VA | 20 / 10 A | 400 Vrms / ±570 Vdc | | ASR-3300 | 3k VA | 30 / 15 A | 400 Vrms / ±570 Vdc | | ASR-3400 | 4k VA | 40 / 20 A | 400 Vrms / ±570 Vdc | AC Output for ASR-3400 DC Output for ASR-3400 The ASR-3000 series is an AC + DC power source that provides not only rated power output for AC output, but also rated power output for DC output. #### **MEASUREMENT ITEMS FOR ASR-3000 SERIES** **RMS Meas Display** **AVG Meas Display** Peak Meas Display | ON | ON ON 94 % 200V (50U) | | | | | | | | |-----------|-----------------------|----------------|------|--|--------|-------|--|--| | Harr Harr | | larr Harn Harn | | Harmonic Voltage Measure THDv = 42.2 % Sie | | | | | | 31th | 21th | 11th | 1st | 179.9 Vrms | 90.7 % | [Harm | | | | 32th | 22th | 12th | 2nd | 0.0 Vrms | 0.0% | | | | | 33th | 29th | 13th | 3rd | 59.8 Vrms | 30.2 % | [THDV | | | | 34th | 24th | 14th | 4th | 0.0 Vrms | 0.0% | THO | | | | 35th | 25th | 15th | Sth | 35.8 Vrms | 18.0 % | | | | | 36th | 26th | 16th | 6th | 0.0 Vrms | 0.0 % | | | | | 37th | 27th | 17th | 7th | 25.5 Vrms | 12.9 % | | | | | 30th | 28th | 18th | Bth | 0.0 Vrms | 0.0% | | | | | 39th | 29th | 19th | 9th | 19.8 Vrms | 10.0 % | Page | | | | 40th | 30th | 20th | 10th | 0.0 Vrms | 0.0 % | Down | | | Voltage Harmonic **Current Harmonic** The ASR-3000 Series provides users with measurement capabilities including Vrms, Vavg, Vpeak, Irms, Iavg, Ipeak, IpkH, P, S, Q, PF, CF, 100th-order Voltage Harmonic and Current Harmonic. During the power output, the measurement parameters including Vrms/Irms, Vavg/Iavg and Vmax/Vmin/Imax/ Imin can be switched by users at any time to display the instantaneous calculation reading. #### SEQUENCE MODE AND BUILT-IN ISO-16750-2 WAVEFORMS SEQ6: Momentary Drop in **Supply Voltage** SEQ7: Reset Behavior at Voltage Drop with 12V System The sequence mode provides editable 10 sets of SEQ0~SEQ9, each set has 0~999 steps, each step time setting range is 0.0001~999.9999 seconds. Users can combine multiple sets of steps to generate the required waveforms, including waveform falling, surges, sags and other abnormal power line conditions to meet the needs of the test applications. SEQ8: Starting Profile Waveform SEQ9: Load Dump with Tr_10ms, Td_40ms In addition, ASR-3000 Series also built in common ISO-16750-2 test waveforms in the Sequence Mode preset waveforms, including Momentary Drop in Supply Voltage built in at SEQ6, Reset Behavior at Voltage Drop with 12V system built in at SEQ7, Starting Profile Waveform built in at SEQ8 and Load Dump with Tr_10ms, and Td_40ms built in at SEQ9. #### D. SIMULATE MODE Simulate Mode can quickly simulate different transient waveforms, such as power outage, voltage rise, voltage fall, etc., for engineers to evaluate the impact of transient phenomena on the DUT. Ex: Capacitance durability test. **Power Outage** #### FUNCTION WAVEFORM (ARBITRARY EDIT) MODE TRI Waveform ST STAIR Waveform **CLIP Waveform** **SURGE Waveform** Fourier Series Synthesized Waveform ASR-3000 Series provides more than 20,000 waveform combinations in seven categories, allowing users to quickly simulate different AC voltage waveforms. Adjust the desired waveform type directly through the panel (displayed synchronously on the screen), then the waveform is loaded into the ARB 1~16 waveform register through the access procedures, and return to the main menu output mode to perform ARB Waveform output. #### F. PC SOFTWARE Sequence Mode Basic Controller ARB Waveform Edit The Waveform is Observed with DSO The ASR-3000 Series software includes basic settings, the Simulate Mode, the Sequence Mode, Data Log and the arbitrary waveform editing function. Users can directly set output voltage, frequency, start/stop phase on ASR-3000 Series through the software. The Simulate Mode can quickly simulate different transient waveforms such as power outage, voltage rise, voltage fall... etc. The Sequence Mode can edit the editing parameters read back from ASR-3000 Series, or directly edit the parameters and control ASR-3000 Series to output waveforms according to the set sequence. The arbitrary waveform editing function not only combines various waveforms, including sine waves, square waves, triangle waves, and noise waveforms, but also allows uses to draw arbitrary waveforms and output them. #### G. T, IPK HOLD & IPK, HOLD FUNCTIONS T, Ipk Measurement T, lpk Hold is used to set the delay time after the output (1ms \sim 60,000ms) to capture the Ipeak value and keep the maximum value. The update only functions when the measurement value is greater than the original value. The T, lpk Hold delay time setting can be used to measure surge current at the power on process of the DUT. lpk Hold can be used to measure the transient surge current of the DUT at power on without using an oscilloscope and a current probe. ### SLEW RATE MODE #### Time Mode Slope Mode The ASR-3000 Series can set the Slew Rate Mode to determine the rise time of the voltage according to the test requirements of the DUT. Slew Rate Mode provides "Time" and "Slope" modes. When setting "Time" mode, ASR-3000 Series can increase output to $10{\sim}90\%$ of the set voltage within $100\mu s$; and when selecting "Slope" mode, ASR-3000 Series increases output voltage by a fixed rising slope of $1.5V/\mu s$ until reaching the set voltage value. In addition, if users decide to self-define the rise time of the output voltage, users can flexibly set the rise time of the ASR-3000 Series voltage by editing the Sequence mode. # Compact Programmable AC/DC Power Source #### ASR-2050/2100 Series ### ASR-2050R/2100R Series #### **FEATURES** - * Output Rating: AC 0 ~ 350 Vrms, DC 0 ~ + 500 V - * Output Frequency up to 999.9 Hz - * DC Output (100% of Rated Power) - * Output Capacity: 500VA/1000VA - * Measurement Items: Vrms, Vavg, Vpeak, Irms, IpkH, Iavg, Ipeak, P, S, Q, PF, CF - * Voltage and Current Harmonic Analysis (THDv, THDi) - * Customized Phase Angle for Output On/Off - * Remote Sensing Capability - * OVP, OCP, OPP, OTP, AC Fail Detection and Fan Fail Alarm - * Interface: USB,LAN,RS-232(std.); GPIB(opt.) - * Built-in External Control I/O and External Signal Input - * Built-in Output Relay Control - *
Memory Function (up to 10 sets) - * Sequence and Simulation Function (up to 10 sets) - * Support Arbitrary Waveform Function - * Built-in Web Server #### **GET-003** Universal Extended Terminal Box **GET-004** Euro Extended Terminal Box (ASR-2000R only) #### **GET-006** Universal extension (AC signel phase 250V/13Amps) The ASR-2000 series, an AC+DC power source aiming for system integration or desktop applications, provides both rated power output for AC output and rated power output for DC output. Ten ASR-2000 output modes are available, including 1) AC power output mode (AC-INT Mode), 2) DC power output mode (DC-INT Mode), 3) AC/DC power output mode (AC+DC-INT Mode), 4) External AC signal source mode (AC-EXT Mode), 5) External AC/DC signal source mode (AC-EXT Mode), 6) External AC/DC signal superimposition mode (AC-ADD Mode), 7) External AC/DC signal superimposition mode (AC+DC-ADD Mode), 8) External AC signal synchronization mode (AC-SYNC Mode), 9) External AC/DC signal synchronization mode (AC-DC-SYNC Mode), 10) External DC voltage control of AC output mode (AC-DC-SYNC Mode), 10) VCA). The ASR-2000 series provides users with waveform output capabilities to meet the test requirements of different electronic component development, automotive electrical devices and home appliance, including 1) Sequence mode generates waveform fallings, surges, sags, changes and other abnormal power line conditions; 2) Arbitrary waveform function allows users to store/upload user-defined waveforms; and 3) Simulate mode simulates power outage, voltage rise, voltage fall, and frequency variations. When the ASR-2000 series power source outputs, it can also measure Vrms, Vavg, Vpeak, Irms, Iavg, Ipeak, IpkH, P, S, Q, PF, CF, 100th-order Voltage Harmonic and Current Harmonic. In addition, the Remote sense function ensures accurate voltage output. The Customized Phase Angle for Output On/Off function can set the starting angle and ending angle of the voltage output according to the test requirements. V-Limit, Ipeak-Limit, F-Limit, OVP, OCP, OPP function settings can protect the DUT during the measurement process. In addition to OTP, OCP, and OPP protection, the ASR-2000 series also incorporates the Fan fail alarm function and AC fail alarm The front panel of the ASR-2050/2100 provides a universal socket or a European socket, which allows users to plug and use so as to save wiring time. The ASR-2050R/2100R is 3U height and 1/2 Rack width design, which is compatible with ATS assembly. The ASR-2000 series supports I/O interface and is equipped with USB, LAN, PS-232C External I/O and | | | ASR-2050/ASR-2050R | ASR-2100/ASR-2100R | |--|---|---|---| | INPUT RATING (AC) | | • | | | NOMINAL INPUT VOLTAC
INPUT VOLTAGE RANGE
PHASE
INPUT FREQUENCY RANG
MAX. POWER CONSUMPT
POWER FACTOR"
MAX. INPUT CURRENT | ie . | 100 Vac to 240 Vac
90 Vac to 264 Vac
Single phase, Two-wire
47 Hz to 63 Hz
800 VA or less
0.95 (typ.)
0.90 (typ.)
8 A
4 A | 100 Vac to 240 Vac
90 Vac to 264 Vac
Single phase, Two-wire
47 Hz to 63 Hz
1500 VA or less
0.95 (typ.)
0.90 (typ.)
15 A
7.5 A | | *1, For an output voltage of 100 | V/200 V (100V/200V rang | ge), maximum current, and a load power fac | tor of 1. | | AC MODE OUTPUT RATIN | IGS (AC rms) | | | | VOLTAGE OUTPUT PHASE | Setting Range Setting Resolution Accuracy 2 | 0.0 V to 175.0 V / 0.0 V to 350.0 V
0.1 V
±(0.5 % of set + 0.6 V / 1.2 V)
Single phase, Two-wire | | | MAXIMUM CURRENT'3 | 100 V | 5 A | 10 A | | OUTPUT PHASE | | Single phase, two wife | | |-------------------------------|----------------------|---|---------------------------------| | MAXIMUM CURRENT ¹³ | 100 V | 5 A | 10 A | | 78 78143 243 | 200 V | 2.5 A | 5 A | | MAXIMUM PEAK CURRENT* | 100 V | 20 A | 40 A | | | 200 V | 10 A | 20 A | | POWER CAPACITY | | 500 VA | 1000 VA | | FREQUENCY | Setting Range | AC Mode: 40.00 Hz to 999.9 Hz, AC+I | OC Mode: 1.00 Hz to 999.9 Hz | | | Setting Resolution | 0.01 Hz (1.00 to 99.99 Hz), 0.1 Hz (10 | 00.0 to 999.9 Hz) | | | Accuracy | For 45 Hz to 65 Hz: 0.01% of set, For | 40 Hz to 999.9 Hz: 0.02% of set | | | Stability*5 | ± 0.005% | | | OUTPUT ON PHASE | 70.70.80700 * | 0.0° to 359.9° variable (setting resoluti | ion 0.1°) | | DC OFFSET ¹⁶ | | Within ± 20 mV (TYP) | | - *1.100 V / 200 V range *2. For an output voltage of 17.5 V to 175 V / 35 V to 350 V, sine wave, an output frequency of 45 Hz to 65 Hz, no load, DC voltage setting 0V (AC+DC mode) and 23°C ± 5°C *3. For an output voltage of 1 V to 100 V / 2 V to 200 V, Limited by the power capacity when the output voltage is 100 V to 175 V / 200 V to 350 V. *4. With respect to the capacitor-input rectifying load. Limited by the maximum current. *5. For 45 Hz to 55 Hz, the rated output voltage, no load and the resistance load for the maximum current, and the operating temperature. *6. In the case of the AC mode and output voltage setting to 0 V. | OUTPUT RATING FOR DC M | IODE | | | |-------------------------------|---|---|--------| | VOLTAGE | Setting Range ¹¹
Setting Resolution
Accuracy ¹² | -250 V to +250 V / -500 V to +500
0.1 V
±(0.5 % of set + 0.6 V / 1.2 V) | V | | MAXIMUM CURRENT ¹³ | 100 V | 5 A | 10 A | | | 200 V | 2.5 A | 5 A | | MAXIMUM PEAK CURRENT* | 100 V | 20 A | 40 A | | | 200 V | 10 A | 20 A | | POWER CAPACITY | | 500 W | 1000 W | - 100 V / 200 V range For an output voltage of -250 V to -25 V, +25 V to +250 V / -500 V to -50 V, +50 V to +500 V, no load, AC volatge setting 0V (AC+DC mode) and 23°C ± 5°C For an output voltage of 1.4 V to 100 V / 2.8 V to 200 V, Limited by the power capacity when the output voltage is 100 V to 250 V / 200 V to 500 V. Within 5 ms, Limited by the maximum current. OUTPUT VOLTAGE STABILITY | LINE REGULATION" | ±0.2% or less | |-------------------------------|--| | LOAD REGULATION ¹² | $\pm 0.15\% @45\text{-}65\text{Hz}; \pm 0.5\% @DC, all other frequencies (0–100\%, via output terminal)$ | | RIPPLE NOISE" | 0.7 Vrms / 1.4 Vrms (TYP) | - *1. Power source input voltage is 100 V, 120 V, or 230 V, no load, rated output. *2. For an output voltage of 75 V to 175V/150V to 350V, a load power factor of 1, stepwise change from an output current of 0 A to maximum current (or its reverse), using the output terminal on the rear panel. *3. For 5 Hz to 1 MHz components in DC mode using the output terminal on the rear panel. | OUTPUT VOLTAGE WAVEFORM DISTORTION RATIO, OUTPUT VOLTAGE RESPONSE TIME, EFFICIENCY | | | | | | |--|--|--|--|--|--| | TOTAL HARMONIC DISTORTION(THD) | ≤ 0.2% @50/60Hz, ≤ 0.3% @<500Hz, ≤ 0.5% @500.1Hz~999.9Hz | | | | | | OUTPUT VOLTAGE RESPONSE TIME ¹² | 100 μs (TYP) | | | | | | EFFICIENCY'3 | 70 % or more | | | | | | 5 to 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | - *1. At an output voltage of 50 V to 175 V / 100 V to 350 V, a load power factor of 1, and in AC and AC+DC mode. *2. For an output voltage of 100 V / 200 V, a load power factor of 1, with respect to stepwise change from an output current of 0 A to the maximum current (or its reverse); 10% 90% of output voltage *3. For AC mode, at an output voltage of 100 V / 200 V, maximum current, and load power factor of 1 and sine wave only. | MEASURE | D VALUE DISPLAY | | | | | | | |---------|-----------------|-------------------------------------|---|---|--|--|--| | VOLTAGE | RMS, AVG Value" | Resolution
Accuracy 2 | 0.1 V
For 45 Hz to 65 Hz and DC: ±(0.5 % 999.9 Hz: ±(0.7 % of reading + 0.9 V/ | | | | | | | PEAK Value | Resolution
Accuracy | 0.1 V
For 45 Hz to 65 Hz and DC: ±(2 % of reading + 1 V / 2 V) | | | | | | CURRENT | RMS, AVG Value | Resolution
Accuracy ³ | 0.01 A
For 45 Hz to 65 Hz and DC:
±(0.5 % of reading+0.02 A/0.02 A);
For 40 Hz to 999.9 Hz:
±(0.7 % of reading + 0.04 A / 0.04 A) | 0.01 A
For 45 Hz to 65 Hz and DC:
±(0.5 % of reading+0.04 A/0.02 A);
For 40 Hz to 999.9 Hz:
±(0.7 % of reading + 0.08 A / 0.04 A) | | | | #### **ASR-2000 Series** | PEAK Value | Resolution
Accuracy ** | 0.01 A | | |----------------|---
--|---| | | | For 45 Hz to 65 Hz and DC: | 0.01 A
For 45 Hz to 65 Hz and DC: | | | | ±(2 % of reading +0.2 A/0.1 A) | ±(2 % of reading +0.2 A/0.1 A) | | Active (W) | Resolution | 0.1 / 1 W | 0.1 / 1 W | | | Accuracy" | ±(2 % of reading + 0.5 W) | ±(2 % of reading + 1 W) | | Apparent (VA) | | The state of s | 0.1 / 1 VA | | Reactive (VAR) | | | ±(2 % of reading + 1 VA)
0.1 / 1 VAR | | , , | | | ±(2 % of reading + 1 VAR) | | VER FACTOR | Range | 0.000 to 1.000 | 0.000 to 1.000 | | | Resolution | 0.001 | 0.001 | | ST FACTOR | Range | 0.00 to 50.00 | 0.00 to 50.00 | | | Resolution | 0.01 | 0.01 | | C VOLTAGE | Range | | Up to 100th order of the fundamental wave | | | | | 175 V / 350 V, 100% | | , | | | 0.1 V, 0.1% | | 50/60 Hz only) | Accuracy * | | Up to 20th±(0.2% of reading + 0.5V/1V);
20th to 100th±(0.3% of reading + 0.5V/1V) | | C CURRENT | Range | 1 100 | Up to 100th order of the fundamental wave | | VALUE (RMS) | Full Scale | 5 A / 2.5 A, 100% | 10 A / 5 A, 100% | | %) | Resolution | 0.01 A, 0.1% | 0.01 A, 0.1% | | 50/60 Hz only) | Accuracy ¹³ | Up to 20th±(1% of reading + 0.1A/0.05 A); | Up to 20th±(1% of reading + 0.2A/0.1A);
20th to 100th±(1.5% of reading + 0.2A/0.1A) | | | ST FACTOR C VOLTAGE VALUE (RMS) %) 50/60 Hz only) C CURRENT VALUE (RMS) %) 50/60 Hz only) | Apparent (VA) Resolution Accuracy **** Resolution Accuracy **** VER FACTOR Range Resolution ST FACTOR Range Resolution C VOLTAGE VALUE (RMS) ** ** ** ** ** ** ** ** ** ** ** ** ** | Apparent (VA) Resolution Accuracy*** Eactive (VAR) Resolution Accuracy*** Eactive (VAR) Resolution Accuracy*** Eactive (VAR) Resolution Accuracy*** Eactive (VAR) | - *1. The voltage display is set to RMS in AC/AC+DC mode and AVG in DC mode. *2. AC mode: For an output voltage of 17.5V to 175V/35V to 350V and 23 °C±5 °C. DC mode: For an output voltage of 25V to 250V/50V to 500V and 23 °C±5 °C. *3. An output current in the range of 5 % to 100 % of the maximum current, and 23 °C±5 °C. *4. An output current in DC mode, and 23 °C±5 °C. The accuracy of the peak value is for a waveform of DC or sine wave. *5. For an output voltage of 50V or greater, an output current in AC maximum peak output current in AC mode, and 23 °C±5 °C. *6. The apparent and reactive powers are not displayed in the DC mode. *7. The reactive power is for the load with the power factor 0.5 or lower. *6. The apparent and reactive powers are not displayed in the DC mode. *7. The reactive power is for the load with the power factor 0.5 or lower. *6. THERS #### OTHERS PROTECTIONS DISPLAY MEMORY FUNCTION ARBITRARY WAVE Number of Memories Waveform Length Standard USB INTERFACE LAN RS-232C EXT Control Optional CPIR INSULATION RESISTANCE WITHSTAND VOLTAGE EMC Safety Operating Environment Environment Operating Temperature Range Storage Temperature Range Operating Humidity Range Storage Humidity Range **DIMENSIONS & WEIGHT** OCP, OTP, OPP, FAN Fail TFT-LCD, 4.3 inch 10 sets for Store and Recall settings 16 (nonvolatile) 4096 words Type A: Host, Type B: Slave, Speed: 1.1/2.0, USB-CDC MAC Address, DNS IP Address, User Password, Gateway IP Address, Instrument IP Address, Subnet Mask Complies with the EIA-RS-232 specifications External Signal Input; External Control I/O SCPI-1993, IEEE 488.2 compliant interface 500 Vdc, 30 MΩ or more 1500 Vac, 1 minute EN 61326-1 (Class A);EN 61326-2-1/-2-2 (Class A);EN 61000-3-2 (Class A, Group 1);EN 61000-3-3 (Class A, Group 1);EN 61000-4-2/-4-3/-4-4/-4-5/-4-6/-4-8/-4-11 (Class A, Group 1);EN 55011 (Class A, Group1);EN 61010-1 Indoor use, Overvoltage Category II 0 °C to 40 °C -10 °C to 70 °C 20 % RH to 80 % RH (no condensation) 90 % RH or less (no condensation) Up to 2000 m ASR-2000 : 285 (W)×124 (H)×480 (D) (not including protrusions); Approx. 11.5 kg ASR-2000R : 213 (W)×124 (H)×480 (D) (not including protrusions); Approx. 10.5 kg #### ORDERING INFORMATION ASR-2050 500VA Programmable AC/DC Power Source 1000VA Programmable AC/DC Power Source 1000VA Programmable AC/DC Power Source 1000VA Programmable AC/DC Power Source for 3U 1/2 Rack Mount 1000VA Programmable AC/DC Power Source for 3U 1/2 Rack Mount ACCESSORIES: Safety Guide, Power Cord, Mains Terminal Cover Set, Remote Sense Terminal Cover Set, GTL-123 Test Lead, GTL-246 USB Cable #### OPTIONAL ACCESSORIES ASR-GPIB-2K Optional GPIB Interface for ASR-2000 (Factory installed) European Output Outlet only for ASR-2000 (Factory installed) Extended Universal Power Socket(ASR-2000R only) ASR-EU-2K **GET-003** GET-004 ASR-001 ASR-002 Extended European Power Socket (ASR-2000R only) Air inlet filter External three phase control unit for IP2W, IP3W, 3P4W output ASR-C003 GRA-439-E Rack Mount Kit (EIA) GRA-439-J Rack Mount Kit (JIS) GTL-232 RS-232C Cable, approx. 2M GPIB Cable, approx. 2M, including 25 pins Micro-D connector GTL-258 GET-006 Universal Extension #### FREE DOWNLOAD USB Driver Note : GET-003/GET-004 are not C€ approved. #### ASR-2050/2100 Rear Panel #### ASR-2050R/2100R Rear Panel #### GRA-439-J/E Rack Mount Kit(JIS/EIA) For: ASR-2000 Series #### GTL-258 GPIB Cable, 2000mm #### ASR-001 Air Inlet Filter #### ASR-002 External three phase control unit - Basis Requirement of ASR-002 to ASR-Series - Must be the three same models of ASR-Series To ASR-2000 Series, the ASR-GPIB-2K: GPIB interface is required - * Functions of ASR-Series are limited when conducts to ASR-002 - 1. No DC Output - 2. Measurement Items: only current(A), power(W) and PF for each phase 3. No Voltage and Current Harmonic Analysis - No Remote Sensing Capability No Arbitrary Waveform Function No Sequence and Simulation Function Not supported External Control I/O - No memory Function Only support USB, no LAN port for communication # 500/1000/2000/3000 VA Programmable Linear AC Power Source #### APS-7050 #### APS-7100 #### **FEATURES** - * 4.3-inch TFT-LCD - * Output Capacity: APS-7050(500VA,310Vrms,4.2Arms); APS-7100(1000VA,310Vrms,8.4Arms);
APS-7200(2000VA, 310Vrms,16.8Arms); APS-7300(3000VA,310Vrms,25.2Arms) Output Augmentation by Options(0-600Vrms/45-999.9Hz) - * Low Ripple & Noise - * Measurement and Test Functions Include VOLT, CURR, PWR, SVA, IPK, IPKH, FREQ, PF, CF - * Support a Small AC Current Measurement 2mA ~35A, Min. Rresolution 0.01mA(APS-7050&APS-7100) - * Reverse Current Alarm Function - * 10 sets of Sequence Function to Edit Output Waveforms/10 sets of Simulate Mode to Rapidly Simulate Transient Power Supply/10 sets of Program Mode to Define Measurement Sequence/10 sets of Panel Memory Function - * Automatic Execution of Sequence, Simulate, Program mode and Output Function when the Power is on - * Standard Interfaces: USB Host, LAN. USB Device(APS-7200 & APS-7300 only) - * Optional Interfaces:GPIB(APS-001),RS-232/USB CDC(APS-002 for APS-7050 & APS-7100 only), RS-232 (APS-007 for APS-7200 & APS-7300 only) #### APS-001/APS-002 Interface Card **APS-003** APS-004 Output Frequency Capacity #### APS-007 RS-232 Interface Card For: APS-7200 Series, APS-7300 Series GWInstek introduces APS-7000 series programmable AC power sources, which consists of 500VA of APS-7050, 1000VA of APS-7100, 2000VA of APS-7200 and 3000VA of APS-7300. APS-7000 series features power characteristics from its linear structure design including low noise, low THD, and highly stabilized power output that are ideal for the product development and verification of input power with low noise requirement or stereo, video and audio device applications, etc. The maximum rated voltage is 0~310Vrms, 25.2Arms, 100.8A peak current and the output frequency range is 45~500.0Hz. Users can conveniently augment the output voltage from 0Vrms to 600Vrms and output frequency from 45Hz to 999.9Hz by purchasing options without sending equipment back to GW Instek One of the popular alternative energy solutions in the market is to utilize inverter to convert DC to AC and the converted AC is then sent to power grid or products require electricity. For instance, AC produced by PV inverter is sent to power grid or equipment requires electricity. While simulating power grid to verify inverter connecting with power grid, general AC power sources cannot withstand DUT's feedback energy, hence, additional power consumption resistors are needed to prevent AC power source from being damaged. On the contrary, APS-7000 series has the characteristic of absorbing reverse current so that additional power consumption resistors are not required. The input terminal of APS-7000 series is designed to isolate from the simulated AC power grid output terminal, therefore, users do not need an additional isolation device to protect DUT. APS-7000 series is suitable for simulating power grid and conducting inverter output characteristic tests, including synchronized phase and frequency. Reverse current and power detected by APS-7000 series will be displayed in red readings to facilitate user's test observation. APS-7000 series utilizes Simulate mode and Sequence mode to provide a single step or consecutive power changes; and to simulate power grid's Voltage Abnormality Test and Frequency Abnormality Test. APS-7000 series comprises nine measurement and test functions (Vrms, Irms, F, Ipk, W, VA, PF, Ipk hold, CF), and provides user interface similar to that of AC Power Meter. APS-7000 series is ideal for the LED industry and standby mode power consumption test. Under the ARB mode, APS-7000 series provides waveforms in seven categories including Sine waveform, Triangle waveform, Staircase waveform(Square wave), Clipped Sinewave, Crest factor waveform, Surge waveform, and Fourier series and 20,000 waveform combinations so as to meet the requirements of simulating abnormal input power waveform test of various industries. Ten Preset settings allow users to store ten sets of data; Power ON Output setting allows Sequence, Simulate, and Program to automatically execute output after the equipment power is on. To meet the test criteria of line voltage fluctuation often seen in consumer electronics, APS-7000 series features five methods to cope with special purpose or abnormal voltage, frequency, and phase; ten sets of the Simulate mode simulate power outage, voltage rise, and voltage fall; ten sets of the Sequence mode allow users to define parameters and produce sine wave by editing steps; ten sets of the Program mode can edit AC waveform output and define the ceiling and floor level of measurement items for different DUTs; Ramp Control allows users to set the variation speed for output voltage rise and fall; Surge/Dip Control simulates DUT's input power producing a Surge or Dip voltage overlapping with output voltage waveform at a specific time. For larger current output applications, voltage drop across the output cables should be avoided. APS-7200/7300 also provide the remote sense function, which senses DUT's voltage and sends the information back to APS-7200/7300 for program controlled voltage compensation. Therefore, APS-7200/7300 can avoid the voltage drop of the cable to affect output voltage. Ethernet Port, on the rear panel, can be used for remote program control; Sync Output Socket provides external 10V sync output; Signal Output Connector provides monitor of Program execution results. APS-7000 series also provides users with Trigger In/Out and Output on/off remote control functions from J1 connector on the rear panel. | Model | | APS-7050 | APS-7100 | APS-7200 | APS-7300 | |--|---------------------------------|---|--|---|--| | AC OUTPUT | | | | | | | Power Rating
Output Voltage | | 500VA
0 ~ 155Vrms,
0 ~ 310Vrms | 1000VA
0 ~ 155Vrms,
0 ~ 310Vrms | 2000VA
0 ~ 155Vrms,
0 ~ 310Vrms | 3000VA
0 ~ 155Vrms,
0 ~ 310Vrms | | Output Frequency
Maximum
Current(r.m.s) *7 | 0~155Vrms
0~310Vrms | 45.00 ~ 500.0 Hz
4.2A
2.1A | 45.00 ~ 500.0 Hz
8.4A
4.2A | 45.00 ~ 500.0 Hz
16.8A
8.4A | 45.00 ~ 500.0 Hz
25.2A
12.6A | | Current(peak) OPT. APS-003(rms) OPT. APS-003(peak) | | 16.8A
8.4A
1.05A
4.2A | 33.6A
16.8A
2.1A
8.4A | 67.2A
33.6A
4.2A
16.8A | 100.8A
50.4A
6.3A
25.2A | | Total Harmonic Disto
Crest Factor
Line Regulation
Load Regulation
Response Time
Reverse Current | rtion (THD)*2 | ≤4
0.1% (% of full sca
0.3% (% of full sca
<100μs
30% of Maximum 6 | | | f Maximum | | SETTING | | | 11 12 0 | | | | Voltage | Range
Resolution
Accuracy | 0~155Vrms, 0~310Vrms, Auto
0.01V at 0.00 ~ 99.99Vrms; 0.1V at 100.0 ~ 310.0Vrms
±(0.5% of setting+2 counts) | | | | | Frequency | Range
Resolution
Accuracy | 45 ~ 500Hz | 99.99Hz; 0.1Hz at 100 | 0.0 ~ 500.0Hz | | | OPT. APS-004 | Range
Resolution | 45~999.9Hz
0.01Hz at 45.00 ~ 9 | 99.99Hz; 0.1Hz at 100 |).0 ~ 999.9Hz | | | Power On/Off
Phase Angle | Range
Resolution
Accuracy | 0 ~ 359°
1°
±1°(45 ~ 65Hz) | | | | | MEASUREMENT: | ÷3 | | | | | | Voltage(RMS) | Range | 0.20~38.75Vrms;38.777.51~155.0Vrms;15 | 5.1~310.0Vrms | 0.20~38.75Vrms;38
77.51~155.0Vrms;1 | 55.1~310.0Vrms | | Frequency | Resolution
Accuracy*4 | 0.01V at 0.00 ~ 99.
0.1V at 100.0 ~ 310
±(0.5% of reading | 0.0Vrms | 0.01V at 0.00 ~ 99
0.1V at 100.0 ~ 31
±(0.5% of reading | 0.0Vrms | | ,, | Range
Resolution | 45 ~ 500Hz
0.01Hz at 45Hz~99
0.1Hz at 100Hz~50 | 9.99Hz; | 45 ~ 500Hz
0.01Hz at 45Hz~9
0.1Hz at 100Hz~9 | 99.99Hz; | | Current(RMS) | Accuracy
Range
Resolution | ±0.1Hz
2.00 ~ 70.00mA;60
0.300 ~ 3.500A;3.0
0.01mA, 0.1mA, 0. | 0 ~ 17.5A | ±0.1Hz
0.200 ~ 3.500A;3.0
0.001A;0.01A | 00~35.00A | | | Accuracy | ±(0.6% of reading+5
±(0.5% of reading+5 | counts),2.00~350.0mA;
counts),0.300~3.500A;
counts),3.000~17.50A | ±(0.5% of reading+ | 5 counts),0.200~3.500A
-3 counts),3.00~35.00A | **APS-7200** **APS-7300** | SPECIFICA
Model | | ADC 7050 | ADC 7100 | ADC 7200 | ADC 7200 | | |--------------------------------|------------------------|---|---|--------------------------------------|---------------------|--| | wodei | | APS-7050 | APS-7100 | APS-7200 | APS-7300 | | | Current(Peak) | Range | 0.0 ~ 70.0A | | 0.0 ~ 140.0A | | | | | Resolution | 0.1A | | 0.1A | | | | | Accuracy | ±(1% of reading+1 | count) | ± 1% of reading+1 of | count) | | | Power(W) | Resolution | 0.01W, 0.1W, 1W | | 0.1W, 1W | | | | | Accuracy | ±(0.6% of reading+5 | counts),0.20~99.99W; | ±(0.6% of reading+ | 5counts),0.2~999.9V | | | | | ±(0.6% of reading+5 counts),100.0~999.9W; | | ±(0.6% of reading+2counts),1000~9999 | | | | A | n 1 | | 2 counts),1000~9999W | | | | | Apparent(VA) | Resolution
Accuracy | 0.01VA, 0.1VA, 1VA | | 0.1VA, 1VA | ta\ 0.3. 000 0\// | | | | Accuracy | , | ounts),0.20~99.99VA;
ounts),100.0~999.9VA; | | counts),0.2~999.9VA | | | | | | counts),1000~9999VA | | counts),1000~9999\ | | | Power Factor | Resolution | 0.001 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.001 | | | | i onei racioi | Accuracy | ±(2% of reading + | 2 counts) | ±(2% of reading+2 | counts) | | | GENERAL | | -(| | | | | | Remote output | signal | Dace Fail Test in D | rocess, Trigger in, Trig | rger out OUT ON /OF | E | | | Sync output sig | | Output Signal 10 V | | ger out, our onlyon | | | | Number of Pre | | 10 (0~9 numeric ke | | | | | | Protection | | OCP, OPP, OTP an | | | | | | Trigger Out | | Maximum low level output = 0.8V; Minimum high level output = 2V; Maximum
source current = 8mA | | | | | | Trigger In | | Maximum low level input voltage = 0.8V; Minimum high level input voltage = 2.0V; | | | | | | 98 | | Maximum sink current = 8mA | | | | | | SEQUENCE/ | SIMULATIO | N FUNCTION | | | | | | Number of Me | mories | 10 (0 ~ 9 Numeric | keys) | | | | | Number of Step | os | 255 max. (For 1 sec | | | | | | Step Time Setti | | 0.01 ~ 999.99s
Constant, Keep, Linear Sweep | | | | | | Operation With
Parameters | iin Step | | | ne wave only): On Ph | ase Off Phase Term | | | Tarameters | | Output Range, Frequency, Waveform (sine wave only); On Phase, Off Phase, Term
Jump Count (0 ~ 255) jump-to, Branch 1, Branch 2, Trigger Output | | | | | | Sequence Cont | rol | | Continue, Branch 1, Br | | 1 | | | AC INPUT | | | | | | | | Phase | | Single Phase | Single Phase | Single Phase | Single Phase | | | Input Voltage | | 115/230Vac±15% | 115/230Vac±15% | 230Vac±15% | 230Vac±15% | | | Input Frequenc | у | 50/60Hz | 50/60Hz | 50/60Hz | 50/60Hz | | | Max. Current | | 16A/8A | 32A/16A | 32A | 50A | | | Power Factor | | 0.7Typ. | 0.7Тур. | 0.7Typ. | 0.7Тур. | | | Power Consum | • | 1.8kVA or less | 3.6kVA or less | 7.2kVA or less | 10.8kVA or less | | | ENVIRONME | NT CONDIT | | | | | | | Operating Temp | | | | | | | | Storage Tempe
Operating Hun | | -10 ~ +70°C | | | | | | Storage Humid | | 20 ~ 80% RH (No Condensation)
80% RH or less (No Condensation) | | | | | | INTERFACE | ni, nange | 00701111011033(110 | Condensation | | | | | Standard | | USB Host, LAN | | USB Host, USB CD | CLAN | | | Optional | | GPIB (APS-001) | | GPIB (APS-001) | C, LAIV | | | - Prioriti | | RS232 / USB CDC | (APS-002) | RS232 (APS-007) | | | | DIMENSION | S & WEICHT | | , | | v. – | | | | | 430(W) x 88(H) x | 430(W) x 88(H) x | 430(W) x 312(H) x | 430(W) x 400(H) : | | | | | 400(D) mm; | 560(D) mm; | 650(D) mm; | 650(D) mm; | | | | | Approx. 24kg | Approx. 38kg | Approx. 90kg | Approx. 128kg | | #### ORDERING INFORMATION Approx. 38kg APS-7050 500VA Programmable AC Power Source APS-7100 1000VA Programmable AC Power Source ACCESSORIES: Approx. 24kg APS-7200 2000VA Programmable AC Power Source APS-7300 3000VA Programmable AC Power Source Approx. 128kg Approx. 90kg Power Cord(Region Dependent), GTL-123 Test Lead OPTIONAL ASSESSORIES #### APS-7300 Rear Panel #### APS-7200 Rear Panel #### APS-7100 Rear Panel #### APS-7050 Rear Panel #### APS-7000 Series **Europe Type Output Outlet** The Specifications are not suit for ARB mode. - *1. Maximum output current at working voltage 120Vrms, 240Vrms - *2. 45~500Hz, 10% or higher of the rated output voltage, the maximum current or lower - *3. All of measurement accuracy is at 23±5°C - *4. In the case of 15~155V, 30~310V, sine wave, no load #### Mains Terminal Cover Set Note: 1. APS-7200/APS-7300 are not **C €** approved. 2. The minimum time settings of sequence mode or simulate mode must be greater than 1 cycle of the waveform itself. # 500/1000/2000/3000 VA Programmable Linear AC Power Source #### CONTROL PANEL CHARACTERISTICS #### Standard Mode #### Simple Mode There are two control panel modes: Standard mode and Simple mode. Both modes are shown on the above. Standard mode combines settings and AC Power Meter measurement window display. Users apply Function key (F1~F3) to select required measurement items. There are nine items for selection. Simple mode shows all measurement items on the display. #### REVERSE CURRENT DISPLAY #### Standard Mode #### Simple Mode When output terminal detects 180 degree phase difference between voltage and current (reverse current), the front panel of APS-7000 Series will remind users the power and power factor measurement results in red numerical display. This feature can be applied to show the power and power factor measurement while testing inverter for feedback power grid. As shown on the above : APS-7000 Series can withstand reverse current: 30% of the maximum effective current or maximum current output within three minutes. #### T IPEAK, HOLD FUNCTION T, Ipk Hold sets delay time (1ms~60 seconds) for measurement after the output of Ipeak value and the maximum value will be retrieved. Update will be proceeded only if measured value is greater than the original value. Ipk Hold is for measuring transient inrush current as soon as the equipment power is on that is usually done by oscilloscope and current probe. T, Ipk Hold delay time setting can be applied to measure inrush current of sequentially activated DUT. #### **SEQUENCE MODE** #### Sequence Mode There are ten sets of Sequence mode and each set has 0~255 steps. The time setting range for each step is 0.01 ~ 999.99 seconds. Combining many sets of steps to edit required waveforms can satisfy users' requirement of highly complicated waveforms. #### SIMULATE MODE input transient waveforms such as power outage; voltage rise and voltage fall etc. for engineers to evaluate the impact on DUT posed by the transient phenomena. For instance, capacitor endurance This mode can rapidly produce different simulated **Power Outage** Voltage Rise Voltage Fall #### PROGRAM MODE This mode allows users to set ceiling and floor specifications to produce PASS/FAIL result after the measurement is done. It can also show test results for each test procedure or only show the last result. There are ten sets of Program mode and each set has 50 sets of memory. Each memory comprises 9 steps. Each Program will operate according to memory sequence, self-defined loops or designated steps to stop. #### G SURGE/DIP CONTROL Overlapping a Surge/Dip voltage on a normal voltage as the input power for DUT allows users to simulate Surge/Dip situation and evaluate DUT characteristics. Surge Dip #### H. FUNCTION WAVEFORM (ARB) MODE Provide waveforms in seven categories and 20,000 waveform combinations so as to rapidly simulate distorted AC voltage waveforms. Sine Waveform Standard AC Waveform Triangle Waveform Power Harmonic Output Simulation Is Triangle Waveform Staircase Waveform Simulate Square Waveform And Staircase Waveform For Commercial Ups Clipped Sinewave Simulate Grid Power Supply Heavy Load Waveform Crest Factor Waveform Simulate Rectified Filter Current Waveform By Capacitor Input Surge Waveform Simulate Grid Power Supply's Peak Over-voltage #### Fourier Series Synthesized Waveform Simulate real output power waveform. Distorted power waveform is produced due to output impedance and non-linear effect such as inductance, capacitance, and parasitic capacitance effect. For example: motors. #### RAMP CONTROL $Vup \rightarrow 0.01 \sim 99.99 \text{ Vrms}$ $Vdn \rightarrow 0.01 \sim 99.99 \text{ Vrms}$ Mode=Time, Tup=1msec, VAC=100V, Freq=50Hz, Ramp output=on. Mode=Voltage, Vdn=2Vrms, VAC=100V, Freq=50Hz, Ramp output=off. Ramp control allows users to set output voltage rise or fall speed which is based on time (1ms) or voltage (1Vrms) unit. #### **APS-7050E** #### **APS-7100E** #### **FEATURES** - * 4.3" large LCD Display - * Output Capacity: APS-7050E (500VA, 310Vrms, 4.2/2.1Arms) APS-7100E (1000VA, 310Vrms, 8.4/4.2Arms) - * Measurement Function : Voltage, Current, Power, Frequency, Power Factor, Ipeak - * Reverse Current Alarm Function - * 10 Sets of The Test Mode Simulate Power Transient Output - * 10 Sets of Preset Allow Users to Store Ten Settings - * OCP/OPP/OTP Protection - * Variable Voltage, Frequency and Current - * Universal Power Inlet GW Instek launches the APS-7000E series the economy version of the APS-7000 programmable AC power source. With the height of 2U, the maximum rated output for APS-7050E is 500VA, 310Vrms, 4.2Arms and APS-7100E is 1000VA, 310Vrms, 8.4Arms. The output frequency range of the series is 45~500Hz. The series is ideal for the test and development of DC power supply devices, consumer electronics, automotive electronics and electronic components. The APS-7000E series comprises six measurement and test functions (Vrms, Irms, F, Ipk, W, PF), and provides user interface similar to that of AC Power Meter. The APS-7000E series, via switching many sets of current levels to increase small current measurement resolution, is ideal for the LED industry and standby mode power consumption test. Ten sets of Preset allow users to store ten settings. To meet the test criteria of line voltage fluctuation often seen in consumer electronics, the APS-7000E series not only provides a stable AC power source but also features the Test mode to satisfy special or abnormal voltage and frequency variation demands. Ten sets of the Test mode simulate power outage, voltage rise, and voltage fall. The APS-7000E series that simulates waveforms of city power grid's transient changes is suitable for verifying electronics products operated under abnormal power source. The APS-7000E series is the economy version of the APS-7000 series. If communications interface and larger voltage/frequency are required, please refer to the APS-7000 series. | | APS-7050E | APS-7100E | | | | | |---------------|--
---|--|--|--|--| | 1 | 500VA | 1000VA | | | | | | | | 0 ~ 155Vrms/0 ~ 310.0 Vrms | | | | | | | | 45.00 ~ 500.0 Hz | | | | | | 0.3551/ | 10 at 2 at 2 at 5 at 2 at 2 at 2 at 2 at 2 | 43.00 ~ 300.0 HZ
8.4A | | | | | | | | 8.4A
4.2A | | | | | | 0 510111115 | 2 | 1,2,1 | | | | | | | | 33.6A | | | | | | 0~310Vrms | 8.4A | 16.8A | | | | | | oration (THD) | ≤0.5% at 45 ~ 500Hz (Resistive Load) | | | | | | | | ≤4 | | | | | | | | 0.1% (% of full scale) | | | | | | | | 0.3% (% of full scale) | | | | | | | | <100us | | | | | | | | | (Continue): 100% of Maximum | | | | | | | | | | | | | | | | <u></u> | | | | | | Pango | 0 155\/rms/0 210\/rms/Auto | | | | | | | | | 0 310 01/ | | | | | | | 그 일반 회사 시간 시간 한 전체 시간 | 0 ~ 310.0vrms | | | | | | | | | | | | | | 0 | 0.01Hz at 45.00 ~ 99.99Hz/0.1Hz at 100.0 ~ 500.0Hz | | | | | | | | | | | | | | | Accuracy | 10.0270 of Setting | | | | | | | | | | | | | | | - | 0.20~38.75Vrms/38.76~77.50 Vrms/77.51~155.0Vrms/155.1~310.0Vrms | | | | | | | | | .0 ~ 310.0vrms | 110001411011 | | 00Hz~500.0Hz) | | | | | | | | | | | | | | | 2.00 ~ 70.00mA/60.0 ~ 350.0mA/0.300 ~ 3.500A/3.00 ~ 17.5A | | | | | | | | | | | | | | | Accuracy | | , , | | | | | | | , , | nts);3.500~17.50A | | | | | | Range | | | | | | | | Resolution | 0.1A | | | | | | | Accuracy | ±(1% of reading+1 count) | | | | | | | Resolution | 0.01W, 0.1W, 1W | | | | | | | Accuracy | ±(0.6% of reading+5 counts); 0.20~99.9 | 9W; ±(0.6% of reading+5 counts); | | | | | | 33 | 100.0~999.9W ±(0.6% of reading+2 counts); 1000~9999W | | | | | | | Resolution | 0.001 | | | | | | | Accuracy | ±(2% of reading + 2 counts) | 10(0~9 Numeric keys) | | | | | | | | Range Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution | SOOVA 0 ~ 155Vrms/0 ~ 310.0 Vrms 45.00 ~ 500.0 Hz 42.A 2.1A 16.8A 0-310Vrms 8.4A 0-310Vrms 8.4A 0-310Vrms 8.4A 0.1% (% of full scale) 0.3% (% of full scale) 0.1% (% of full scale) 0.10µs 30% of Maximum Output RMS Current Output RMS Current (Within 3 minutes 45 ~ 500Hz 6.5% of setting+2 counts) 45 ~ 500Hz 6.5% of setting+2 counts 6.6% of setting+5 45 ~ 500Hz 6.6% of setting+5 counts 6 | | | | | ### **APS-7050E** ### APS-7100E Rear Panel APS-7050E Rear Panel # APS-7100E | Model | APS-7100E | | |-------------------------------|---|---| | ENVIRONMENT CONDI | TIONS | | | Operation Temperature | 0~+40℃ | | | Storage Temperature | -10 ~ +70°C | | | Operating Temperature | 20 ~ 80% RH (No Condensation) | | | Storage Humidity | 80% RH or less (No Condensation) | | | AC INPUT | | | | Input Power Source | 1Φ AC 115/230Vac ±15% | | | DIMENSIONS & WEICH | | | | | 430(W) x 88(H) x 400(D) mm;
Approx. 24kg | 430(W) x 88(H) x 560(D) mm;
Approx. 38kg | #### ORDERING INFORMATION APS-7050E 500VA AC Power Source APS-7100E 1000VA AC Power Source #### ACCESSORIES : Power Cord (Region Dependent), Mains Terminal Cover Set, GTL-123 Test Lead #### OPTIONAL ASSESSORIES GRA-423 Rack Mount Kit (APS-7000E Series) #### **Mains Terminal Cover Set** #### APS-7000E Series Europe Type Output Outlet ### **ELECTRONIC LOADS** GW Instek provides DC electronic loads, AC/DC electronic loads, which allow users to flexibly test various batteries, energy storage systems, and power supply devices. DC electronic load can simulate load characteristics, including static, dynamic, constant current, constant resistance, constant voltage, constant power and short circuit. AC/DC electronic load can simulate sine wave current load in the CC mode, non-sine wave current load in the linear CC mode, and AC rectified load in the rectifier mode. Electronic loads can be simply divided into multi-channel electronic loads and single-channel electronic loads according to application requirements. The multi-channel electronic load can test and measure multiple sets of low-power and different specifications of power output devices at the same time; and the single-channel electronic load can, based on the characteristics of a single load, choose high power, high voltage, high precision, high resolution or fast dynamic response to conduct test and measurement. Electric vehicles, solar energy, energy storage systems, server power supplies, and power electronics, etc., can use the built-in dedicated test modes of GW Instek electronic loads to simplify user's operating procedures and shorten the test time. For example: using the CC+CV, CP+CV, CC+UVP, CP+UVP battery discharge modes to discharge electric vehicle battery can avoid over-discharge and protect the battery at the same time. The MPPT mode can quickly obtain the maximum power point of the solar panel. #### **PRODUCTS** - Multi-channel Electronic Loads - High Power DC Electronic Load - DC Electronic Load - . AC & DC Electronic Load # DC ELECTRONIC LOADS #### MULTI-CHANNEL DC ELECTRONIC LOAD MODULES | Model | Operation Voltage | Operation Current | Power | Channel | Weight(kg) | Page | |--------------|-------------------|-------------------|----------|---------|------------|----------| | PEL-2020A(B) | 0 ~ 80V | 20A | 100/100W | 2 | 3.8 | | | PEL-2030A(B) | 0 ~ 80V | 5/40A | 30/250W | 2 | 3.8 | D115-118 | | PEL-2040A(B) | 0 ~ 80V | 70A | 350W | 1 | 3.8 | D113-110 | | PEL-2041A(B) | 0 ~ 500V | 10A | 350W | 1 | 3.8 | | #### DC ELECTRONIC LOADS | Model | Operation Voltage | Operation Current | Power | Channel | Weight(kg) | Page | |----------------|-------------------|-------------------|-------|---------|------------|----------| | PEL-503-80-50 | 0 ~ 80V | 50A | 250W | 1 | 5.3 | | | PEL-504-80-70 | 0 ~ 80V | 70A | 350W | 1 | 5.3 | D127-128 | | PEL-507-80-140 | 0 ~ 80V | 140A | 700W | 1 | 10.3 | | | PEL-3021 | 0 ~ 150V | 35A | 175W | 1 | 6 | D101-108 | | PEL-3031AE | 0 ~ 150V | 60A | 300W | 1 | 7.5 | D109-114 | | PEL-3041 | 0 ~ 150V | 70A | 350W | 1 | 7 | | | PEL-3111 | 0 ~ 150V | 210A | 1050W | 1 | 17 | D103-108 | | PEL-3211 | 0 ~ 150V | 420A | 2100W | 1 | 23 | | | PEL-3032AE | 0 ~ 500V | 15A | 300W | 1 | 7.5 | D109-114 | | PEL-504-500-15 | 0 ~ 500V | 15A | 350W | 1 | 5.3 | D107.100 | | PEL-507-500-30 | 0 ~ 500V | 30A | 700W | 1 | 10.3 | D127-128 | | PEL-3021H | 0 ~ 800V | 8.75A | 175W | 1 | 6 | | | PEL-3041H | 0 ~ 800V | 17.5A | 350W | 1 | 7 | | | PEL-3111H | 0 ~ 800V | 52.5A | 1050W | 1 | 17 | D103-108 | | PEL-3211H | 0 ~ 800V | 105A | 2100W | 1 | 23 | 1 | #### HIGH POWER DC ELECTRONIC LOADS | Model | Operation Voltage | Operation Current | Power | Channel | Weight(kg) | Page | |--------------------|-------------------|-------------------|-------|---------|------------|----------| | PEL-5008C-150-800 | 150V | 800A | 8kW | 1 | 77.5 | | | PEL-5010C-150-1000 | 150V | 1000A | 10kW | 1 | 84.8 | | | PEL-5012C-150-1200 | 150V | 1200A | 12kW | 1 | 92 | | | PEL-5015C-150-1500 | 150V | 1500A | 15kW | 1 | 116.5 | | | PEL-5018C-150-1800 | 150V | 1800A | 18kW | 1 | 124 | | | PEL-5020C-150-2000 | 150V | 2000A | 20kW | 1 | 140.5 | | | PEL-5024C-150-2000 | 150V | 2000A | 24kW | 1 | 155 | | | PEL-5008C-600-560 | 600V | 560A | 8kW | 1 | 77.5 | | | PEL-5010C-600-700 | 600V | 700A | 10kW | 1 | 84.8 | 1 | | PEL-5012C-600-840 | 600V | 840A | 12kW | 1 | 92 | D110 100 | | PEL-5015C-600-1050 | 600V | 1050A | 15kW | 1 | 116.5 | D119-126 | | PEL-5018C-600-1260 | 600V | 1260A | 18kW | 1 | 124 | | | PEL-5020C-600-1400 | 600V | 1400A | 20kW | 1 | 140.5 | 1 | | PEL-5024C-600-1680 | 600V | 1680A | 24kW | 1 | 155 | | | PEL-5008C-1200-320 | 1200V | 320A | 8kW | 1 | 77.5 | 1 | | PEL-5010C-1200-400 | 1200V | 400A | 10kW | 1 | 84.8 | 1 | | PEL-5012C-1200-480 | 1200V | 480A | 12kW | 1 | 92 | | | PEL-5015C-1200-600 | 1200V | 600A | 15kW | 1 | 116.5 | | | PEL-5018C-1200-720 | 1200V | 720A | 18kW | 1 | 124 | | | PEL-5020C-1200-800 | 1200V | 800A | 20kW | 1 | 140.5 | | | PEL-5024C-1200-960 | 1200V | 960A | 24kW | 1 | 155 | | | PEL-5004G-150-400 | 150V | 400A | 4kW | 1 | 28 | |
| PEL-5005G-150-500 | 150V | 500A | 5kW | 1 | 28 | | | PEL-5006G-150-600 | 150V | 600A | 6kW | 1 | 28 | | | PEL-5004G-600-280 | 600V | 280A | 4kW | 1 | 29 | | | PEL-5005G-600-350 | 600V | 350A | 5kW | 1 | 29 | D135-138 | | PEL-5006G-600-420 | 600V | 420A | 6kW | 1 | 29 | | | PEL-5004G-1200-160 | 1200V | 160A | 4kW | 1 | 29 | | | PEL-5005G-1200-200 | 1200V | 200A | 5kW | 1 | 29 | | | PEL-5006G-1200-240 | 1200V | 240A | 6kW | 1 | 29 | | # DC ELECTRONIC LOADS # AC/DC ELECTRONIC LOADS | Model | Operation Voltage | Operation Current | Power | Channel | Weight(kg) | Page | |--------------------|-------------------|-------------------|--------|---------|------------|----------| | AEL-5002-350-18.75 | 350V | 18.75A | 1875W | 1 | 21.5 | | | AEL-5003-350-28 | 350V | 28A | 2800W | 1 | 27.5 | | | AEL-5004-350-37.5 | 350V | 37.5A | 3750W | 1 | 33.5 | | | AEL-5006-350-56 | 350V | 56A | 5600W | 1 | 58 | | | AEL-5008-350-75 | 350V | 75A | 7500W | 1 | 70 | | | AEL-5012-350-112.5 | 350V | 112.5A | 11250W | 1 | 105 | | | AEL-5015-350-112.5 | 350V | 112.5A | 15000W | 1 | 140 | | | AEL-5019-350-112.5 | 350V | 112.5A | 18750W | 1 | 260 | | | AEL-5023-350-112.5 | 350V | 112.5A | 22500W | 1 | 295 | | | AEL-5002-425-18.75 | 425V | 18.75A | 1875W | 1 | 21.5 | D129-134 | | AEL-5003-425-28 | 425V | 28A | 2800W | 1 | 27.5 | | | AEL-5004-425-37.5 | 425V | 37.5A | 3750W | 1 | 33.5 | | | AEL-5006-425-56 | 425V | 56A | 5600W | 1 | 58 | | | AEL-5008-425-75 | 425V | 75A | 7500W | 1 | 70 | | | AEL-5012-425-112.5 | 425V | 112.5A | 11250W | 1 | 105 | | | AEL-5015-425-112.5 | 425V | 112.5A | 15000W | 1 | 140 | | | AEL-5019-425-112.5 | 425V | 112.5A | 18750W | 1 | 260 | | | AEL-5023-425-112.5 | 425V | 112.5A | 22500W | 1 | 295 | | | AEL-5003-480-18.75 | 480V | 18.75A | 2800W | 1 | 27.5 | | | AEL-5004-480-28 | 480V | 28A | 3750W | 1 | 33.5 | | ### PEL-3111/3111H ### PEL-3041/3041H/3021/3021H #### **FEATURES** - * Operating Voltage (DC): 0~150V(PEL-3000)/ 0~800V(PEL-3000H) - * Operating Mode: C.C/C.V/C.R/C.P/C.C+C.V/ C.R+C.V/C.P+C.V - * Parallel Connection of Inputs for Higher Capacity (Max: 9,450W) - * Support of High Slew Rate: Max 16A/µs (PEL-3000)/0.84A/µs (PEL-3000H) - * Run Program Function (Go/NoGo Test) - * Sequence Function for High Efficient Load - * Dynamic (Switching) Function: 0.0166Hz~ 20kHz - * Soft Start Function: Off/On (1~200ms, Res. 1ms) - * Adjustable OCP/OVP/OPP/UVP Setting - * Short Circuit Function - * Timer Function: Elapsed Time of Load on - * Cut Off Time (Auto Load Off Timer): 1s to 999h 59min 59s or Off - * External Channel Control/Monitoring Via **Analog Control Connector** - * Setup Memories: 100 sets - * 3.5 Inch TFT LCD Display - * Multi Interface : USB, RS-232 (Std.)/ GPIB, LAN (Opt.) The PEL-3000 Series, a single-channel, programmable D.C. electronic load with 0.01mA current resolution and 16A/ μ s current Slew Rate, is very ideal for testing server power supply and SPS (Switching Power Supply) for commercial and industrial computers. For a heavy-duty device like cloud ecosystem running 24-hour nonstop operations, a stable and high-power power supply, ranging from 350W to 1500W, is required to maintain the normal operation of server, Hub, and the equipment of data storage and internet communications. Owing to the increasing demand of data transmission and large scale data storage of telecommunications systems, the infrastructure of internet communications is in the pace of rapid expansion. This has greatly boosted the market demand of telecommunications equipment powered by power supply of 2000W and above. The flexible power combination of PEL-3000 Series meets the test requirements of present high-power power supply. The PEL-3000H Series programmable DC Electronic load, which not only inherited functions and features from the PEL-3000 Series but providing three current ranges for all PEL-3000H Series and adding voltage monitor BNC terminals on the front panel. The PEL-3000H Series, a singlechannel, programmable D.C. electronic load with 800V and 0.84A/ μ s current Slew Rate, is ideal for the test of the high voltage devices such as the EV & HEV in-vehicle chargers, DC/DC converters or high-voltage batteries. With respect to battery testing applications such as rechargeable battery for electrical tools, battery module and automobile battery, PEL-3000(H) Series has three stand-alone models to offer including 175W, 350W, 1050W and Booster. By connecting Booster 2100W units with master units, the maximum load capacity of the whole system can reach 9,450W. Hence, the PEL-3000(H) Series fulfills various power testing requirements including medium to low power or highpower power supply. The PEL-3000(H) Series has seven operating modes and three operating functions. Among the seven operating modes, four of them are basic operating modes, including constant current, constant voltage, constant resistance, and constant power, and the other three are advanced operating modes including constant current + constant voltage, constant resistance + constant voltage, and constant power + constant voltage. Users must first select operating mode and then operating function based upon the test requirements. Static, Dynamic and Sequence operating functions can be applied to different testing conditions including a fixed load level, switching between two levels or switching among more than two levels. Sequence function is divided into Fast Sequence and Normal Sequence according to the test time of each step. Both Dynamic and Sequence are to assist users to simulate the genuine load change. For instance, PEL-3000(H) Series can simulate HEV current consumption to make sure that automobile battery can supply HEV with sufficient power need on the road. By so doing, manufacturers can elevate product quality and reliability. The Soft Start function of the PEL-3000(H) Series can set current rise time for the moment PEL-3000(H) Series is turned on to reduce the abnormal situation of the voltage drop of power supply under test. The adjustable Under Voltage Protection (UVP), GO/NO GO voltage input monitoring function, current monitoring function and Timer Function to control load activation time can be jointly applied to the characteristic tests of battery bleeding to avoid battery damage during bleeding operation. Based upon the functionalities described above, the PEL-3000(H) Series can test a vast variety of power supply ranging from the fundamental static sink current to complex dynamic load simulations so as to enhance product quality and reliability. #### The single unit D.C Electronic Load of PEL-3000(H) Series The PEL-3000(H) Series is a high speed, single channel and programmable D.C. electronic load and its power, functionality, parallel combination and size are listed on the following chart: | MODEL | PEL-3021/3021H | PEL-3041/3041H | PEL-3111/3111H | PEL-3211/3211H | | |-------------|-------------------------------|-------------------------------|--|---|--| | Power | 175W | 350W | 1,050W | 2,100W Booster | | | Function | Full-function
Single Unit | Full-function
Single Unit | Full-function
Single Unit | No control panel, can not be operated alone | | | Parallel | Parallel with same | Parallel with same | Parallel with same model,
5 units the maximum | Parallel with | | | Combination | model, 5 units the
maximum | model, 5 units the
maximum | Parallel with the maximum of four PEL-3211 (H)s | PEL-3111(H) | | | Size | Half Rack | Half Rack | Full Rack | Full Rack | | | SPECIFICATIONS | | | | | | | |--|-------------------------|----------------------------
---|---|---|--| | Model | | |
PEL-3021 | PEL-3041 | PEL-3111 | PEL-3211 | | Voltage | | | 0V~150V | 0V~150V | 0V~150V | 0V~150V | | Current
Power | | | 35A
175W | 70A
350W | 210A
1050W | 420A
2100W | | Input Resistance | | | 500 kΩ | 500 kΩ | 500 kΩ | 500 kΩ | | Min. Operating | | | 0.75V@17.5A | 0.75V@35A | 0.75V@105A | 0.75V@210A | | Voltage(DC)(Typ.) CONSTANT CURRENT MOD | E | | 1.5V@35A | 1.5V@70A | 1.5V@210A | 1.5V@420A | | Operating Range | H,M, | L | 0~35A 0~3.5A 0~0.35A | 0~70A 0~7A 0~0.7A | 0~210A 0~21A 0~2.1A | 420A | | Accuracy of Setting | Н,М | | ±(0.2 % of set + 0.1 % of f.s*1 |) + Vin*2/500 kΩ | | ±(1.2% of set+1.1% of f.s) | | Accuracy of Setting | L | | ±(0.2 % of set + 0.1 % of f.s*1 | | - 10 | N/A | | Accuracy of Setting(Parallel) | | | ±(1.2% of set +1.1% of f.s.*3) | | 57 - 57 - 57 | ±(1.2% of set+1.1% of f.s) | | Resolution | Н,М, | L | 1mA 0.1mA 0.01mA | 2mA 0.2mA 0.02mA | 10mA 1mA 0.1mA | N/A | | CR MODE | | | | | | | | Operating Range | | н | 23.3336S~400μS
(42.857mΩ~2.5kΩ) | 46.6672S~800μS
(21.428mΩ~1.25kΩ) | 140.0016S~2.4mS
(7.1427mΩ~416.6667Ω) | 280.0032S~4.8mS
(3.5714mΩ~208.3334Ω) | | | | 597.5 | 2.33336S~40µS | 4.6667S~80μS | 14.0001S~242.4µS | 28.0032S~484.8µS | | | Range | М | (428.566mΩ~25kΩ) | 4.00073~80μ3
(214.28mΩ~12.5kΩ) | (71.427mΩ~4.16667kΩ) | (35.7135mΩ~2.083334Ω) | | | | 2020 | 0.233336S~4µS | 0.46667S~8µS | 1.40001S~24.24µS | | | | | L | (4.28566Ω~250kΩ) | (2.1428Ω~125kΩ) | $(714.27 \text{m}\Omega \sim 41.6667 \text{k}\Omega)$ | N/A | | Accuracy of Setting | Н,М | | ±(0.5 % of set*6 + 0.5 % of f.s | 1) + Vin ³ /500kΩ | | ±(1.2% of set" +1.1% of f.s") | | Accuracy of Setting | L | | ±(0.5 % of set*6 + 0.5 % of f.s | 1) + Vin ¹³ /500kΩ | | N/A | | Parallel | | | ±(1.2 % of set + 1.1 % of f.s*3) | 10 30 V 10 10 | | ±(1.2% of set +1.1% of f.s*3) | | Resolution | Н,М, | L | 400μS 40μS 4μS | 800μS 80μS 8μS | 2.4mS 240μS 24μS | N/A | | CONSTANT VOLTAGE MOD | E | | | 3 2 2 2 | | | | Operating Range | Range | Н | 1.5V~150V | | | 1.5V~150V | | - P Manage | gc | L | 1.5V~15V | | | 1.5V~15V | | Accuracy of Setting | H,L | | ±(0.1 % of set + 0.1 % of f.s) | | | AL/A | | Resolution | H,L | | 10mV/1mV | | | N/A | | CONSTANT POWER MODE | | | | | | | | Operating Range | No. | Н | 17.5W~175W | 35W~350W | 105W~1050W | 210W~2100W | | | Range | М | 1.75W~17.5W | 3.5W~35W | 10.5W~105W | 21W~210W
N/A | | | | L | 0.175W~1.75W | 0.35W~3.5W | 1.05W~10.5W | 19/5 | | Accuracy of Setting | H,M,L | | | set 3 + 1.4 % of f.s 3) + Vin 3 /500kΩ | | N/A | | Resolution PARALLEL Mode | Н,М, | | 10mW 1mW 0.1mW | 10mW 1mW 0.1mW | 100mW 10mW 1mW | | | Capacity | | | 875W | 1750W | 5250W | PEL-3111 with 4 booster | | | | | 1000000 | 1750W | 3230 W | units : Max 9.45kW | | SLEW RATE | | | | | | | | Operation Mode | | н | CC, CR | CC, CR | CC, CR | N/A | | | | | | | | | | Setting Range | Range | | 2.5 x N ^{*10} mA/µs~2.5A/µs
250 x N ^{*10} µA/µs~250mA/µs | 5 x N*10 mA/μs~5A/μs
500 x N*10 μ4/μs~500m4/μs | 16 x N*11 mA/μs~16A/μs | N/A | | Setting Range
(CC mode) | Range | M | 250 x N ^{*10} µA/µs~250mA/µs | 500 x N ^{*10} μA/μs~500mA/μs | 1.6 x N*11mA/μs~1.6A/μs | N/A | | (CC mode) | Range | М | 250 x N ^{*10} µA/µs~250mA/µs
25 x N ^{*10} µA/µs~25mA/µs
250 x N ^{*10} µA/µs~250mA/µs | | | N/A | | | Range | L
H
M | 250 x N ^{*10} μA/μs~250mA/μs
25 x N ^{*10} μA/μs~25mA/μs
250 x N ^{*10} μA/μs~250mA/μs
25 x N ^{*10} μA/μs~25mA/μs | 500 x N ^{*10} μA/μs~500mA/μs
50 x N ^{*10} μA/μs~50mA/μs
500 x N ^{*10} μA/μs~500mA/μs
500 x N ^{*10} μA/μs~50mA/μs | 1.6 x N ^{*11} mA/µs~1.6A/µs
160 x N ^{*11} µA/µs~160mA/µs
1.6 x N ^{*11} mA/µs~1.6A/µs
160 x N ^{*11} µA/µs~160mA/µs | N/A
N/A | | (CC mode) Setting Range (CR Mode) | Range | H
M
L | 250 x N ⁺¹⁰ µA/µs~250mA/µs
25 x N ⁺¹⁰ µA/µs~25mA/µs
250 x N ⁺¹⁰ µA/µs~250mA/µs
25 x N ⁺¹⁰ µA/µs~25mA/µs
2.5 x N ⁺¹⁰ µA/µs~2.5mA/µs | 500 x N ^{*10} μA/μs~500mA/μs
50 x N ^{*10} μA/μs~50mA/μs
500 x N ^{*10} μA/μs~500mA/μs | 1.6 x N*11 mA/µs~1.6A/µs
160 x N*11 µA/µs~160mA/µs
1.6 x N*11 mA/µs~1.6A/µs | N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting | | H
M
L | 250 x N ⁻¹⁰ μ A/ μ s~250mA/ μ s
25 x N ⁻¹⁰ μ A/ μ s~25mA/ μ s
250 x N ⁻¹⁰ μ A/ μ s~25mA/ μ s
250 x N ⁻¹⁰ μ A/ μ s~25mA/ μ s
2.5 x N ⁻¹⁰ μ A/ μ s~2.5mA/ μ s
±(10 % of set" + 5 μ s) | 500 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
500 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs | | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution | Range | H
M
L | 250 x N ⁻¹⁰ μ A/ μ s250 mA/ μ s
25 x N ⁻¹⁰ μ A/ μ s25 mA/ μ s
250 x N ⁻¹⁰ μ A/ μ s25 mA/ μ s
25 x N ⁻¹⁰ μ A/ μ s25 mA/ μ s
2.5 x N ⁻¹⁰ μ A/ μ s2.5 mA/ μ s
\pm (10 % of set" + 5 μ s)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ mA/ μ s2.5 A/ μ s | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ mA/μs~5mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
1.6 x N ⁻¹¹ mA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA/μs~16A/μs | N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting | Range | H
M
L | 250 x N ⁺¹⁰ μ A/ μ s~250mA/ μ s
25 x N ⁺¹⁰ μ A/ μ s~25mA/ μ s
250 x N ⁺¹⁰ μ A/ μ s~25mA/ μ s
250 x N ⁺¹⁰ μ A/ μ s~25mA/ μ s
2.5 x N ⁺¹⁰ μ A/ μ s~2.5mA/ μ s
\pm (10 % of set ^{*0} + 5 μ s)
1 x N ⁺¹⁰ mA
250 x N ⁺¹⁰ mA/ μ s~2.5A/ μ s
100 x N ⁺¹⁰ mA | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ mA/μs~5mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
1.6 x N ⁻¹¹ μA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA/μs~16A/μs
600 x N ⁻¹¹ μA | N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution | Range | H
M
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
250 x N ⁻¹⁰ μA/μs~25mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
±(10 % of set ⁻⁹ + 5μs)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ mA/μs~250 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ mA
200 x N ⁻¹⁰ mA/μs~5A/μs
200 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
1.6 x N ⁻¹¹ mA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA
60 x N ⁻¹¹ μA
160 x N ⁻¹¹ μA
160 x N ⁻¹¹ μA | N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution | Range | H
M
L | 250 x N ⁻¹⁰ μA/μs250mA/μs
25 x N ⁻¹⁰ μA/μs25mA/μs
250 x N ⁻¹⁰ μA/μs25mA/μs
25 x N ⁻¹⁰ μA/μs25mA/μs
2.5 x N ⁻¹⁰ μA/μs2.5mA/μs
±(10 % of set" + 5μs)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ μA/μs2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ mA/μs250 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ mA/μs250 x N ⁻¹⁰ mA/μs
1.5 x N ⁻¹⁰ mA/μs25 x N ⁻¹⁰ mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ mA/μs~5mA/μs
20 x N ⁻¹⁰ mA/μs~50 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ mA/μs~50 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ mA/μs~50 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ mA/μs~50 x N ⁻¹⁰ mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μα
1.6 x N ⁻¹¹ μs~16A/μs
600 x N ⁻¹¹ μα
160 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs
60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs
16 x N ⁻¹¹ μA/μs~1.60 x N ⁻¹¹ A/μs | N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution | Range | H
M
L | 250 x N ⁻¹⁰ μA/μs250mA/μs
25 x N ⁻¹⁰ μA/μs25mA/μs
250 x N ⁻¹⁰ μA/μs25mA/μs
25 x N ⁻¹⁰ μA/μs25mA/μs
2.5 x N ⁻¹⁰ μA/μs2.5mA/μs
±(10 % of set" + 5μs)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ μA/μs2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ mA/μs250 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ mA/μs250 x N ⁻¹⁰ mA/μs
1.5 x N ⁻¹⁰ mA/μs25 x N ⁻¹⁰ mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μα
500 x N ⁻¹⁰ μα/μs~50 x N ⁻¹⁰ μα/μs
50 x N ⁻¹⁰ μα/μs~500 x N ⁻¹⁰ μα/μs
5 x N ⁻¹⁰ μα/μs~50 x N ⁻¹⁰ μα/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μα
1.6 x N ⁻¹¹ μs~16A/μs
600 x N ⁻¹¹ μα
160 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs
60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs
16 x N ⁻¹¹ μA/μs~1.60 x N ⁻¹¹ A/μs | N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution | Range | H
M
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
250 x N ⁻¹⁰ μA/μs~25mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
±(10 % of set" + 5μs)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ mA/μs~2.5A/μs
100 x N ⁻¹⁰ mA/μs~250 x N ⁻¹⁰ mA/μs
12 x N ⁻¹⁰ mA/μs~250 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
25 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
25 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
25 x N ⁻¹⁰ mA/μs~250 x N ⁻¹⁰ mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰
μA/μs~5mA/μs
200 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
200 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
500 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
500 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
1.6 x N ⁻¹¹ μA/μs~160mA/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA/μs~16mA/μs
600 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ A/μs
60 x N ⁻¹¹ μA
160 x N ⁻¹¹ μA
16 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
60 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
600 x N ⁻¹¹ μA | N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution | Range | H
M
L | 250 x N ¹¹⁰ µA/µs~250mA/µs
25 x N ¹¹⁰ µA/µs~25mA/µs
250 x N ¹¹⁰ µA/µs~25mA/µs
25 x N ¹¹⁰ µA/µs~25mA/µs
2.5 x N ¹¹⁰ µA/µs~25mA/µs
±(10 % of set" + 5µs)
1 x N ¹¹⁰ mA
250 x N ¹¹⁰ mA/µs~2.5A/µs
100 x N ¹¹⁰ mA
25 x N ¹¹⁰ mA/µs~250 x N ¹¹⁰ mA/µs
10 x N ¹¹⁰ mA/µs~25 x N ¹¹⁰ mA/µs
1 x N ¹¹⁰ µA
25 x N ¹¹⁰ mA/µs~25 x N ¹¹⁰ mA/µs
1 x N ¹¹⁰ µA
25 x N ¹¹⁰ µA/µs~25 x N ¹¹⁰ mA/µs
100 x N ¹¹⁰ mA
25 x N ¹¹⁰ µA/µs~25 x N ¹¹⁰ µA/µs
100 x N ¹¹⁰ mA | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μA/μs~5mA/μs
20 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ μA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ μA
160 x N ⁻¹¹ μA
160 x N ⁻¹¹ μA
160 x N ⁻¹¹ μA
160 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ A/μs
60 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs | N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution | Range | H
M
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
250 x N ⁻¹⁰ μA/μs~25mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
±(10 % of set" + 5μs)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ mA/μs~2.5A/μs
100 x N ⁻¹⁰ mA/μs~250 x N ⁻¹⁰ mA/μs
12 x N ⁻¹⁰ mA/μs~250 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
25 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
25 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
25 x N ⁻¹⁰ mA/μs~250 x N ⁻¹⁰ mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μA/μs~5mA/μs
200 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
200 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
500 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
500 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
1.6 x N ⁻¹¹ μA/μs~160mA/μs
160 x N ⁻¹¹ μA/μs~160mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA/μs~16mA/μs
600 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ A/μs
60 x N ⁻¹¹ μA
160 x N ⁻¹¹ μA
16 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
60 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
600 x N ⁻¹¹ μA | N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter | Range H, M, | M
L
H
M
L | $ \begin{array}{c} 250 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 250 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 250 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 2.5 \times N^{+10} \mu A / \mu s - 2.5 m A / \mu s \\ \frac{1}{2} \times N^{+10} \mu A / \mu s - 2.5 m A / \mu s \\ \frac{1}{2} \times N^{+10} \mu A / \mu s - 2.5 m A / \mu s \\ 250 \times N^{+10} \mu A / \mu s - 2.5 A / \mu s \\ 100 \times N^{+10} \mu A / \mu s - 2.5 \times N^{+10} m A / \mu s \\ 25 \times N^{+10} m A / \mu s - 250 \times N^{+10} m A / \mu s \\ 12 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} m A / \mu s \\ 25 \times N^{+10} m A / \mu s - 25 \times N^{+10} m A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu$ | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μA/μs~5A/μs
200 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
200 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ μA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ μA
160 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ A/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs | N/A
N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter | Range H, M, | M
L
H
M
L | 250 x N ⁻¹⁰ μ A/ μ s250 mA/ μ s
25 x N ⁻¹⁰ μ A/ μ s25 mA/ μ s
250 x N ⁻¹⁰ μ A/ μ s25 mA/ μ s
25 x N ⁻¹⁰ μ A/ μ s25 mA/ μ s
2.5 x N ⁻¹⁰ μ A/ μ s2.5 mA/ μ s
±(10 % of set" + 5 μ s)
1 x N ⁻¹⁰ μ A
250 x N ⁻¹⁰ μ A/ μ s2.5 A/ μ s
100 x N ⁻¹⁰ μ A
25 x N ⁻¹⁰ μ A/ μ s250 x N ⁻¹⁰ μ A/ μ s
10 x N ⁻¹⁰ μ A
2.5 x N ⁻¹⁰ μ A/ μ s25 x N ⁻¹⁰ μ A/ μ s
10 x N ⁻¹⁰ μ A
2.5 x N ⁻¹⁰ μ A/ μ s25 x N ⁻¹⁰ μ A/ μ s
10 x N ⁻¹⁰ μ A/ μ s25 x N ⁻¹⁰ μ A/ μ s
25 x N ⁻¹⁰ μ A/ μ s25 x N ⁻¹⁰ μ A/ μ s
10 x N ⁻¹⁰ μ A/ μ s25 x N ⁻¹⁰ μ A/ μ s
25 x N ⁻¹⁰ μ A/ μ s25 x N ⁻¹⁰ μ A/ μ s
10 x N ⁻¹⁰ μ A/ μ s25 x N ⁻¹⁰ μ A/ μ s | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μA/μs~5A/μs
200 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
200 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ μA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ μA
160 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ A/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs | N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) | Range H, M, | M
L
H
M
L | $ \begin{array}{c} 250 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 250 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 250 \times N^{+10} \mu A / \mu s - 250 m A / \mu s \\ 2.5 \times N^{+10} \mu A / \mu s - 2.5 m A / \mu s \\ \frac{1}{2} \times N^{+10} \mu A / \mu s - 2.5 m A / \mu s \\ \frac{1}{2} \times N^{+10} \mu A / \mu s - 2.5 m A / \mu s \\ 250 \times N^{+10} \mu A / \mu s - 2.5 A / \mu s \\ 100 \times N^{+10} \mu A / \mu s - 2.5 \times N^{+10} m A / \mu s \\ 25 \times N^{+10} m A / \mu s - 250 \times N^{+10} m A / \mu s \\ 12 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} m A / \mu s \\ 25 \times N^{+10} m A / \mu s - 25 \times N^{+10} m A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 25 \times N^{+10}
\mu A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 25 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu s - 25 \times N^{+10} \mu A / \mu s \\ 10 \times N^{+10} \mu A / \mu$ | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μA/μs~5A/μs
200 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
200 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ μA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ μA
160 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ A/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs | N/A
N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE | Range H, M, | M
L
H
M
L | $ \begin{array}{c} 250 \times N^{*10} \mu A / \mu s - 250 m A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 250 m A / \mu s \\ 250 \times N^{*10} \mu A / \mu s - 250 m A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 250 m A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 m A / \mu s \\ 2.5 \times N^{*10} \mu A / \mu s - 2.5 m A / \mu s \\ 2.5 \times N^{*10} \mu A / \mu s - 2.5 m A / \mu s \\ 250 \times N^{*10} m A / \mu s - 2.5 A / \mu s \\ 100 \times N^{*10} \mu A \\ 25 \times N^{*10} m A / \mu s - 250 \times N^{*10} m A / \mu s \\ 10 \times N^{*10} \mu A \\ 2.5 \times N^{*10} m A / \mu s - 250 \times N^{*10} m A / \mu s \\ 10 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} m A / \mu s \\ 10 \times N^{*10} \mu A / \mu s - 2.5 \times N^{*10} m A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} m A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} m A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s - 25 \times N^{*10} \mu A / \mu s \\ 25 \times N^{*10} \mu A / \mu s $ | 500 x N ⁻¹⁰ μA/μs~500mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~5mA/μs
2 x N ⁻¹⁰ μA/μs~5A/μs
200 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
200 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ μA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ μA
160 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ A/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs | N/A
N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 | Range H, M, | M
L
H
M
L | 250 x N ⁻¹⁰ µA/µs~250mA/µs
25 x N ⁻¹⁰ µA/µs~25mA/µs
250 x N ⁻¹⁰ µA/µs~25mA/µs
25 x N ⁻¹⁰ µA/µs~25mA/µs
2.5 x N ⁻¹⁰ µA/µs~2.5mA/µs
±(10 % of set" + 5µs)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ mA/µs~2.5A/µs
100 x N ⁻¹⁰ mA/µs~2.50 x N ⁻¹⁰ mA/µs
25 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ µA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ µA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ µA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs | 500 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~50mA/μs
2 x N ⁻¹⁰ μA/μs~5A/μs
200 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
500 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
2 x N ⁻¹⁰ μA
5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ mA/μs
200 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
1.6 x N ⁻¹¹ μA/μs~1.60mA/μs
160 x N ⁻¹¹ μA/μs~1.60mA/μs
16 x N ⁻¹¹ μA/μs~16mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ μA
160 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ A/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA
1.6 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs
6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs
6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs | N/A
N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy | Range H, M, | M
L
H
M
L | 250 x N ⁻¹⁰ µA/µs~250mA/µs
25 x N ⁻¹⁰ µA/µs~25mA/µs
250 x N ⁻¹⁰ µA/µs~25mA/µs
25 x N ⁻¹⁰ µA/µs~25mA/µs
2.5 x N ⁻¹⁰ µA/µs~2.5mA/µs
±(10 % of set" + 5µs)
1 x N ⁻¹⁰ mA
250 x N ⁻¹⁰ mA/µs~2.5A/µs
100 x N ⁻¹⁰ mA/µs~2.5A ys
100 x N ⁻¹⁰ mA/µs~2.50 x N ⁻¹⁰ mA/µs
25 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
1 x N ⁻¹⁰ µA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~25 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 x N ⁻¹⁰ mA
2.5 x N ⁻¹⁰ mA/µs~250 x N ⁻¹⁰ mA/µs
100 | 500 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
50 x N ⁻¹⁰ μA/μs~50mA/μs
5 x N ⁻¹⁰ μA/μs~50mA/μs
2 x N ⁻¹⁰ μA/μs~5πA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA
50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs
20 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~16mA/μs 6 x N ⁻¹¹ μA/μs~16mA/μs 6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 600 x N ⁻¹¹ μA/μs~16 | N/A
N/A
N/A | | (CC mode)
Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate | Accuracy Accuracy | M
L
H
M
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
250 x N ⁻¹⁰ μA/μs~25mA/μs
250 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
±(10 % of set° + 5μs)
1 x N ⁻¹⁰ mA/μs~2.5A/μs
100 x N ⁻¹⁰ mA/μs~2.5A/μs
100 x N ⁻¹⁰ mA/μs~2.5A/μs
100 x N ⁻¹⁰ mA/μs~2.50 x N ⁻¹⁰ mA/μs
2.5 x N ⁻¹⁰ mA/μs~2.5 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ mA/μs~2.5 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ nA/μs~25 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs | 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~5mA/μs 20 x N ⁻¹⁰ μΑ/μs~5πA/μs 200 x N ⁻¹⁰ μΑ 500 x N ⁻¹⁰ μΑ 50 x N ⁻¹⁰ μΑ/μs~500 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μΑ 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ mA/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 160 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 6 x N ⁻¹¹ μΔ/μs~16mA/μs 6 x N ⁻¹¹ μΔ/μs~16A/μs 600 x N ⁻¹¹ μΔ 16 μΔ/μs~16 x N ⁻¹¹ μΔ/μs 600 x N ⁻¹¹ μΔ 16 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 61 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 61 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs | N/A N/A N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy | Range H, M, | M
L
H
M
L
L | $ \begin{array}{c} 250 \times N^{10} \ \mu A / \mu s - 250 m A / \mu s \\ 25 \times N^{10} \ \mu A / \mu s - 250 m A / \mu s \\ 250 \times N^{10} \ \mu A / \mu s - 250 m A / \mu s \\ 250 \times N^{10} \ \mu A / \mu s - 250 m A / \mu s \\ 25 \times N^{10} \ \mu A / \mu s - 25m A / \mu s \\ 2.5 \times N^{10} \ \mu A / \mu s - 2.5m A / \mu s \\ 2.5 \times N^{10} \ \mu A / \mu s - 2.5m A / \mu s \\ 250 \times N^{10} \ m A / \mu s - 2.5 A / \mu s \\ 100 \times N^{10} \ \mu A \\ 25 \times N^{10} \ m A / \mu s - 250 \times N^{10} \ m A / \mu s \\ 100 \times N^{10} \ \mu A \\ 2.5 \times N^{10} \ m A / \mu s - 250 \times N^{10} \ m A / \mu s \\ 100 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ m A / \mu s \\ 100 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ m A / \mu s \\ 250 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ m A / \mu s \\ 25 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 25 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 25 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu A / \mu s \\ 10 \times N^{10} \ \mu A / \mu s - 25 \times N^{10} \ \mu $ | 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~5mA/μs 5 x N ⁻¹⁰ μΑ/μs~5mA/μs 2 x N ⁻¹⁰ μΑ/μs~5πA/μs 200 x N ⁻¹⁰ μΑ/μs~500 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μΑ 500 x N ⁻¹⁰ μΑ 500 x N ⁻¹⁰ μΑ 50 x N ⁻¹⁰ μΑ/μs~500 x N ⁻¹⁰ mA/μs 2 x N ⁻¹⁰ μΑ 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~500 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~500 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 60 x N ⁻¹¹ μA/μs~16A/μs 600 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ M/μs 60 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs | N/A
N/A
N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) | Accuracy Accuracy | M
L
H
M
L
L | 250 x N ⁻¹⁰ μA/μs-250mA/μs 25 x N ⁻¹⁰ μA/μs-25mA/μs 25 x N ⁻¹⁰ μA/μs-25mA/μs 250 x N ⁻¹⁰ μA/μs-25mA/μs 2.5 x N ⁻¹⁰ μA/μs-25mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5mA/μs ±(10 % of set" + 5μs) 1 x N ⁻¹⁰ μA 250 x N ⁻¹⁰ μA/μs-2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA 2.5 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs γ y y y y y y y y y y y y y y y y y y | 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~5mA/μs 5 x N ⁻¹⁰ μΑ/μs~5mA/μs 2 x N ⁻¹⁰ μΑ/μs~5πΑ/μs 20 x N ⁻¹⁰ μΑ/μs~5α/μs 200 x N ⁻¹⁰ μΑ 200 x N ⁻¹⁰ μΑ 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 60 x N ⁻¹¹ μA/μs~16A/μs 600 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs 60 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 11.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 11.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 11.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 11.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 11.6 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs | N/A N/A N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Woltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) | Accuracy Accuracy Range | M
L
H
M
L
L | 250 x N ⁻¹⁰ μA/μs250mA/μs 25 x N ⁻¹⁰ μA/μs25mA/μs 250 x N ⁻¹⁰ μA/μs25mA/μs 250 x N ⁻¹⁰ μA/μs25mA/μs 2.5 x N ⁻¹⁰ μA/μs25mA/μs 2.5 x N ⁻¹⁰ μA/μs2.5mA/μs ±(10 % of set" + 5μs) 1 x N ⁻¹⁰ μA 250 x N ⁻¹⁰ μA/μs2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ mA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ mA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs250 x N ⁻¹⁰ μA/μs ±(0.1 % of rdg + 0.1 % of f.s.) CC ,
CR and CP 0.025 ms10 ms/Res : 1 μs ; 1 r ±100 ppm of setting 2.5 mA/μs2.5 A/μs 250 μA/μs250 mA/μs 250 μA/μs250 mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 20 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 500 x N ⁻¹⁰ μA 50 x N ⁻¹⁰ μA 50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 50 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ μA/μs 50 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 60 x N ⁻¹¹ μA/μs~16α A/μs 600 x N ⁻¹¹ μA 160 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 600 x N ⁻¹¹ μA 16 x N ⁻¹¹ mA/μs~1.6 x N ⁻¹¹ M/μs 16 x N ⁻¹¹ mA/μs~16 x N ⁻¹¹ mA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 1.6 mA/μs~1.6 A/μs 1.6 mA/μs~1.6 A/μs 1.6 mA/μs~1.6 A/μs 1.6 mA/μs~1.6 A/μs | N/A N/A N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) | Accuracy Accuracy | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~250mA/μs
250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
± (10 % of set" + 5μs)
1 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
2.5 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
± (0.1 % of rdg + 0.1 % of f.s.)
± (0.2 % of rdg + 0.3 % of f.s.)
± (1.2% of rdg + 1.1% of f.s.)
CC , CR and CP
0.025 ms~10 ms/Res : 1 μs ; 1 r
± 100 ppm of setting
2.5 mA/μs~2.5 A/μs
250 μA/μs~25 mA/μs
250 μA/μs~25 mA/μs
250 μA/μs~25 mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5πA/μs 2 x N ⁻¹⁰ μA/μs~5α/μs 2 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 2 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 2 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x X x x x x x x x x x x x x x x x x x | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~16mA/μs 60 x N ⁻¹¹ μA/μs~16α/μs 600 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs 60 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs | N/A N/A N/A | | CCC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CR Mode) | Accuracy Accuracy Range | M
L
H
M
L
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~250mA/μs
250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~250mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
± (10 % of set" + 5μs)
1 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
± (0.1 % of rdg + 0.1 % of f.s.)
± (1.2% of rdg + 1.1% of f.s.)
CC , CR and CP
0.025 ms~10 ms/Res : 1 μs ; 1 r
±100 ppm of setting
2.5 mA/μs~2.5 A/μs
2.5 μA/μs~2.5 mA/μs
2.5 μA/μs~2.5 mA/μs
2.5 μA/μs~2.5 mA/μs
2.5 μA/μs~2.5 mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5πA/μs 2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 500 x N ⁻¹⁰ μA 5 | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~16mA/μs 60 x N ⁻¹¹ μΔ/μs~16mA/μs 60 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ Δ/μs 600 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ Δ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ M/μs 16 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ mA/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 16 x N ⁻¹¹ μΔ/μs~160 x N ⁻¹¹ μΔ/μs 16 x N ⁻¹¹ μΔ/μs~160 x N ⁻¹¹ μΔ/μs 16 mΔ/μs~160 x Δ/μs 1.6mA/μs~160mA/μs 1.6mA/μs~160mA/μs 1.6mA/μs~160mA/μs 160μΔ/μs~160mA/μs | N/A N/A N/A N/A | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CC Mode) Current Accuracy | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~250mA/μs
250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
± (10 % of set" + 5μs)
1 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
100 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
2.5 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~250 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
± (0.1 % of rdg + 0.1 % of f.s.)
± (0.2 % of rdg + 0.3 % of f.s.)
± (1.2% of rdg + 1.1% of f.s.)
CC , CR and CP
0.025 ms~10 ms/Res : 1 μs ; 1 r
± 100 ppm of setting
2.5 mA/μs~2.5 A/μs
250 μA/μs~25 mA/μs
250 μA/μs~25 mA/μs
250 μA/μs~25 mA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5πA/μs 2 x N ⁻¹⁰ μA/μs~5α/μs 2 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 2 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 2 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x X x x x x x x x x x x x x x x x x x | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~16mA/μs 60 x N ⁻¹¹ μA/μs~16α/μs 600 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ mA/μs 60 x N ⁻¹¹ μA 16 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~16 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs 61 x N ⁻¹¹ μA/μs~160 x N ⁻¹¹ μA/μs | N/A N/A N/A | | CCC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CC Mode) Current Accuracy PROTECTION FUNCTION | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~250mA/μs
250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
±(10 % of set" + 5μs)
1 x N ⁻¹⁰ μA
250 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
15 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
±(0.1 % of rdg + 0.1 % of f.s.)
±(0.2 % of rdg + 0.3 % of f.s.)
±(1.2% of rdg + 1.1% of f.s.)
CC , CR and CP
0.025 ms~10 ms/Res : 1μs ; 1π
±100
ppm of setting
2.5 mA/μs~2.5 μA/μs
250 μA/μs~250 mA/μs
25μA/μs~250 mA/μs
25μA/μs~25 mA/μs
25μA/μs~25 mA/μs
25μA/μs~25 mA/μs
±0.4%F.S. | 500 x N ⁻¹⁰ μA/μs~500mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 500 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ μA/μs 50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 20 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 y μA/μs~50 x N ⁻¹⁰ μA/μs 5 y μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~16mA/μs 60 x N ⁻¹¹ μA/μs~16A/μs 600 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 600 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ M/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ mA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 10 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 11 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs | N/A N/A N/A N/A N/A 1.2%of set+1.1% of F.S.) | | (CC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CC Mode) Current Accuracy | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs-250mA/μs 25 x N ⁻¹⁰ μA/μs-25mA/μs 250 x N ⁻¹⁰ μA/μs-25mA/μs 250 x N ⁻¹⁰ μA/μs-25mA/μs 2.5 x N ⁻¹⁰ μA/μs-25mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-250 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-250mA/μs 25 y N ⁻¹⁰ μA/μs-25 y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μS y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs | 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~5mA/μs 2 x N ⁻¹⁰ μΑ/μs~5πA/μs 20 x N ⁻¹⁰ μΑ/μs~5A/μs 200 x N ⁻¹⁰ μΑ 500 x N ⁻¹⁰ μΑ 500 x N ⁻¹⁰ μΑ 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~1.60mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 60 x N ⁻¹¹ μA/μs~16A/μs 600 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 mA/μs~1.6 A/μs 1.6 μA/μs~1.6 | N/A N/A N/A N/A N/A 1.2%of set+1.1% of F.S.) | | CCC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CC Mode) Current Accuracy PROTECTION FUNCTION | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs-250mA/μs 25 x N ⁻¹⁰ μA/μs-25mA/μs 250 x N ⁻¹⁰ μA/μs-25mA/μs 250 x N ⁻¹⁰ μA/μs-25mA/μs 2.5 x N ⁻¹⁰ μA/μs-25mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-250 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5 x N ⁻¹⁰ μA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-250mA/μs 25 y N ⁻¹⁰ μA/μs-25 y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs y N ⁻¹⁰ μA/μS y N ⁻¹⁰ μA/μs 25 y N ⁻¹⁰ μA/μs | 500 x N ⁻¹⁰ μA/μs~500mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 500 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ μA/μs 50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 20 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 y μA/μs~50 x N ⁻¹⁰ μA/μs 5 y μA/μs~50 x N ⁻¹⁰ μA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~1.60mA/μs 160 x N
⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 60 x N ⁻¹¹ μA/μs~16A/μs 600 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 mA/μs~1.6 A/μs 1.6 μA/μs~1.6 | N/A N/A N/A N/A N/A 1.2%of set+1.1% of F.S.) | | CCC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CR Mode) Current Accuracy PROTECTION FUNCTION Functions | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
250 x N ⁻¹⁰ μA/μs~25mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
± (10 % of set" + 5μs)
1 x N ⁻¹⁰ μA
250 x N ⁻²⁰ μA/μs~2.5A/μs
100 x N ⁻²⁰ μA
25 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5 x N ⁻¹⁰ μA/μs
± (0.1 % of rdg + 0.1 % of f.s)
± (1.2% of rdg + 1.1% of f.s.)
CC , CR and CP
0.025 ms~10 ms/Res : 1 μs ; 1 r
±100 ppm of setting
2.5 mA/μs~2.5 A/μs
25 μA/μs~2.5 mA/μs
25 μA/μs~2.5 mA/μs
25 μA/μs~2.5 mA/μs
2.5 μA/μs~2.5 mA/μs
± 0.4%F.S.
Overvoltage protection (OVP)
Undervoltage protection (UVP) | 500 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5α/μs 200 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ mA/μs 2 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 200 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs x N ⁻¹⁰ μA/μs 5 | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 60 x N ⁻¹¹ μΔ/μs~16A/μs 600 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ Δ/μs 600 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ mA/μs 16 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ mA/μs 16 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 61 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 16 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~160 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~160mA/μs 11 x x x x x x x x x x x x x x x x x x | N/A N/A N/A N/A N/A N/A 1(1.2%of set+1.1% of F.S.) | | CCC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CC Mode) Current Accuracy PROTECTION FUNCTION Functions GENERAL Input Range Power(Max.) | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~250mA/μs
250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
± (10 % of set" + 5μs)
1 x N ⁻¹⁰ μA
250 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ mA/μs~2.5 x N ⁻¹⁰ mA/μs
15 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
± (0.1 % of rdg + 0.1 % of f.s.)
± (0.2 % of rdg + 0.3 % of f.s.)
± (1.2% of rdg + 1.1% of f.s.)
CC , CR and CP
0.025 ms~10 ms/Res : 1μs ; 1π
±100 ppm of setting
2.5 mA/μs~2.5 μA/μs
250 μA/μs~250 mA/μs
25μA/μs~250 mA/μs
25μA/μs~25 mA/μs
±0.4%F.S.
Overvoltage protection (OVP)
Undervoltage protection (UVP)
90VAC~132VAC/180VAC~250VAC
90VA | 500 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 500 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 20 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 mA/μs 5 y μA/μs~50mA/μs 5 y μA/μs~5mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~160mA/μs 1.6 x N ⁻¹¹ μA/μs~1.60mA/μs 160 x N ⁻¹¹ μA/μs~160mA/μs 16 x N ⁻¹¹ μA/μs~160mA/μs 60 x N ⁻¹¹ μA/μs~16A/μs 600 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ A/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 60 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 x N ⁻¹¹ μA/μs~1.6 x N ⁻¹¹ μA/μs 1.6 mA/μs~1.6 A/μs 1.6 μA/μs~1.6 | N/A N/A N/A N/A N/A 1.2%of set+1.1% of F.S.) | | CCC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CR Mode) Current Accuracy PROTECTION FUNCTION Functions GENERAL Input Range Power(Max.) Interface | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs-250mA/μs 25 x N ⁻¹⁰ μA/μs-250mA/μs 250 x N ⁻¹⁰ μA/μs-250mA/μs 250 x N ⁻¹⁰ μA/μs-250mA/μs 25 x N ⁻¹⁰ μA/μs-25mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5mA/μs 2.5 x N ⁻¹⁰ μA/μs-2.5mA/μs 1 x N ⁻¹⁰ μA/μs-2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-2.5A/μs 100 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-250 x N ⁻¹⁰ mA/μs 10 x N ⁻¹⁰ μA 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ mA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 x N ⁻¹⁰ μA/μs-25 x N ⁻¹⁰ μA/μs 25 μA/μs-25 x N ⁻¹⁰ μA/μs 25 μA/μs-250 mA/μs 25 μA/μs-250 mA/μs 25 μA/μs-25 | 500 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 50 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~50mA/μs 5 x N ⁻¹⁰ μΑ/μs~5mA/μs 2 x N ⁻¹⁰ μΑ/μs~5mA/μs 20 x N ⁻¹⁰ μΑ/μs~500 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μΑ 50 x N ⁻¹⁰ μΑ/μs~500 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μΑ 50 x N ⁻¹⁰ μΑ/μs~50 x N ⁻¹⁰ mA/μs 20 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ mA/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~5 x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs~50 x N
⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x N ⁻¹⁰ μΑ/μs 5 x N ⁻¹⁰ μΑ/μs x x x x x x x x x x x x x x x x x x x | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 160 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 60 x N ⁻¹¹ μΔ/μs~160mA/μs 60 x N ⁻¹¹ μΔ/μs~164 μs 600 x N ⁻¹¹ μΔ 16 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 16 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 160 x N ⁻¹¹ μΔ/μs~16 x N ⁻¹¹ μΔ/μs 160 x N ⁻¹¹ μΔ/μs~160 x N ⁻¹¹ μΔ/μs 16 mΔ/μs~16 λ/μs 16 mΔ/μs~16 λ/μs 1.6 mΔ/μs~16 λ/μs 1.6 mΔ/μs~16 λ/μs 1.6 μΔ/μs~16 μς 1.6 μΔ/μs~16 μς 1.6 μΔ/μs~16 μς 1.6 μσ/μs~16 μς 1.6 1 | N/A N/A N/A N/A N/A 1(1.2%of set+1.1% of F.S.) | | CCC mode) Setting Range (CR Mode) Accuracy of Setting Resolution (Setting Range) METER Voltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CC Mode) Current Accuracy PROTECTION FUNCTION Functions GENERAL Input Range Power(Max.) | Accuracy Accuracy Range | H
H
M
L
L | 250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~250mA/μs
250 x N ⁻¹⁰ μA/μs~250mA/μs
25 x N ⁻¹⁰ μA/μs~25mA/μs
2.5 x N ⁻¹⁰ μA/μs~2.5mA/μs
± (10 % of set" + 5μs)
1 x N ⁻¹⁰ μA
250 x N ⁻¹⁰ μA/μs~2.5A/μs
100 x N ⁻¹⁰ μA
25 x N ⁻¹⁰ mA/μs~2.5 x N ⁻¹⁰ mA/μs
15 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ mA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ mA/μs
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
2.5 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA
10 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs~25 x N ⁻¹⁰ μA/μs
± (0.1 % of rdg + 0.1 % of f.s.)
± (0.2 % of rdg + 0.3 % of f.s.)
± (1.2% of rdg + 1.1% of f.s.)
CC , CR and CP
0.025 ms~10 ms/Res : 1μs ; 1π
±100 ppm of setting
2.5 mA/μs~2.5 μA/μs
250 μA/μs~250 mA/μs
25μA/μs~250 mA/μs
25μA/μs~25 mA/μs
±0.4%F.S.
Overvoltage protection (OVP)
Undervoltage protection (UVP)
90VAC~132VAC/180VAC~250VAC
90VA | 500 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 50 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~50mA/μs 5 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~5mA/μs 2 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 500 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~50 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~5 x N ⁻¹⁰ mA/μs 200 x N ⁻¹⁰ μA 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 50 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 20 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 x N ⁻¹⁰ μA/μs 5 x N ⁻¹⁰ μA/μs~500 mA/μs 5 y μA/μs~50mA/μs 5 y μA/μs~5mA/μs | 1.6 x N ⁻¹¹ mA/μs~1.6A/μs 160 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 1.6 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 16 x N ⁻¹¹ μΔ/μs~160mA/μs 60 x N ⁻¹¹ μΔ/μs~16A/μs 600 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ Δ/μs 600 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ mA/μs 16 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ mA/μs 16 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 60 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 61 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 16 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~1.6 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~160 x N ⁻¹¹ μΔ/μs 11 x N ⁻¹¹ μΔ/μs~160mA/μs 11 x x x x x x x x x x x x x x x x x x | N/A N/A N/A N/A N/A N/A N/A 1(1.2% of set+1.1% of F.S.) | | Model | | | PEL-3021H | PEL-3041H | PEL-3111H | PEL-3211H | | | |---|----------------------|------------------|---
--|--|---|---|--| | Voltage | | | 0V~800V | 0V~800V | 0V~800V | 0V~800V | | | | Current
Power | | | 8.75A
175W | 17,5A
350W | 52,5A
1050W | 105A
2100W | | | | Input Resistance | | | 3.24ΜΩ | 3.24ΜΩ | 3.24ΜΩ | 3.24ΜΩ | | | | Min. Operating | | | 5V@8.75A | 5V@17.5A | 5V@52.5A | 5V@105A | | | | Voltage(DC)(Typ.) | \r | | 2.5V@4,375A | 2.5V@8,75A | 2.5V@26,25A | 2.5V@52,5A | | | | Operating Range | H,M, | | 0-8 754 0-875m4 0-87 5m4 | 0-1754 0-1754 0-175mA | 0~52.5A 0~5.25A 0~525mA | 0~105A 0~10.5A 0~1.05A | | | | Accuracy of Setting H, M | | | ±(0.2 % of set + 0.1 % of f.s ^{*1} | | 0~32.3A 0~3.23A 0~323IIIA | ±(1.2% of set+1.1% of f.s | | | | Accuracy of Setting | L | | ±(0.2 % of set + 0.1 % of f.s" | , , , | | N/A | | | | Accuracy of Setting(Parallel) | - | | ±(1.2% of set +1.1% of f.s. ¹³) |) + VIII /3.241VIS2 | | N/A | | | | Resolution | Н,М, | 1 | 300μA 30μA 3μA | 0.6mA 60µА 6µА | 2mA 200μA 20μA | 4mA 400µA 40µ | | | | CR MODE | 11,101, | _ | σούμα σούμα σύμα | O.OHA OHA OHA | 200μΑ 20μΑ | 411ΙΑ 400μΑ 40μ | | | | Operating Range | | н | 1.75S~30μS
(571mΩ~33.3kΩ) | 3.5S~60μS
(285mΩ~16.6kΩ) | 10.5S~180μS
(95.2mΩ~5.55kΩ) | 21S~360μS
(47.6mΩ~2.777kΩ) | | | | | Range | М | 175mS~3μS
(5.71Ω~333kΩ) | 350mS~6μS
(2.85Ω~166kΩ) | 1.05S~18μS
(952mΩ~55.5kΩ) | 2.1S~36μS
(476mΩ~27.77kΩ) | | | | | | L | 17.5mS~0.3μS
(57.1Ω~3.33MΩ) | 35mS~0.6μS
(28.5Ω~1.66MΩ) | 105mS~1.8μS
(9.52Ω~555kΩ) | 210mS~3.6μS
(4.762Ω~277.7kΩ) | | | | Accuracy of Setting | Н,М | 55 | ±(0.5% set + 0.5% f.S*1) + Vir | 1 ^{*2} /3.24MΩ | | ±(1.2% of set +1.1% of f.s)TY | | | | Accuracy of Setting | L | | ±(0.5% set + 0.5% f.S*1) + Vir | 1 ^{*2} /3.24MΩ | | N/A | | | | Parallel | à. | | ±(1.2 % of set + 1.1 % of f.s ³) | | | N/A | | | | Resolution | Н,М, | L | 30μS 3μS 0.3μS | 60μS 6μS 0.6μS | 180μS 18μS 1.8μS | N/A | | | | CONSTANT VOLTAGE MOD | E | | | | | | | | | Oncrating Page | Denre | н | 5V~800V | | | 5V~800V | | | | Operating Range | Range | L | 5V~80V | | | 5V~80V | | | | Accuracy of Setting | Range | H,L | ±(0.2% of set + 0.2% of f.s) | | | ±(0.2% of set + 0.2% of f.s | | | | • | Parallel | TYP | ±(0.2% of set + 0.2% of f.s) | | | ±(0.2% of set + 0.2% of f.s | | | | Resolution | Range | H,L | 20mV/2mV | | | N/A | | | | CONSTANT POWER MODE | | | | | | | | | | Operating Range | Denr | Н | 17.5W~175W | 35W~350W | 105W~1050W | 210W~2100W | | | | | Range | L | 1.75W~17.5W
0.175W~1.75W | 3.5W~35W
0.35W~3.5W | 10.5W~105W
1.05W~10.5W | 21W~210W
2.1W~21W | | | | Accuracy of Setting | н,м | | ±(0.6 % of set + 1.4 % of f.s) | | | ±(5 % of f.s)TYP | | | | Resolution | н.м. | 1 | 10mW 1mW 0.1mW | 10mW 1mW 0.1mW | 100mW 10mW 1mW | N/A | | | | PARALLEL Mode | П, М, | _ | Tomw Timw O.Timw | TOTTW TITTW O.THIW | TOOM TOMW TIME | IN/A | | | | Capacity | | | 875W | 1750W | 5250W | PEL-3111H with 4 booste | | | | Capacity | | | 0.30 | 173011 | 3230W | units : Max 9.45kW | | | | SLEW RATE | | | | | | | | | | Operation Mode | 2 | _ | CC, CR | CC, CR | CC, CR | N/A | | | | Setting Range
(CC mode) | Range | M
L | 0.14 x N ^{*10} mA/μs~140mA/μs
0.014 x N ^{*10} mA/μs~14mA/μs
1.4 x N ^{*10} μA/μs~1400μA/μs | 0.280 x N ^{*10} mA/µs~280.0mA/µs
0.0280 x N ^{*10} mA/µs~28.00mA/µs
2.80 x N ^{*10} µA/µs~2800µA/µs | 0.840 x N ^{*11} mA/µs~840mA/µs
0.0840 x N ^{*11} mA/µs~84.00mA/µs
0.00840 x N ^{*11} mA/µs~8.400mA/µs | N/A | | | | Setting Range | 3 | н | 0.014 x N*10 mA/μs~14mA/μs | 0.0280 x N ¹¹⁰ mA/μs~28.00mA/μs | 0.0840 x N ^{"11} mA/μs~84.00mA/μs | | | | | (CR Mode) | Range | М | 0.0014 x N ^{*10} mA/μs~1.4mA/μs | 0.00280 x N ^{*10} mA/μs~2.800mA/μs | 0.00840 x N ^{*11} mA/μs~8.400mA/μs | N/A | | | | , | | L | 0.14 x N ^{*10} μΑ/μs~140μΑ/μs | 0.280 x N ^{*10} μA/μs~280.0μA/μs | 0.000840 x N°11mA/μs~0.8400mA/μs | | | | | Accuracy of Setting | Н,М, | | ±(10 % of set + 25μs) | 6 | 32
A.C. | N/A | | | | Resolution
(Setting Range) | H,M,L | | .,,,,,2 | | 50 x N*10 μA
14 x N*10 mA/μs~140mA/μs
5 x N*10 μA | 100 x N ^{*10} μA
28 x N ^{*10} mA/μs~280mA/μs
10 x N ^{*10} μA | 300 x N ^{*11} μA
84 x N ^{*11} mA/μs~840mA/μs
30 x N ^{*11} μA | | | | | | 1.4 x N ¹⁵⁰ mA/μs-14 x N ¹¹⁰ mA/μs 0.5 x N ¹⁵¹ μA 140 x N ¹⁵¹ μΔ/μs-1.4 x N ¹¹⁰ mA/μs 50 x N ¹¹⁰ nA 14 x N ¹⁵¹ μΔ/μs-140 x N ¹¹⁰ μΔ/μs 5 x N ¹¹⁰ nA 1.4 x N ¹¹⁰ μΔ/μs-14 x N ¹¹⁰ μΔ/μs 0.5 x N ¹¹⁰ nA 0.5 x N ¹¹⁰ μΔ/μs-1.4 x N ¹¹⁰ μΔ/μs 0.14 x N ¹¹⁰ μΔ/μs-1.4 x N ¹¹⁰ μΔ/μs | 2.8 x N ^{*10} mA/μs~28 x N ^{*10} mA/μs
1 x N ^{*10} μA | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | N/A | | | | METER | | | 0.5 x N ⁻¹¹ μA
140 x N ⁺¹² μA/μs~1.4 x N ⁺¹⁰ mA/μs
50 x N ⁻¹⁰ nA
14 x N ⁺¹⁰ μA/μs~140 x N ⁺¹⁰ μA/μs
5 x N ⁺¹⁰ μA/μs~14 x N ⁺¹⁰ μA/μs
1.4 x N ⁺¹⁰ μA/μs~14 x N ⁺¹⁰ μA/μs
0.5 x N ⁺¹⁰ nA | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs
0.1 x N ⁻¹⁰ μA
28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1 x N ⁻¹⁰ μA | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | N/A | | | | Voltmeter | Accuracy | | 0.5 x N ⁻¹¹ μ
A
140 x N ⁻¹³ μ A/ μ s - 1.4 x N ⁻¹⁰ μ A/ μ s
50 x N ⁻¹⁰ μ A
14 x N ⁻¹³ μ A/ μ s - 140 x N ⁻¹⁰ μ A/ μ s
5 x N ⁻¹⁰ μ A
1.4 x N ⁻¹³ μ A/ μ s - 14 x N ⁻¹⁰ μ A/ μ s
0.5 x N ⁻¹⁰ μ A
0.14 x N ⁻¹³ μ A/ μ s - 1.4 x N ⁻¹⁰ μ A/ μ s
$\frac{1}{2}(0.1\% \text{ of } \text{rdg} + 0.1\% \text{ of } \text{f.s})$ | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs
0.1 x N ⁻¹⁰ μA
28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1 x N ⁻¹⁰ pA
0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | ±(0.1 % of rdg + 0.1 % of f.s)T | | | | Voltmeter
Ammeter | Accuracy | | 0.5 x N μA
140 x N βμΔμμs-1.4 x N θ mA/μs
50 x N βηΑ
14 x N βμΛμs-140 x N θμΛμs
5 x N πηΛ
1.4 x N βμΛμs-14 x N θμΛμs
0.5 x N ηΛ
0.14 x N βμΛμs-1.4 x N θμΛμs
±(0.1 % of rdg + 0.1 % of f.s)
±(0.2 % of rdg + 0.3 % of f.s) | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs
0.1 x N ⁻¹⁰ μA
28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1 x N ⁻¹⁰ pA
0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation) | | | 0.5 x N ⁻¹¹ μ A
140 x N ⁻¹³ μ A/ μ s - 1.4 x N ⁻¹⁰ μ A/ μ s
50 x N ⁻¹⁰ μ A
14 x N ⁻¹³ μ A/ μ s - 140 x N ⁻¹⁰ μ A/ μ s
5 x N ⁻¹⁰ μ A
1.4 x N ⁻¹³ μ A/ μ s - 14 x N ⁻¹⁰ μ A/ μ s
0.5 x N ⁻¹⁰ μ A
0.14 x N ⁻¹³ μ A/ μ s - 1.4 x N ⁻¹⁰ μ A/ μ s
$\frac{1}{2}(0.1\% \text{ of } \text{rdg} + 0.1\% \text{ of } \text{f.s})$ | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs
0.1 x N ⁻¹⁰ μA
28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1 x N ⁻¹⁰ pA
0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | ±(0.1 % of rdg + 0.1 % of f.s)Ti | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE | Accuracy | | $\begin{array}{l} 0.5 \times N^{-1} \mu A \\ 140 \times N^{-1} \mu A \\ 140 \times N^{-1} \mu A \\ 140 \times N^{-1} \mu A \\ 141 \times N^{-1} \mu A \\ 141 \times N^{-1} \mu A \\ 142 \times N^{-1} \mu A \\ 143 \times N^{-1} \mu A \\ 143 \times N^{-1} \mu A \\ 143 \times N^{-1} \mu A \\ 144 $ | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs
0.1 x N ⁻¹⁰ μA
28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1 x N ⁻¹⁰ pA
0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | ±(0.1 % of rdg + 0.1 % of f.s)T\ N/A ±(1.2% of rdg +1.1% of f.s.)T\ | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation) | Accuracy | | 0.5 x N μA
140 x N βμΔμμs-1.4 x N θ mA/μs
50 x N βηΑ
14 x N βμΛμs-140 x N θμΛμs
5 x N πηΛ
1.4 x N βμΛμs-14 x N θμΛμs
0.5 x N ηΛ
0.14 x N βμΛμs-1.4 x N θμΛμs
±(0.1 % of rdg + 0.1 % of f.s)
±(0.2 % of rdg + 0.3 % of f.s) | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs
0.1 x N ⁻¹⁰ μA
28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1 x N ⁻¹⁰ pA
0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | ±(0.1 % of rdg + 0.1 % of f.s)Ti | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE
Operation Mode
T1 & T2 | Accuracy | | 0.5 x N ⁻¹ μA
140 x N ⁻¹ μAμμs-1.4 x N ⁻¹⁰ mA/μs
50 x N ⁻¹⁰ nA
14 x N ⁻¹⁰ μA/μs-140 x N ⁻¹⁰ μA/μs
5 x N ⁻¹⁰ nA
1.4 x N ⁻¹⁰ μA/μs-14 x N ⁻¹⁰ μA/μs
0.5 x N ⁻¹⁰ nA
0.14 x N ⁻¹⁰ μA/μs-1.4 x N ⁻¹⁰ μA/μs
±(0.1 % of rdg + 0.1 % of f.s)
±(0.2 % of rdg + 0.3 % of f.s)
±(1.2% of rdg + 1.1% of f.s.)
CC, CR, CP
0.025 ms~10ms/Res: 1 μs; 10 | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs
1 x N ⁻¹⁰ μA
280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs
0.1 x N ⁻¹⁰ μA
28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs
10 x N ⁻¹⁰ μA
2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs
1 x N ⁻¹⁰ pA
0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs | 8.4 x N ⁻¹¹ mA/µs-84 x N ⁻¹¹ mA/µs
3 x N ⁻¹¹ µA
840 x N ⁻¹¹ µA/µs-8.4 x N ⁻¹¹ mA/µs
0.3 x N ⁻¹¹ µA
84 x N ⁻¹¹ µA/µs-840 x N ⁻¹¹ µA/µs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs
3 x N ⁻¹¹ µA/µs-84 x N ⁻¹¹ µA/µs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg +1.1% of f.s.)TN
N/A
N/A | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE
Operation Mode
T1 & T2
Accuracy
Slew Rate | Accuracy | н | 0.5 x N $^{10}\mu$ A 140 x N $^{10}\mu$ A μps -1.4 x N $^{10}\mu$ A μps 50 x N $^{10}\mu$ A μps -1.4 x N $^{10}\mu$ A μps 50 x N $^{10}\mu$ A μps -1.4 | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 2.8 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs | 8.4 x N ⁻¹¹ mA/μs-84 x N ⁻¹¹ mA/μs
3 x N ⁻¹¹ μA
480 x N ⁻¹¹ μA/μs-8.4 x N ⁻¹¹ mA/μs
0.3 x N ⁻¹¹ μA
84 x N ⁻¹¹ μA/μs-840 x N ⁻¹¹ μA/μs
30 x N ⁻¹¹ nA
8.4 x N ⁻¹¹ μA/μs-84 x N ⁻¹¹ μA/μs
3 x N ⁻¹¹ nA
0.84 x N ⁻¹¹ μA/μs-84 x N ⁻¹¹ μA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg +1.1% of f.s.)TO
N/A
N/A
± 100ppm of setting | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE
Operation Mode
T1 & T2
Accuracy
Slew Rate | Accuracy | Н | 0.5 x N ⁻¹ μA 140 x N ⁻¹ μAμμs-1.4 x N ⁻¹⁰ mA/μs 50 x N ⁻¹⁰ nA 14 x N ⁻¹⁰ μA/μs-140 x N ⁻¹⁰ μA/μs 5.5 x N ⁻¹⁰ nA 1.4 x N ⁻¹⁰ μA/μs-14 x N ⁻¹⁰ μA/μs 0.5 x N ⁻¹⁰ nA 0.14 x N ⁻¹⁰ μA/μs-1.4 x N ⁻¹⁰ μA/μs ±(0.1 % of rdg + 0.1 % of f.s) ±(0.2 % of rdg + 0.3 % of f.s) ±(1.2% of rdg + 1.1% of f.s.) CC, CR, CP 0.025 ms-10 ms/Res: 1 μs; 10 ± 100 ppm of setting 0.140 mA/μs~14.00 mA/μs 0.014 mA/μs~14.00 mA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 mA/μs-28.00mA/μs 0.028mA/μs-28.00mA/μs | 8.4 x N ^{*1} mA/μs-84 x N ^{*1} mA/μs
3 x N ^{*1} μA
480 x N ^{*1} μA/μs-8.4 x N ^{*1} mA/μs
0.3 x N ^{*1} μA
84 x N ^{*1} μA/μs-840 x N ^{*1} μA/μs
30 x N ^{*1} nA
8.4 x N ^{*1} μA/μs-84 x N ^{*1} μA/μs
3 x N ^{*1} nA
0.84 x N ^{*1} μA/μs-84 x N ^{*1} μA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg +1.1% of f.s.)T
N/A
N/A
± 100ppm of setting | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE
Operation Mode
T1 & T2
Accuracy
Slew Rate
(CC Mode) | Accuracy | H
M
L | 0.5 x N ⁻¹ μA 140 x N ⁻¹ μA μs-1.4 x N ⁻¹⁰ mA/μs 50 x N ⁻¹⁰ nA 14 x N ⁻¹⁰ μA/μs-140 x N ⁻¹⁰ μA/μs 5 x N nA 1.4 x N ⁻¹⁰ μA/μs-14 x N ⁻¹⁰ μA/μs 0.5 x N ⁻¹⁰ nA 0.14 x N ⁻¹⁰ μA/μs-1.4 x N ⁻¹⁰ μA/μs ±(0.1 % of rdg + 0.1 % of f.s) ±(0.2 % of rdg + 0.3 % of f.s) ±(1.2% of rdg + 1.1% of f.s.) CC, CR, CP 0.025 ms-10 ms/Res : 1 μs ; 10 ± 100 ppm of setting 0.140 mA/μs~14.00 mA/μs 0.014 mA/μs~140.00 μA/μs 1.400 μA/μs~1400.0 μA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 2.8 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 mA/μs-28.00mA/μs 0.028mA/μs-28.00mA/μs 2.800μA/μs-2800μA/μs | 8.4 x N ^{*1} mA/μs-84 x N ^{*1} mA/μs
3 x N ^{*1} μA
480 x N ^{*1} μA/μs-8.4 x N ^{*1} mA/μs
0.3 x N ^{*1} μA
84 x N ^{*1} μA/μs-840 x N ^{*1} μA/μs
30 x N ^{*1} nA
8.4 x N ^{*1} μA/μs-84 x N ^{*1} μA/μs
3 x N ^{*1} nA
0.84 x N ^{*1} μA/μs-8.4 x N ^{*1} μA/μs
0.84 x N ^{*1} μA/μs-8.4 x N ^{*1} μA/μs
0.84 x N ^{*1} μA/μs-8.4 x N ^{*1} μA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg +1.1% of f.s.)TO
N/A
N/A
± 100ppm of setting | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE
Operation Mode
T1 & T2
Accuracy
Slew Rate
(CC Mode) | Accuracy
Accuracy | H
M
L | 0.5 x N μA
140 x N βμΔμμs-1.4 x N θ mA/μs
50 x N θ nA
14 x N βμΔμμs-140 x N θμΔμμs
5. x N θ nA
1.4 x N βμΔμμs-14 x N θμΔμμs
0.5 x N θ nA
0.14 x N θμΔμμs-1.4 x N θμΔμμs
±(0.1 % of rdg + 0.1 % of
f.s.)
±(0.2 % of rdg + 0.3 % of f.s.)
±(1.2% of rdg + 1.1% of f.s.)
CC, CR, CP
0.025 ms~10 ms/Res: 1 μs; 10
± 100 ppm of setting
0.14 mmA/μs~14.00 mA/μs
0.014 mA/μs~140.0 mA/μs
1.400 μA/μs~140.0 mA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA 10 x N ⁻¹⁰ μA 2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ ρA 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.028 mA/μs-28.00mA/μs 0.028 mA/μs-28.00mA/μs 0.028 mA/μs-28.00mA/μs | 8.4 x N ⁻¹ mA/μs –84 x N ⁻¹ mA/μs
3 x N ⁻¹ μA
840 x N ⁻¹ μA/μs –8.4 x N ⁻¹ mA/μs
0.3 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
30 x N ⁻¹ μA/μs –840 x N ⁻¹ μA/μs
30 x N ⁻¹ μA/μs –84 x N ⁻¹ μA/μs
3 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
3 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
0.84 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
0.84 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
0.084mA/μs –8.400mA/μs
0.084mA/μs –8.400mA/μs
0.084mA/μs –8.400mA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg +1.1% of f.s.)T
N/A
N/A
± 100ppm of setting
N/A | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE
Operation Mode
T1 & T2
Accuracy
Slew Rate
(CC Mode) | Accuracy
Accuracy | H
M
L
H | 0.5 x N μA
140 x N πA ⁻ μAμs-1.4 x N πα/μs
50 x N πA ⁻ πA ⁻ μs-140 x N μμ/μs
50 x N πA ⁻ πα 140 x N μμ/μs
1.4 x N πμ μμs-14 x N μμ/μs
0.5 x N πA
0.14 x N πμ μ/μs-1.4 x N μμ/μs
± (0.1 % of rdg + 0.1 % of f.s)
± (0.2 % of rdg + 0.3 % of f.s)
± (1.2% of rdg + 1.1% of f.s.)
CC, CR, CP
0.025 ms~10 ms/Res : 1 μs ; 10
± 100 ppm of setting
0.14 mA/μs~14.00 mA/μs
0.014 mA/μs~140.0 mA/μs
0.014 mA/μs~140.0 mA/μs
0.014 mA/μs~14.00 mA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA 28 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ pA 0.28 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ pA 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 2.80μA/μs-28.00mA/μs 2.80μA/μs-28.00mA/μs 2.8μA/μs-2.800mA/μs | 8.4 x N ⁻¹ mA/μs –84 x N ⁻¹ mA/μs
3 x N ⁻¹ μA
840 x N ⁻¹ μA/μs –8.4 x N ⁻¹ mA/μs
0.3 x N ⁻¹ μA
84 x N ⁻¹ μA/μs –840 x N ⁻¹ μA/μs
30 x N ⁻¹ μA/μs –84 x N ⁻¹ μA/μs
3 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
3 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
0.84 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
0.84 x N ⁻¹ μA/μs –8.4 x N ⁻¹ μA/μs
0.084 mA/μs –8.400 mA/μs
0.084 mA/μs –8.400 mA/μs
0.084 mA/μs –8.400 mA/μs
0.0084 mA/μs –8.400 mA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg + 1.1% of f.s.)T
N/A
N/A
± 100ppm of setting
N/A | | | | Voltmeter
Ammeter
Ammeter(Parallel Operation)
DYNAMIC MODE
Operation Mode
T1 & T2
Accuracy
Slew Rate
(CC Mode) | Accuracy
Accuracy | H
M
L
H | 0.5 × N μA 140 × N μA μs-1.4 × N 0mA/μs 50 × N ηA 14 × N ηΔ/μs-140 × N 0μA/μs 50 × N ηA 14 × N ηΔ/μs-14 × N 0μA/μs 5.5 × N ηA 1.4 × N ημΑ/μs-14 × N 0μA/μs 0.5 × N ηA 0.14 × N 0μA/μs-1.4 × N 0μA/μs ±(0.1 % of rdg + 0.1 % of f.s.) ±(0.2 % of rdg + 0.3 % of f.s) ±(0.2 % of rdg + 1.1% of f.s.) CC, CR, CP 0.025ms-10ms/Res: 1μs; 10 ± 100ppm of setting 0.140mA/μs~140.0mA/μs 0.014mA/μs~140.0mA/μs 1.400μA/μs~1400.0μA/μs 0.014mA/μs~14000mA/μs 0.0014mA/μs~1.4000mA/μs 0.1400μA/μs~14000mA/μs 0.1400μA/μs~14000mA/μs 0.1400μA/μs~14000mA/μs 0.1400μA/μs~14000mA/μs 0.1400μA/μs~14000mA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 28 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 2.8 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 mA/μs-2.8 0.0 mA/μs 0.28 mA/μs-2.8 0.0 mA/μs 0.28 mA/μs-2.8 0.0 mA/μs 0.28 mA/μs-2.8 0.0 mA/μs 0.28 μA/μs-2.8 0.0 mA/μs 0.28 μA/μs-2.8 0.0 mA/μs 0.28 μA/μs-2.8 0.0 mA/μs 0.28 μA/μs-2.8 0.0 μA/μs | 8.4 x N ⁻¹ mA/μs~84 x N ⁻¹ mA/μs
3 x N ⁻¹ μA
40 x N ⁻¹ μA/μs~8.4 x N ⁻¹ mA/μs
0.3 x N ⁻¹ μA/μs~8.40 x N ⁻¹ μA/μs
30 x N ⁻¹ nA
8.4 x N ⁻¹ μA/μs~840 x N ⁻¹ μA/μs
30 x N ⁻¹ nA
8.4 x N ⁻¹ μA/μs~84 x N ⁻¹ μA/μs
3 x N ⁻¹ nA
0.84 x N ⁻¹ μA/μs~8.4 x N ⁻¹ μA/μs
0.84 x N ⁻¹ μA/μs~8.4 x N ⁻¹ μA/μs
0.084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.400mA/μs
0.0084 mA/μs~8.400mA/μs
0.0084 mA/μs~8.800mA/μs
0.0084 mA/μs~8.800mA/μs
0.0084 mA/μs~8.800mA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg +1.1% of f.s.)T
N/A
N/A
± 100ppm of setting
N/A
N/A
N/A
+0.4%F.S. | | | | Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CR Mode) Current Accuracy PROTECTION FUNCTION Functions GENERAL | Accuracy
Accuracy | H
M
L
H | 0.5 × N μA 140 × N μA μs-1.4 × N πα/μs 50 × N πα 14 × N πα/μs-140 × N πμ/μs 50 × N πα 14 × N πα/μs-14 × N πμ/μs 1.4 × N πα/μs-14 × N πμ/μs 0.5 × N πα 0.14 × N πα/μs-14 × N πμ/μs ±(0.1 % of rdg + 0.1 % of f.s) ±(0.2 % of rdg + 0.3 % of f.s) ±(1.2% of rdg + 1.1% of f.s.) CC, CR, CP 0.025 ms-10 ms/Res : 1 μs ; 10 ± 100 ppm of setting 0.140 mA/μs-14.00 mA/μs 0.014 mA/μs-14.00 mA/μs 1.400 μA/μs-140.00 μA/μs 0.014 mA/μs-140.00 mA/μs 0.014 mA/μs-140.00 mA/μs 0.1400 μA/μs-140.00 mA/μs 0.1400 μA/μs-140.00 μA/μs ±0.4%F.S. Overvoltage protection (OVP) Undervoltage protection (UVF | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA 10 x N ⁻¹⁰ μA 2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ ρA 0.28 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ ρA 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 mA/μs-28.00mA/μs 2.800μA/μs-28.00mA/μs 2.800μA/μs-28.00mA/μs 0.280μA/μs-28.00mA/μs 1.8μA/μs-2.800μA/μs 1.90.28 mA/μs-28.00mA/μs mA/μs-28 | 8.4 x N ⁻¹ mA/μs~84 x N ⁻¹ mA/μs
3 x N ⁻¹ μA
40 x N ⁻¹ μA/μs~8.4 x N ⁻¹ mA/μs
0.3 x N ⁻¹ μA/μs~8.40 x N ⁻¹ μA/μs
30 x N ⁻¹ nA
8.4 x N ⁻¹ μA/μs~840 x N ⁻¹ μA/μs
30 x N ⁻¹ nA
8.4 x N ⁻¹ μA/μs~84 x N ⁻¹ μA/μs
3 x N ⁻¹ nA
0.84 x N ⁻¹ μA/μs~8.4 x N ⁻¹ μA/μs
0.84 x N ⁻¹ μA/μs~8.4 x N ⁻¹ μA/μs
0.084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.400mA/μs
0.0084 mA/μs~8.400mA/μs
0.0084 mA/μs~8.800mA/μs
0.0084 mA/μs~8.800mA/μs
0.0084 mA/μs~8.800mA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg + 1.1% of f.s.)T
N/A
N/A
± 100ppm of setting
N/A
N/A
N/A
+0.4%F.S. | | | | Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CR Mode) Current Accuracy PROTECTION FUNCTION Functions GENERAL Input Range | Accuracy
Accuracy | H
M
L
H | 0.5 × N μA
140 × N μA
140 × N μA
140 × N μA
50 × N πA
14 × N μA/μs -140 × N μA/μs
50 × N πA
1.4 × N μA/μs -14 × N μA/μs
0.14 × N μA/μs -1.4 × N μA/μs
0.14 × N μA/μs -1.4 × N μA/μs
±(0.1 % of rdg + 0.1 % of f.s.)
±(0.2 % of rdg + 0.3 % of f.s.)
±(0.2 % of rdg + 1.1% of f.s.)
CC, CR, CP
0.025ms~10ms/Res: 1 μs; 10
± 100ppm of setting
0.140mA/μs-14.00mA/μs
0.014mA/μs~140.00μA/μs
0.014mA/μs~140.00mA/μs
0.014mA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 2.80 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 2.8 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA 10 x N ⁻¹⁰ μA 2.8 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ ρA 0.28 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 mA/μs-28.00mA/μs 0.028mA/μs-28.00mA/μs 2.80μA/μs-28.00mA/μs 2.8μA/μs-2.800mA/μs 0.280μA/μs-28.00mA/μs 0.280μA/μs-28.00mA/μs 0.70, Reverse connection (OCP), (10), Reverse connection protection (CS), Reverse connection protection (CS), Reverse connection protection (CS), Reverse connection protection (CS), Reverse connection protection (CS) | 8.4 x N ⁻¹ mA/μs-84 x N ⁻¹ mA/μs 3 x N ⁻¹ μA 40 x N ⁻¹ μA 410 x N ⁻¹ μA/μs-8.4 x N ⁻¹ mA/μs 0.3 x N ⁻¹ μA 41 x N ⁻¹ μA/μs-8.40 x N ⁻¹ μA/μs 30 x N ⁻¹ μA 50 x N ⁻¹ μA 50 x N ⁻¹ μA/μs-84 x N ⁻¹ μA/μs 30 x N ⁻¹ μA 0.84 x N ⁻¹ μA/μs-8.4 x N ⁻¹ μA/μs 0.84 x N ⁻¹ μA/μs-8.4 x N ⁻¹ μA/μs 0.84 x N ⁻¹ μA/μs-8.4 x N ⁻¹ μA/μs 0.084 mA/μs-8.4.00mA/μs 0.084 mA/μs-8.400mA/μs 0.0084 mA/μs-8.400mA/μs 0.0084 mA/μs-8.400mA/μs 0.0084 mA/μs-0.8400 mA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T N/A ±(1.2% of rdg + 1.1% of f.s.)T N/A N/A ±100ppm of setting N/A N/A +0.4%F.S. | | | | Voltmeter Ammeter Ammeter (Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CR Mode) Current Accuracy PROTECTION FUNCTION Functions GENERAL Input Range Power(Max.) | Accuracy
Accuracy | H
M
L
H | 0.5 x N μA
140 x N 1μAμμs-1.4 x N 0mA/μs
50 x N 0pA
14 x N 1μA/μs-140 x N 0μA/μs
5 x N 10A
1.4 x N 10A/μs-14 x N 0μA/μs
0.5 x N 10A
0.14 x N 1μA/μs-1.4 x N 0μA/μs
±(0.1 % of rdg + 0.1 % of f.s.)
±(0.2 % of rdg + 0.3 % of f.s.)
±(0.2 % of rdg + 1.1% of f.s.)
CC, CR, CP
0.025ms~10ms/Res: 1 μs; 10
± 100ppm of
setting
0.140mA/μs~14.00mA/μs
0.014mA/μs~14.00mA/μs
0.014mA/μs~140.0mA/μs
0.014mA/μs~140.0mA/μs
0.014mA/μs~14000mA/μs
0.014mA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs
0.1400μA/μs~14000mA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA 10 μA/μs-28 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 10 | 8.4 x N ⁻¹ mA/μs~84 x N ⁻¹ mA/μs
3 x N ⁻¹ μA
40 x N ⁻¹ μA/μs~8.4 x N ⁻¹ mA/μs
0.3 x N ⁻¹ μA/μs~8.40 x N ⁻¹ μA/μs
30 x N ⁻¹ nA
8.4 x N ⁻¹ μA/μs~840 x N ⁻¹ μA/μs
30 x N ⁻¹ nA
8.4 x N ⁻¹ μA/μs~84 x N ⁻¹ μA/μs
3 x N ⁻¹ nA
0.84 x N ⁻¹ μA/μs~8.4 x N ⁻¹ μA/μs
0.84 x N ⁻¹ μA/μs~8.4 x N ⁻¹ μA/μs
0.084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.4.00mA/μs
0.0084 mA/μs~8.400mA/μs
0.0084 mA/μs~8.400mA/μs
0.0084 mA/μs~8.800mA/μs
0.0084 mA/μs~8.800mA/μs
0.0084 mA/μs~8.800mA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T
N/A
±(1.2% of rdg +1.1% of f.s.)T
N/A
N/A
± 100ppm of setting
N/A
N/A
N/A
+0.4%F.S. | | | | Voltmeter Ammeter Ammeter(Parallel Operation) DYNAMIC MODE Operation Mode T1 & T2 Accuracy Slew Rate (CC Mode) Slew Rate (CR Mode) Current Accuracy PROTECTION FUNCTION Functions GENERAL Input Range | Accuracy
Accuracy | H
M
L
H | 0.5 × N μA
140 × N μA
140 × N μA
140 × N μA
50 × N πA
14 × N μA/μs -140 × N μA/μs
50 × N πA
1.4 × N μA/μs -14 × N μA/μs
0.14 × N μA/μs -1.4 × N μA/μs
0.14 × N μA/μs -1.4 × N μA/μs
±(0.1 % of rdg + 0.1 % of f.s.)
±(0.2 % of rdg + 0.3 % of f.s.)
±(0.2 % of rdg + 1.1% of f.s.)
CC, CR, CP
0.025ms~10ms/Res: 1 μs; 10
± 100ppm of setting
0.140mA/μs-14.00mA/μs
0.014mA/μs~140.00μA/μs
0.014mA/μs~140.00mA/μs
0.014mA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs
0.1400μA/μs~1.4000mA/μs | 2.8 x N ⁻¹⁰ mA/μs-28 x N ⁻¹⁰ mA/μs 1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ mA/μs 0.1 x N ⁻¹⁰ μA 280 x N ⁻¹⁰ μA/μs-280 x N ⁻¹⁰ μA/μs 10 x N ⁻¹⁰ μA 10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ μA 10 x N ⁻¹⁰ μA/μs-28 x N ⁻¹⁰ μA/μs 1 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 2.8 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.28 x N ⁻¹⁰ μA/μs-2.8 x N ⁻¹⁰ μA/μs 0.028 mA/μs-28.00 mA/μs 2.800 μA/μs-28.00 mA/μs 2.800 μA/μs-28.00 mA/μs 2.8μA/μs-2.800 mA/μs 0.028 mA/μs-28.00 mA/μs 10.028 mA/μs-28.00 mA/μs 2.8μA/μs-2.800 mA/μs 2.8μA/μs-2.800 mA/μs 0.28 mA/μs-28.00 mA/μs-28 mA/μs 0.02 0. | 8.4 x N ⁻¹ mA/μs-84 x N ⁻¹ mA/μs 3 x N ⁻¹ μA 40 x N ⁻¹ μA 410 x N ⁻¹ μA/μs-8.4 x N ⁻¹ mA/μs 0.3 x N ⁻¹ μA 41 x N ⁻¹ μA/μs-8.40 x N ⁻¹ μA/μs 30 x N ⁻¹ μA 50 x N ⁻¹ μA 50 x N ⁻¹ μA/μs-84 x N ⁻¹ μA/μs 30 x N ⁻¹ μA 0.84 x N ⁻¹ μA/μs-8.4 x N ⁻¹ μA/μs 0.84 x N ⁻¹ μA/μs-8.4 x N ⁻¹ μA/μs 0.84 x N ⁻¹ μA/μs-8.4 x N ⁻¹ μA/μs 0.084 mA/μs-8.4.00mA/μs 0.084 mA/μs-8.400mA/μs 0.0084 mA/μs-8.400mA/μs 0.0084 mA/μs-8.400mA/μs 0.0084 mA/μs-0.8400 mA/μs | ±(0.1 % of rdg + 0.1 % of f.s)T N/A ±(1.2% of rdg + 1.1% of f.s.)T N/A N/A ±100ppm of setting N/A N/A ±0.4%F.S. | | | | Victor V | SPECIFICATION | ONS | | | | | | | | | | |--|--|----------|--------|--|--|---|--|--|---|--|---| | Current | | ONS | | PEL-3212H | PEL-3323H | PEL-3424H | PEL-3535H | PEL-3322H | PEL-3533H | PEL-3744H | PEL-3955H | | Operating Ranger M.H.J. | Voltage
Current
Power
Input Resistance
Min. Operating
Voltage(DC)(Typ.) | | | 0V~800V
0~105A
2100W
1.62MΩ
5V@105A | 0V~800V
0~157.5A
3150W
1.08MΩ
5V@157.5A | 0V~800V
0~210A
4200W
0.81MΩ
5V@210A | 0V~800V
0~262.5A
5250W
0.648MΩ
5V@262.5A | 0V~800V
0~157.5A
3150W
3.24MΩ
5V@157.5A | 0V~800V
0~262.5A
5250W
3.24MΩ
5V@262.5A | 0V~800V
0~367.5A
7350W
3.24MΩ
5V@367.5A | 0V~800V
0~472.5A
9450W
3.24MΩ
5V@472.5A | | Recursion M.M. | | | \neg | 0.1054 0.1054 0.1054 | 0. 157 54 0. 15 754 0. 1 5754 | 0.2104 0.214 0.214 | 0. 262 54 0. 26 254 0. 2 6254 | 0. 157 50 0. 15 750 0. 1 5750 | 0. 262 54 0. 26254 0. 2 6254 | 0. 367 54 0. 36 754 0. 3 6754 | 0. 472 50 0. 47 250 0. 4 705 | | March Composition March Composition Service Composition Service Composition Service Se | | - | - | | | | U-262.5A U-26.25A U-2.625A | U-15/.5A U-15/.5A U-1.5/5A | U-262.3A U-26.23A U-2.623A | U-36/.5A U-36./5A U-3.6/5A | U-4/2.5A U-4/.25A 0-4,725 | | Heap 12 / 26 / 26 / 27 / 27 / 27 / 27 / 27 / 2 | Resolution | - | _ | | 1 1 | | 10mA 1mA 0.1mA | 6mA 0.6mA 0.06mA | 10mA 1mA 0.1mA | 14mA 1.4mA 0.14mA | 18mA 1.8mA 0.18m | | Barge M | Operating Range ^{*4} | | н | (47.619mΩ~ | | (23.8095mΩ~ | (19.0476mΩ~ | | (19.0476mΩ~ | (13.6054mΩ~ | (10.582mΩ~ | | Control Cont | | Range | м | (476.19mΩ~
27.778kΩ) | (317.46mΩ~
18.5185kΩ) | (238.095mΩ~
13.8889kΩ) | (190.476mΩ~
11.1111kΩ) | (317.46mΩ~
18.5185kΩ) | (190.476mΩ~
11.1111kΩ) | (136.054mΩ~
7.93651kΩ) | (105.82mΩ~
6.17284kΩ) | | Reader March Supple Su | | | L | (4.7619Ω~ | (3.1746Ω~ | (2.38095Ω~ | (1.90476Ω~ | (3.1746Ω~ | (1.90476Ω~ | (1.36054Ω~ | (1.0582Ω~ | | Constant Voltace Mode | , , | H,M | _ | | , ,, | | | 22.55 | | | | | Poperating Range Range II 20-02 % of set + 0.2 % of fs | 111777 | CE MOS | - | 360μS 36μS 3.6μS | 540μS 54μS 5.4μS | 720μS 72μS 7.2μS | 900μS 90μS 9μS | 540μS 54μS 5.4μS | 900μS 90μS 9μS | 1.26mS 126μS 12.6μS | 1.62mS 162µS 16.2µ | | Accuracy of Setting Range 14, 1, 20 × 6 cs + 0.2 % of f.s | | | н | 7.1 | | | | | | | | | Range Rang | | _ | | | | | | | | | | | Constant Provers Mode | , 8 | - | - | | 6 of f.s) | | | | | | | | Comparison Range | 157.447.04 | | | z0mV/2mV | | | | | | | | | Recolation Resolution Resolution 200mw 20mw 20mw 30mw | | | Н | 21W~210W | 31.5W~315W | 42W~420W | 52.5W~525W | 31.5W~315W | 52.5W~525W | 73.5W~735W | 94.5W~945W | | Resolution | | | _ | - Ch | | | | | 5.25W~52.5W | 7.35W~73.5W | 9.45W~94.5W | | PARALLEL Mode | , , | н,м | _ | <u> </u> | | | | | F00-14/ F0-14/ F-14/ | 700-14/ 70-14/ 7-14/ | 000-14/100-14/10-14 | | SEEW RATE | | | | 200mW 20mW 2mW | 300mW 30mW 3mW | 400mW 40mW 4mW | 500mW 50mW 5mW | 300mW 30mW 3mW | S00mW S0mW SmW | /00mW /0mW /mW | 900mW 90mW 9mW | | CC | Capacity | | | - | - | - | - | - | - | - | - | | | | - | | CC, CR | Setting Range (CR Mode) Range H 168 jk / jus-8 4 m / jus 252 jk / jus-8 3 3 7 m / jus 3 36 jk / jus-8 4 m / jus 420 jk / jus-8 4 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252 jk / jus-8 3 3 7 m / jus 252
jk / jus-8 3 3 7 m / jus 252 jk / jus-8 4 0 m / jus 252 jk / jus-8 4 0 m / jus 25 | | Range | М | 168μA/μs~84mA/μs | 252μA/μs~83.97mA/μs | 336μA/μs~84mA/μs | 420μA/μs~84mA/μs | 252μA/μs~83.97mA/μs | 420μA/μs~84mA/μs | 588μA/μs~84mA/μs | 7.56mA/µs~839.7mA/µ:
756µA/µs~83.97mA/µs | | CR Mode Range M 16.8 µA µs - 8.4 mA µs 25.2 | | 3 | _ | 1 11 | | | | | | | | | Carrety of Setting H.M. \(\frac{1}{2} \) \ | | Range | - | | | | | | | | 200,000 | | Control (Setting Range) | (| | L | 1.68μΑ/μς~840μΑ/μς | | | - CT- 1700000000 - 10000 | | | | 7.56µA/µs~839.7µA/µs | | 186mA/µs=840mA/µs 60µA 120µA 130mA/µs=840mA/µs 120µA | Accuracy of Setting" | H,M | ,L | ±(10 % of set + 25μs) | | | | | | | | | Signar 1.68mA/µs - 1.68mA/µs - 2.52mA/µs 2.52mA/ | | | | 168mA/μs840mA/μs
60μA | 252mA/μs842.4mA/μs
90μA | 336mA/μs-840mA/μs
120μA | 420mA/μs-840mA/μs
150μA | 252mA/μs-842.4mA/μs
90μA | 420mA/μs-840mA/μs
150μA | 588mA/μs-840mA/μs
210μA | 756mA/μs-842.4mA/μs
270uA | | O.0168mA/μs0.168mA/μs O.0252mA/μs0.252mA/μs O.0356mA/μs0.356mA/μs O.0356mA/μs0.252mA/μs O.0252mA/μs0.252mA/μs O.0252mA/μs0.252mA/μs O.0252mA/μs0.0252mA/μs O.0058mA/μs0.0366mA/μs O.0366mA/μs0.0366mA/μs O.0036mA/μs0.0366mA/μs O.0036mA/μs0.0366mA/μs O.0036mA/μs0.0366mA/μs O.0036mA/μs0.0356mA/μs O.0036mA/μs | | | | 1.68mA/μs—16.8mA/μs
600nA
0.168mA/μs—1.68mA/μs | 2.52mA/μs-25.2mA/μs
900nA
0.252mA/μs-2.52mA/μs | 3.36mA/µs-33.6mA/µs
1.2µA
0.336A/µs-3.36mA/µs | 4.2mA/μs-42mA/μs
1.5μA
0.42mA/μs-4.2mA/μs | 2.52mA/μs-25.2mA/μs
900nA
0.252mA/μs-2.52mA/μs | 4.2mA/μs—42mA/μs
1.5μA
0.42mA/μs—4.2mA/μs | 5.88mA/μs-58.8mA/μs
2.1μA
0.588mA/μs-5.88mA/μs | 7.56mA/μs-75.6mA/μs
2.7μA
0.756mA/μs-7.56mA/μ | | Meter Accuracy ± (0.1 % of rdg + 0.1 % of f.s) | | | | 0.0168mA/μs-0.168mA/μs
6nA | 0.0252mA/μs~0.252mA/μs
9nA | 0.0336mA/μs-0.336mA/μs
12nA | 0.042mA/μs0.42mA/μs
15nA | 0.0252mA/μs~0.252mA/μs
9nA | 0.042mA/μs0.42mA/μs
15nA | 0.0588mA/μs~0.588mA/μs
21nA | 0.0756mA/μs0.756mA/μ
27nA | | Operation Mode T1 & T2 CC and CR 0.025ms-10ms/Res : 1μs ; 10ms-30s/Res : 1ms 1μs/1ms ± 100ppm 1.68μA/μs-840mA/μs 2.52μA/μs-839.7mA/μs 3.36μA/μs-840mA/μs 4.2mA/μs-840mA/μs 2.52μA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-840μA/μs 4.2mA/μs-840μA | METER | | | | | | | | | | | | Operation Mode T1 & T2 CC and CR 0.025ms-10ms/Res : 1μs ; 10ms-30s/Res : 1ms 1μs/1ms ± 100ppm 1.68μA/μs-840mA/μs 2.52μA/μs-839.7mA/μs 3.36μA/μs-840mA/μs 4.2mA/μs-840mA/μs 2.52μA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 4.2mA/μs-840μA/μs 4.2mA/μs-840μA | | | | ±(0.1 % of rdg + 0.1 9 | % of f.s) | | | | | | | | 1 | | , .ccura | -/ | <u> </u> | , o on 1.3] | | | | | | | | H 1.68mA/μs-840mA/μs 252mA/μs-839.7mA/μs 3.36mA/μs-840mA/μs 4.2mA/μs-840mA/μs 252μA/μs-839.7mA/μs 3.36mA/μs-840mA/μs 4.2mA/μs-840mA/μs 252μA/μs-83.97mA/μs 4.2mA/μs-840mA/μs 252μA/μs-83.97mA/μs 4.2mA/μs-84mA/μs 252μA/μs-83.97mA/μs 4.2mA/μs-84mA/μs 252μA/μs-83.97mA/μs 4.2mA/μs-84mA/μs 4.2mA/μs-84mA/μs 4.2mA/μs-84mA/μs 4.2mA/μs-84mA/μs 4.2mA/μs-84mA/μs 5.88mA/μs-84mA/μs 5.88mA/μs-84mA/μs 7.56mA/μs-83.97mA/μs 4.2mA/μs-84mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.3.97mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs 4.2mA/μs-8.4mA/μs | T1 & T2 | | | 0.025ms~10ms/Res : | 1μs ; 10ms~30s/Res | : 1ms | | | | | | | CC Mode Range M 168μA/μs-84mA/μs 252μA/μs-83.97mA/μs 336μA/μs-84mA/μs 420μA/μs-84mA/μs 252μA/μs-8.3.97mA/μs 420μA/μs-8.4mA/μs 252μA/μs-8.3.97mA/μs 420μA/μs-8.4mA/μs 252μA/μs-8.3.97mA/μs 420μA/μs-8.4mA/μs 252μA/μs-8.3.97mA/μs 420μA/μs-8.4mA/μs 252μA/μs-8.3.97mA/μs 42μA/μs-8.4mA/μs 258μA/μs-8.4mA/μs 258μA/μs-8.4mA/μ | • | | н | | 2.52mA/µs~839.7mA/µs | 3.36mA/μs~840mA/μs | 4.2mA/μs~840mA/μs | 2.52mA/µs~839.7mA/µs | 4.2mA/μs~840mA/μs | 5.88mA/μs~840mA/μs | 7.56mA/µs~839.7mA/µ | | H 168μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 336μΑ/μs-8.4mA/μs 420μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 420μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 420μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 420μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 420μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 42μΑ/μs-8.4mA/μs 252μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 42μΑ/μs-8.4mA/μs 252μΑ/μs-8.4mA/μs 252μΑ/μs-8.4mA/μs 252μΑ/μs-8.4mA/μs 252μΑ/μs-8.397mA/μs 42μΑ/μs-8.4mA/μs 252μΑ/μs-8.4mA/μs | | Range | | | 252μA/μs~83.97mA/μs | 336μA/μs~84mA/μs | 420μA/μs~84mA/μs | 252μA/μs~83.97mA/μs | 420μA/μs~84mA/μs | | 756μA/μs~83.97mA/μs | | CR Mode Range M 16.8μλ/μs - 8.4mλ/μs 25.2μλ/μs - 8.397mλ/μs 33.6μλ/μs - 8.4mλ/μs 42.μλ/μs - 8.4mλ/μs 25.2μλ/μs - 8.397mλ/μs 42.μλ/μs - 8.4mλ/μs 25.2μλ/μs - 8.397mλ/μs 42.μλ/μs - 8.4mλ/μs 25.2μλ/μs - 8.397mλ/μs 42.μλ/μs - 8.40μλ/μs 5.88μλ/μs - 8.40μλ/μs 7.56μλ/μs - 8.397mλ/μ 7.56μλ/μs - 8.397mλ/μs 42.μλ/μs - 8.40μλ/μs 42.μλ | cl p | S . | | | | | | | 70.0000 4000 1000 | | | | Current Accuracy ±0.4%F.S. | | Range | - | | | | 10.71 | | | | 75.6µA/µs~83.97mA/µ
75.6µA/µs~8.397mA/µ | | PROTECTION FUNCTION Functions Overvoltage protection(OVP), Overcurrent protection(OCP), Overpower protection(OPP), Overheat protection(OHP), | \$2 | 83 | L | 1.68μΑ/μς~840μΑ/μς | 2.52μΑ/μς~839.7μΑ/μς | 3.36μΑ/μς~840μΑ/μς | 4.2μΑ/μς~840μΑ/μς | 2.52μΑ/μς~839.7μΑ/μς | 4.2μΑ/μς~840μΑ/μς | 5.88μΑ/μς~840μΑ/μς | 7.56μΑ/μς~839.7μΑ/μς | | Functions Overvoltage protection(OVP), Overcurrent protection(OCP), Overpower protection(OPP), Overheat protection(OHP), | | 2 | | ±0.4%F.S. | | | CTION | | 0 | H (O) (D) C | | CD) O | | | OLID) | | | 1995 ACM SECTION AND ACCOUNT OF A STATE | *01.895.7354.95 W | | | | | | | otection(OPP), Ov | erheat protection(| OHP), | | | GENERAL 1901/4 | | | | 90VAC, 122VAC/180V | /AC_250\/AC Single = | hase: 47U= 62U= | | | | | | | Input Range | Power(Max.) | | | 380VA | 570VA | 760VA | 950VA | 420VA | 650VA | 880VA | 1110VA | | Dimensions & Weight | | rht | 1 | 79-31 H1 79 9-3-11 11 | 75000 | F 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 598(W)x877(H)x | 598(W)x877(H)x | 598(W)x877(H)x | 598(W)x877(H)x | 598(W)x877(H)x | #### Note: - *1. Full scale of H range - *2. Vin: input terminal voltage of electronic load - *3. M range applies to the full scale of H range - *4. Siemens[S] = Input current[A] / Input voltage[V] = $1/\text{resistance}[\Omega]$ - *5. Converted value at the input current. At the input current. It is not applied for the condition of the parallel operation. - *6. set = Vin/Rset - *7. At the sensing point during remote sensing under the operating range of the input voltage. It is also applied for the condition of the parallel operation. *8. It is not applied for the condition of the parallel operation. - *9. Time to reach from 10 % to 90 % when the current is varied from 2 % to 100 % (20 % to 100 % in M range) of the rated current. *10. N = Number of units in parallel (same model) - *11. N = Number of units in parallel (same model) or N = 1 + 2 x (Number of units in parallel [PEL-3211]) | . 11434 - 1455
<u>- 114</u> | | , | | | | | | | | | |--------------------------------
---|--|-----------------------------------|--|--|--|--|--|--|--| | 1 | ORDERING INF | ORMATION | | | | | | | | | | PEL-3021 | (150V/35A/175W) Single-Channel Programmable DC Electronic Load | | | | | | | | | | | PEL-3041 | , , , , , , | (150V/70A/350W) Single-Channel Programmable DC Electronic Load | | | | | | | | | | PEL-3111 | | (150V/210A/1050W) Single-Channel Programmable DC Electronic Load | | | | | | | | | | PEL-3211
PEL-3021F | | (150V/420A/2100W) 2100W Booster for PEL-3111 only | | | | | | | | | | PEL-30211 | | (800V/8.75A/175W) Single-Channel Programmable DC Electronic Load | | | | | | | | | | PEL-30411 | (out 1) the state of | | | | | | | | | | | PEL-3111F | | | | | | | | | | | | . 22-32111 | (0001/103A/2100W) 2100W BOOSTEI IOI PEL-3111H Olly | | | | | | | | | | | ACCESSORIE | S: | | | | | | | | | | | • | Guide, CD(User Manual/Programming Manual), Power Cord | | e Link Cable 300mm | | | | | | | | | | ad Input Terminal Cover PEL-012 Terminal Fittings Kits PEL-014 J1/J2 Protection Plug | Front Terminal | Washers | | | | | | | | | OPTIONAL | ACCESSORIES | | | | | | | | | | | CR123A | 3V Lithium Battery for Clock. | PEL-004 | GPIB Option | | | | | | | | | GRA-413 | Rack Mount Bracket for Booster PEL-3211 (H) (EIA+JIS) | PEL-005 | | | | | | | | | | GRA-414-E | | PEL-006 | connect cu i lute | | | | | | | | | GRA-414-J | Rack Mount Frame for PEL-3021 (H), PEL-3041 (H), PEL-3111 (H)/JIS | | Connect Cu Plate | | | | | | | | | GTL-120
GTL-248 | Test Lead (Max. 40A)
GPIB Cable, 2.0m | PEL-008 | Connect Cu Plate Connect Cu Plate | | | | | | | | | GTL-248 | USB Cable Type A- Type B | | LAN Card | | | | | | | | | PEL-010 | Dust Filter | | Diff Card | | | | | | | | | FREE DOW | NLOAD | | | | | | | | | | | Driver | LabView Driver | | | | | | | | | | PEL-3111H PEL-3211H PEL-3041H #### **Rear Panel** GRA-413 Rack Mount Kit (EIA+JIS) For : PEL-3211 (H) GRA-414-J Rack Mount Kit (JIS) For: PEL-3021/3021H/3041/3041H/3111/3111H GRA-414-E Rack Mount Kit (EIA) For: PEL-3021/3021H/3041/3041H/3111/3111H #### PEL-3031AE #### PEL-3032AE #### **FEATURES** - * 0~150V(PEL-3031AE)Min. Operating Voltage(dc): 1V at 60A, 0.5V at 30A 0~500V(PEL-3032AE)Min. Operating Voltage(dc): 2.5V at 15A, 1.25V at 7.5A - * 7 Operating Modes : CC, CV, CR, CP, CC+CV, CR+CV, CP+CV - * Normal Sequence Function: Max Steps: 1000 steps/Step Time:1ms~999h 59min 59s(3599940 sec)Fast Sequence Function: Max Steps:1000 steps/Step Time:25us~600ms - * Soft Start - * BATT Test Automation:Max Test Time:999h: 59min 59s(3599940 sec):Max Test AH:9999.99Ah - * OCP, OPP Test Automation - * Max. Slew Rate: 2.5A/µs - * Dynamic Mode - * Protection: OVP, OCP, OPP, OTP, RVP, UVP - * Remote Sense - * Integrate Voltage, Current and Power Measurement Functions - * External Voltage or Resistance Control - * Rear Panel BNC, Trigger IN/OUT - * Analog External Control - * Interfaces: LAN/USB/RS-232 & RS-485(Std.), GPIB(Opt.) GW Instek launches new PEL-3000AE Series programmable single-channel electronic load. In the series, PEL-3031AE provides 300W (1V~150V/60A) and PEL-3032AE provides 300W (2.5V~500V/15A) current sink capability. Inherited from the PEL-3000A Series, PEL-3000AE has an easy-to-read LCD panel and user-friendly interface. This model features high speed and accurate measurement capability for electronic component, battery, portable charger and power products that require low to medium power consumption. The PEL-3000AE Series is designed for current sink operation starting from 60mA and aims at measurement applications, including charger, adapter, various power supply equipment, and portable charger. The PEL-3000AE Series has seven operating modes. Among them, four basic operating modes are constant current, constant voltage, constant resistance, and constant power. Three other combined operating modes are constant current + constant voltage, constant resistance + constant voltage, constant power + constant voltage. Users can select operating modes based upon products' test requirements. For C.C. mode, electronic load will sink a constant current according to the set current value; for C.V. mode, electronic load will attempt to sink sufficient current to control the source voltage to the programmed value; for C.R. mode, electronic load will sink a current linearly proportional to input voltage according to the set resistance value; for C.P. mode, electronic load will initiate load power sinking operation (load voltage x load current) in accordance with the programmed To meet the requirements of different test conditions, the Static function is to sink a constant current; the Dynamic function is to periodically switch between two sink conditions, and the Sequence function is to provide tests for more than two sink conditions. The sequence function can be divided into Normal Sequence and Fast Sequence. Normal Sequence is the most flexible mean of generating complex sequences that can facilitate users to establish a set of changing current sink conditions based upon different sinking conditions (CC, CR, CV or CP mode) and time(adjustable range: 1ms to 999h 59min 59s). Fast sequence allows time resolution of 25us to be set for the smallest step. Setting parameters for multiple steps can simulate consecutive current changes of various real load conditions. For instance, while using an electronic load to test a power-driven tool's power supply, we can first obtain waveforms by an oscilloscope and a current probe from the tool, and subsequently, use the obtained waveforms to edit simulated current waveforms, via electronic load's sequence function, to test the power-driven tool and to analyze its operational status. The Soft Start function allows users to determine the rise time of current sink that is to decide the required time to reach electronic load's set current, resistance or power value. Setting a proper rise time for Soft Start is effective to counter output voltage by DUT's (power supply) transient output current. It is worth noting, General DC loads do not have the soft start function. When conducting high speed current sink operation, the inductance effect on the cable connecting electronic load and DUT will lead to transient voltage drop on electronic load's input terminal, therefore, that will result in Voltage Non-monotonic increase. PEL-3000AE's soft start function not only allows output voltage to be Monotonic increase, but also prevents inrush current and surge voltage from happening on DUT. For instance, tests using a power supply, LED and a DC load (activate the soft start function) can prevent inrush current and surge voltage from causing damages on LED. The built-in BATT Test Automation of PEL-3000AE Series provides battery discharge applications with more flexible discharge stop setting as well as rise and fall Slew Rate for discharge current settings. OCP, OPP test Automation for DUT (ex. Power Supply), provide users with high resolution measurement values to verify DUT's activation point. Provide users with measurement results so as to help them determine whether DUT's actual over protection activation point meets the regulations. Other than that, PEL-3000AE provides users with analog control terminal to control PEL-3000AE Series from external voltage, external resistance and switch. Analog control terminal can also monitor electronic load's status and display protective alarms. | Model | PEL-3031AE | | PEL-3032AE | | | |-----------------------------|---------------------------------------|-------------------------------------|--|-------------------------------------|--| | Power | 300W | 300W | 300W | 300W | | | Range | Low | High | Low | High | | | Voltage | 0 ~ 150V | 0 ~ 150V | 0 ~ 500V | 0 ~ 500V | | | Current | 0 ~ 6A | 0 ~ 60A | 0 ~ 1.5A | 0 ~ 15A | | | Min. Operating Voltage(dc) | 1V ~ 6A | 1V ~ 60A | 2.5V ~ 1.5A |
2.5V ~ 15A | | | STATIC MODE | | | | | | | Constant Current Mode | | | | 8. | | | Range | 0 ~ 6A | 0 ~ 60A | 0~1.5A | 0 ~ 15A | | | Setting Range | 0 ~ 6.12A | 0 ~ 61.2A | 0~1.53A | 0 ~ 15.3A | | | Resolution | 0.2mA | 2mA | 0.05mA | 0.5mA | | | Accuracy | (T*1)±(0.1% of set | $(T^{*1})\pm(0.1\% \text{ of set}$ | (T*1)±(0.1% of set | $(T^{*1})\pm(0.1\% \text{ of set}$ | | | | +0.1% of FS)+ | +0.2% of FS)+ | +0.1% of FS)+ | +0.2% of FS)+ | | | | Vin/500kΩ | Vin/500kΩ | Vin/500kΩ | Vin/500kΩ | | | | (Full scale of High range) | (Full scale of High range) | (Full scale of High range) | (Full scale of High rang | | | Constant Resistance Mode | | | | | | | Range | 60S~0.002S(0.01666Ω~500Ω) (300W/15V) | | 6S~0.0002S(0.16666Ω~5kΩ)(300W/50V) | | | | Mark Control | 6S~0.0002S(0.1666Ω~5kΩ) (300W/150V) | | 0.65~0.00002S(1.6666Ω~0kΩ)(300W/500V | | | | Setting Range | 60S~0.002S (0.01666Ω~50ÓΩ) (30ÓW/15V) | | 6S~0.0002S(0.16666Ω~5kΩ)(300W/50V) | | | | | 6S~0.0002S(0.1666Ω | | 0.65~0.000025(1.6666 | | | | Resolution (30000 Steps) | 0.002S(15V); 0.0002S(150V) | | 0.0002S(50V); 0.00002S(500V) | | | | Accuracy | $(T^{*1})\pm(0.3\% \text{ of set } +$ | 0.6S) + 0.002mS | $(T^{*1})\pm(0.3\% \text{ of set} + 0.06S) + 0.002r$ | | | | Constant Voltage Mode | | | 7. | | | | Range | 1 ~ 15V | 1 ~ 150V | 2.5 ~ 50V | 2.5 ~ 500V | | | Setting Range | 0 ~ 15.3V | 0 ~ 153V | 0 ~ 51V | 0 ~ 510V | | | Resolution | 0.5mV | 5mV | 1mV | 10mV | | | Accuracy | $(T^{*1})\pm(0.1\% \text{ of set+}$ | $(T^{*1})\pm(0.1\% \text{ of set}+$ | $(T^{*1})\pm(0.1\% \text{ of set+}$ | $(T^{*1})\pm(0.1\% \text{ of set+}$ | | | | 0.1% of FS) | 0.1% of FS) | 0.1% of FS) | 0.1% of FS) | | | Constant Power Mode | (Full scale of High range) | (Full scale of High range) | (Full scale of High range) | (Full scale of High rang | | | constant romer mode | 0\\\ 20\\\\6\\ | 011/ 2001///6041 | OVY 20VY/7 FAV | 017/ 20017/7541 | | | Range | 0W ~ 30W(6A)
0W ~ 30.6W | 0W ~ 300W(60A)
0W ~ 306W | 0W ~ 30W(1.5A)
0W ~ 30.6W | 0W ~ 300W(15A)
0W ~ 306W | | | Setting Range
Resolution | 0W ~ 30.6W
1mW | 0W ~ 306W
10mW | 0W ~ 30.6W | 0W ~ 306W
10mW | | | Resolution | IIIIW | TOTTIW | IIIIW | TOTAW | | ### PEL-3032AE | SPECIFICATIONS | | | | | | |---|--|--|--|--|--| | Model | PEL-3031AE | | PEL-3032AE | | | | DYNAMIC MODE | | | | | | | General
T1& T2 | 0.05ms~30ms/Res:1µs;30ms~30s/Res:1ms | | 0.05ms~30ms/Res:1µs;30ms~30s/Res:1m | | | | Accuracy
Slew Rate(Accuracy 10%)
Slew Rate Resolution
Slew Rate Accuracy of
Setting | 1μs/1ms±200ppm
0.001 ~ 0.25A/μs
0.001A/μs
±(10% + 15μs) *1T | 1μs/1ms±200ppm
0.01 ~ 2.5A/μs
0.01A/μs
ime to reach from 10 % to
% to 100 % in L range) of | 1μs/1ms±200ppm
0.25 ~ 62.5mA/μs
0.25mA/μs
90 % when the current is v | 1μs/1ms±200ppm
2.5 ~ 625mA/μs
2.5mA/μs
aried from 2 % to 100 % | | | Constant Current Mode
Current
Setting Range
Current Resolution
Current Accuracy | 0 ~ 6A
0 ~ 6.12A
0.2mA
±0.8% FS | 0 ~ 60A
0 ~ 61.2A
2mA
±0.8% FS | 0 ~ 1.5A
0 ~ 1.53A
0.05mA
±0.8% FS | 0 ~ 15A
0 ~ 15.3A
0.5mA
±0.8% FS | | | Constant Resistance Mode
Range
Setting Range | 60S~0.002S(0.01666Ω~500Ω)(300W/15V)
6S~0.0002S(0.1666Ω~5kΩ)(300W/150V)
60S~0.0002S(0.01666Ω~5kΩ)(300W/15V)
60S~0.0002S(0.01666Ω~500Ω)(300W/15V)
6S~0.0002S(0.16666Ω~5kΩ)(300W/15V) | | | Ω~50kΩ) (300W/500V)
2~5kΩ) (300W/50V) | | | Resistance Resolution
Resistance Accuracy | 30000 steps
(T*1)±(1%set + 0.6S | 0.65 -0.00002 $(0.666$ -0.0000 $(0.65$ -0.0000 $(0.666$ -0.000 -0.000 $(0.666$ -0.00 | | | | | MEASUREMENT | () () | | , , , | , | | | Voltage Readback
Range
Resolution
Accuracy | 0 ~ 15V
0.5mV
(T*1)±(0.1% of rdg
+0.1% of FS)
(Full scale of Low range) | 0 ~ 150V
5mV
(T*1)±(0.1% of rdg
+0.1% of FS)
(Full scale of High range) | 0 ~ 50V
2mV
(T*1)±(0.1% of rdg
+0.1% of FS)
(Full scale of Low range) | $0 \sim 500V$
20mV
$(T^{+1})\pm(0.1\% \text{ of rdg}$
+0.1% of FS)
(Full scale of High range) | | | Current Readback
Range
Resolution
Accuracy | 0 ~ 6A
0.2mA
(T*1)±(0.1% of rdg+
0.1% of FS)
(Full scale of High range) | $0 \sim 60A$
2mA
$(T^*1)\pm(0.1\% \text{ of rdg}+$
0.2% of FS)
(Full scale of High range) | $0 \sim 1.5A$
0.05mA
$(T^{*1})\pm(0.1\% \text{ of rdg}+$
0.1% of FS)
(Full scale of High range) | 0 ~ 15A
0.5mA
(T*1)±(0.1% of rdg+
0.2% of FS)
(Full scale of High range) | | | Power Read back H&L Range
CP Mode L Range | 0 ~ 300W
0 ~ 30W | | | FUNCTION | | | | | | | Sequence(Normal/Fast) | Normal sequence function: Max steps: 1000 steps/Step time: 1ms ~ 999h 59min 59s (3599940 sec) Fast sequence function: Max steps: 1000 steps/Step time: 25us ~ 600ms | | | | | | BATT Test Automation Test Function Soft Start In/Out Terminal Preset Data Protection | Max test time: 999h: 59m: 59s(3599940sec); Max test AH: 9999.99Ah OCP Autotest function, OPP Autotest Function Yes Analog External Control, Current Monitor Output, Trigger In/Out Terminal (BNC) 10 Sets OCP, OPP, UVP, OVP, OTP, RVP | | | | | | OTHER | | | | | | | Power Source
Interface
Dimensions & Weight | | 240VAC, 47 ~ 63Hz
RS-485(Std.), GPIB(Op
x 400.5(D)mm, Approx | | | | Note : *1 - If the ambient temperature is over 30 °C or below 20 °C, then T = \pm | t - 25 °C | x 100ppm/°C x Set If the ambient temperature is in the range of
20°C-30°C, then T = 0 (t is the ambient temperature) #### ORDERING INFORMATION PEL-3031AE PEL-3032AE 150V/60A/300W Programmable Single-channel DC Electronic Load SOOV/15A/300W Programmable Single-channel DC Electronic Load ACCESSORIES : Power Cord (Region dependent), Front Terminal Washers-spring Washer (M6) x 2, GTL-105A Remote Sense Cables (Red x 1, Black x 1) #### OPTIONAL ACCESSORIES | USB cable, Type A – Type B | GTL-262 | RS-485 Slave cable | |---|-----------|---------------------| | GPIB cable, 2.0m | GRA-414-J | Rack Mount Kit(JIS) | | RS-232 Cable with Db9 connector to RJ45 | | Rack Mount Kit(EIA) | | RS-485 Cable with DB9 connector to RJ45 | PEL-010 | Dust Filter | | Serial Master Cable+Terminator, 0.5M | PEL-004 | GPIB option | #### **Rear Panel** #### PEL-010 Dust Filter PEL-004 GPIB Option GRA-414-J Rack Mount Kit (JIS) GRA-414-E Rack Mount Kit (EIA) GTL-259 GTL-260 GTL-261 GTL-262 #### A. OPERATING MODE The PEL-3000AE series provides four fundamental operating modes and three add-on modes of CC, CR and CP separately combining with CV. Users can set different load condition under different operating modes such as setting operating range for load level, Current Slew Rate, input voltage and load current. The input voltage Under constant current mode, electronic load will sink the amount of current users has set. Different current settings via CC mode allow users to test the voltage changes of DC power supply which is called load regulation rate test. Under constant voltage mode, electronic load will sink sufficient current to regulate the voltage source to the set value. This mode allows users not only to test current limit function of power supply, but also to simulate battery operation in testing battery chargers. range has two levels - high and low. The load current operating range has two levels - high and low current levels which possess different resolution to meet test requirements of different power product specifications. Under constant resistance mode, electronic load will sink load current, which is linearly direct proportion to input voltage. This mode can be utilized in testing voltage or the activation and current limit of power supply. Under constant power mode, electronic load will sink load current, which is indirect proportion to input voltage to reach preset constant power requirement. Hence, the changes of input voltage will have indirect proportion effect on current sinking so as to reach constant power control. +CV mode can be selected under CC, CR or CP mode. When +CV mode function is turned on and electronic load sinks more current than the maximum current of power supply under test, electronic load will automatically switch to CV mode. It is because that the current sunk is the maximum current of power device. Therefore, power supply will switch to CC mode and PEL-3000AE will switch to CV mode to limit electronic load from sinking the total current of power supply so as to prevent power supply under test from damaging. Electronic load will cease operation once the voltage of DUT is lower than the set voltage under + CV mode. #### B. STATIC/DYNAMIC/SEQUENCE MODE | Operation | a | Dynamic | Sequence | | | | |----------------------------------|----------------------------|---|---|---|--|--| | Function | Static Dynamic | | Fast | Normal | | | | Operating Condition
Selection | Single fixed condition | Selection between two conditions | Selection from more than two conditions | Selection from more than two conditions | | | | Operating Modes | All modes | Two conditions using same mode Support CC or CR mode | Each condition must use same mode Support CC or CR mode | Each condition is able to be used in different mode All modes | | | | Adjustable Condition
Setting | Value A/ Value B Slew Rate | Level 1/Level 2 Timer 1/Timer 2 Slew Rate 1/Slew Rate 2 | Level | Level | | | | Sequence Step
Combination | N/A | N/A | • 1 Sequence • 25µs/step
• 1,000 steps | • 10 Sequence • 1ms/step
• 1,000 steps | | | | Other Functions | N/A | Trigger Out function | Trigger Out function | Trigger Out function Ramp function | | | The PEL-3000AE Series, according to different test conditions, step or continuous changes, test speeds, and selectable modes, has three operating functions: Static, Dynamic and Sequence. #### C. FAST SEQUENCE & NORMAL SEQUENCE Normal Sequence Diagram When operating the Sequence Function, PEL-3000AE Series follows the time and load settings of step1, step2, step3, etc. so as to realize different load current variation. **Power-driven Tools Simulation Test** Set a complete sequence editing function to obtain following waveforms. Users can save development cost and time without using a PC to control electronic load and writing programs. Ramp function of PEL-3000AE Series is able to set the current transition. When turned on, the current takes on a slope form; when turned off, the current takes on a step form. #### D. SOFT START The Soft Start function of PEL-3000AE Series allows users to determine the rise time of current sink that is to decide how much time is required to reach electronic load's set current, resistance or power value. PEL-3000AE's soft start function prevents inrush current and surge voltage from happening on DUT. For instance, test applications using a power supply, LED and a DC load (activate the soft start function) can prevent inrush current and surge voltage from causing damages on LED. #### E. BATT TEST AUTOMATION The built-in BATT Test Automation of PEL-3000AE provides battery discharge applications with more flexible discharge stop time setting as well as rise and fall Slew Rate for discharge current settings. Under CP, CC or CR mode, the conditions for stop discharge can be set respectively. For instance, set the input voltage for stop discharge current, the execution time for discharge current or total discharge current*time (AH) to satisfy the verification of battery capability. #### F. OCP TEST AUTOMATION OCP test Automation for DUT (Power Supply), Provide users with high resolution OCP measurement values to verify DUT's OCP activation point. Provide users with measurement results so as to help them determine whether DUT's actual OCP activation point meets the regulations. Test the value of OCP by setting load current increment from start current to stop current. OCP's activation point can be accurately measured. #### G. OPP TEST AUTOMATION OPP test Automation for DUT (Power Supply), Provide users with high resolution OPP measurement values to verify DUT's OPP activation point. Provide users with measurement results so as to help them determine whether DUT's actual OPP activation point meets the regulations. Test the value of OPP by setting power increment from start power to stop power. OPP's activation point can be accurately measured. #### H. TRIGGER IN/OUT BNC Trigger In/Out function could be turned on or off by CONFIGURE setting of PEL-3000AE Series. The Trigger Input can be set the delay time while the Trigger Out Pulse Width can be set as well. The trigger output signal is generated every time a switching operation is performed such as Dynamic mode or Fast/Normal sequence is executed when the trig out parameter is enabled. The trigger output signal from TRIG OUT BNC is a 4.5V pulse of at least 2us with an impedance of 500ohm. The common potential is connected to the chassis potential. The signal threshold level is TTL. The TRIG IN BNC on the rear panel is used to resume a sequence after a pause. This action is useful to synchronize the execution of a sequence with another device. To resume a pause sequence, apply a high signal for 10us or more. The TRIG IN BNC is pulled down to earth internally using a 100Kohm resistor. #### I. PROTECTION MODES | Protection Function | ОСР | OVP | ОРР | ОТР | UVP | |-----------------------|-----|-----|-----|-------|-----| | Adjustable Thresholds | ✓ | ✓ | ✓ | N/A | ✓ | | Load Off | ✓ | ✓ | ✓ | Fixed | ✓ | | Limit Function | ✓ | N/A | ✓ | N/A | N/A | The PEL-3000AE Series provides many protective functions including over current protection (OCP), over voltage protection (OVP), over power protection (OPP), over temperature protection (OTP) and under voltage protection (UVP). Except for OTP, all thresholds of protective functions are adjustable. When protective function is activated, electronic load will send out warning signal and terminate operation. Other than protective functions, Limit function can also #### ANALOG EXTERNAL CONTROL **External Voltage Control** CC Mode Input current = rated current x (external voltage/10) J1 Connector **External Resistance Control** CC Mode Proportional Control:Input current = rated current x (external resistance/10K ohm) Inverse Control:Input current = rated current x (1- external resistance/10k ohm) The PEL-3000AE Series provides the external analog channel control function, which allows users to connect J1 connectors on the rear panel to input voltage or to connect resistance to control electronic load operation. Users can integrate this function into test system and utilize signals generated from the test system to control PEL-3000AE Series. #### K. VonN VOLTAGE AND Von LATCH FUNCTION Von Latch = OFF Von Voltage is the threshold voltage for electronic load to activate or terminate sinking current. When Von Latch is set to off, electronic load operation will be activated if input voltage is higher than Von Voltage and electronic load operation will be terminated if input voltage is lower than Von Voltage. When Von Latch is set to on, electronic load operation Von Latch = ON will be activated if input voltage is higher than Von Voltage and will continue operation even input voltage is lower than Von Voltage. Von Voltage function can test the
transient maximum current capability provided by power supply. #### L. TIMER FUNCTIONS #### **Elapsed Time** The PEL-3000AE series provides count time and cut off time functions. The display screen will show present activation time when electronic load is activated. When electronic load operation is terminated count time will stop and the total operation time will be shown on the display screen. The activation time of cut off time can be set to the maximum length of 999h 59min 59s. When electronic load is activated #### Voltage at Cut Off Time this function will start counting time. Electronic load will cease operation (load off) and show the final input voltage on the screen when preset time is reached. Timer function can provides information and application related to time. Users can obtain the total time of limiting electronic load operation to increase the agility of electronic load tests. #### PEL-2004A #### PEL-2002A #### **FEATURES** - * Sequence Function to do High Speed Load Simulations - * Flexible Configuration with Mainframes and Plug-in Modules - * Multiple Independent Load Inputs up to 8 Channels in a Mainframe - * Parallel Connection of Inputs for Higher **Load Capacity** - * Program Mode to Create Work Routines for - * OPP/OCP/OVP/OTP/RVP/UVP Protections - * External Channel Control/Monitoring via **Analog Control Connector** - * Multiple-Interface USB Device/Host, RS-232C, and GPIB/LAN (Optional) The PEL-2004A and PEL-2002A are multiple channel, programmable DC electronic loads with a modularized structure. The PEL-2000A Series is designed to meet the continuing shift toward high speed operation in today's semiconductor market. As the power supply units, DC-DC converters, and batteries that drive semiconductor circuits need to follow this shift, power supply design, quality inspection and characteristic certification using highspeed performance loads have become necessary. The PEL-2000A Series includes two types of mainframes and 4 types of load modules to accommodate users' requirements in a flexible manner. Any load module combination can be used with a mainframe to tailor a test system based on the number of channels, and the maximum load power, voltage and current of each channel. Multiple loads can be connected in parallel to provide a higher-power load to test higher power supply outputs. This flexibility significantly reduces the investment needed for future projects that have differed power requirements. PEL-2004A is a 4-slot mainframe with a master control unit to hold 4 load modules, while PEL-2002A is a 2-slot mainframe with master control unit to hold 2 load modules. When PEL-2004A is configured with 4 load modules rated at 350W each, the PEL-2000A Series is able to sink up to 1.4kVA of power. For higher load capacities, mainframes can be linked together in parallel with standard MIL 20-pin connectors. A maximum of 5 mainframes, including one master and 4 slaves can be chained together to create a total load capacity of 7kW for high current and high power applications. Using 4 dual channel load modules, PEL-2004A is able to test 8 power supply outputs simultaneously. The Sequence function allows each channel to change its load sink according to a predefined sequence at a rate of up to $100\mu s$ per step. Each sequence is able to run concurrently, under the control of one clock. This is one of the most powerful features of the PEL-2000A Series as it is able to realistically simulate a multi-output power supply load. Under Dynamic mode, the load current or load resistance pulses between two preset levels at a pre-defined speed up to 25µs per step. This is often used as the standard test procedure to verify the response of a power supply to quick load changes. Most remarkably, multiple load channels can be connected in parallel to run Dynamic tests synchronously under a single clock. This Parallel Dynamic functionality gives the flexibility to perform dynamic tests for a high-power power supply without the need of another high-power load. The PEL-2000A Series includes a number of protection modes: Over Current Protection (OCP), Over Voltage Protection (OVP), Over Power Protection (OPP), Reverse Voltage Protection (RVP), and Under Voltage Protection(UVP). The protection modes are useful to protect both the load modules and the DUT(s). A buzzer can be set for when a protection setting has been tripped. When a protection mode has been tripped, the load unit will display an alarm and stop sinking current/voltage. When a load unit is operating in CR or CV mode, the unit may need Over Current Protection to prevent excessive current being sunk. Over Current Protection stops the load from sinking more current than its recommended limit and prevents the load from burn-out damage. Over Voltage Protection is used to limit the amount of voltage sunk. If the OVP trips, the PEL-Series load will stop sinking voltage. Over Power Protection is used when the input power exceeds the specifications of the load. When OPP is tripped, the power will cease to be sunk. Reverse Voltage Protection prevents reverse voltage damage to the PEL-2000A Series up to the specified rating. When Reverse Voltage Protection has been tripped, an alarm tone will sound until the reverse voltage is removed. Under Voltage Protection will turn off the load when the voltage drops The Go/NoGo function is available to monitor test results all the time. When a test result goes beyond a preset limit range, a "No Go" indication will be shown on the display and a "No Go" signal can be sent out through the D-SUB interface for external device control. This Go/NoGo function is available for CC mode, CV mode and CR mode. Under "Program" mode, 12 programs each containing 10 panel-setup memories, can be edited to create work routines for repetitive tests. After a program has been executed, the results of all test steps, along with the Go/NoGo judgments, will be shown on the screen. For external control and system configuration, the PEL-Series has USB and RS-232 interfaces as standard and LAN as well as GPIB as an option. The LabView driver and Data Logging PC software are both supported for all the available interfaces. Each channel has an analog control/monitoring connector on the rear panel to externally turn a load on/off and to externally monitor load input current and voltage. #### PEL-001 GPIB Card #### PEL-002 Rack Mount Kit #### PFI -003 Panel Cover PEL-016 LAN Card (for PEL-2000A Main Frame) GTL-249 Frame Link Cable GTL-120 Test Lead GTL-121 Sense Lead | SPECIFICATIONS | PEL-20
PEL-20 | 63 D 36 70 | | L-2030A/
L-2030B | | PEL-20
PEL-20 | (1) (1) (1) | PEL-20
PEL-20 | | |---|--|---|---|---|--|---|---|--|---| | CHANNEL RANGE POWER CURRENT VOLTAGE MIN.OPERATING VOLTAGE (DC)(Typ.) | L/R
Low
100W
0~2A
0~80V
0.4V at 2A
0.2V at 1A | L/R
High
100W
0~20A
0~80V
0.8V at 20A
0.4V at 10A | Left
N/A
30W
0-5A
0-80V
0.8V at 5A
0.4V at 2.5A | Right
Low
250W
0-4A
0-80V
0.4V at 4A
0.2V at 2A | Right
High
250W
0-40A
0-80V
0.8V at 40A
0.4V at 20A | One channel
Low
350W
0~7A
0~80V
0.4V at 7A
0.2V at 3.5A | One channel
High
350W
0~70A
0~80V
0.8V at 70A
0.4V at 35A | One channel
Low
350W
0~1A
0~500V
0.4V at 1A
0.2V at 0.5A | One channel
High
350W
0~10A
0~500V
0.8V at 10A
0.4V at 5A | | STATIC MODE | | | | | | | | | | | CONSTANT CURRENT MODE
Operating Range
Setting Range
Resolution
Accuracy | 0-2A
0-2.04A
0.1mA
±(0.1%set +
0.1%F.S.) | 0~20A
0~20.4A
1mA
±(0.1%set +
0.2%F.S.) | 0-5A
0-5.1A
0.125mA
±(0.1%set +
0.1%F.S.) | 0-4A
0-4.08A
0.1mA
±(0.1%set +
0.1%F.S.) | 0~40A
0~40.8A
1mA
±(0.1%set +
0.2%F.S.) | 0~7A
0~7.14A
0.2mA
±(0.1%set +
0.1%F.S.) | 0~70A
0~71.4A
2mA
±(0.1%set+
0.2%F.S.) | 0~1A
0~1.02A
0.05mA
±(0.1%set+
0.1%F.S.) | 0~10A
0~10.2A
0.5mA
±(0.1%set+
0.2%F.S.) | | CONSTANT RESISTANCE MODE
Operating Range | 0.075Ω~300Ω
3.75Ω~15K(1 | 00W/80V) | 0.3Ω~1.2KΩ(30W/16V)
15Ω~60K(30W/80V) | 0.0375Ω~150Ω
1.875Ω~7.5K(25 | * | 0.025Ω~100Ω(3
1.25Ω~5K(350W | | 1.25Ω~5KΩ(3
50Ω~200K(35 | | | Setting Range | | 1 | 0.3Ω~1.2KΩ(30W/16V)
15Ω~60K(30W/80V) | 0.0375Ω~150Ω
1.875Ω~7.5K(25 | | 0.025Ω~100Ω(3
1.25Ω~5K(350W | | 1.25Ω~5Ω(35 | 1 | | Resolution
Accuracy | 3.75Ω~15K(100W/80V) 0.333mS(100W/16V) 6.667μS(100W/80V) 3.00Ω: ±(0.2%set+0.1S) 1.2KΩ:±(0.2%set+0.1S) | | | 0.666mS (250W)
13.333μS (250W) | /16V)
//80V) | 1mS(350W/16V)
20μS(350W/80V)
100Ω: ±(0.2%se |)
) | 50Ω~200K(35
20μS(350W/1
0.5μS(350W/5
5KΩ:±(0.2%s | 25V)
500V) | | (with≥2.5V at input) | 15KΩ: ±(0.19 | 1 | 60KΩ:±(0.1%set+0.01S) | 150Ω:±(0.2%se
7.5KΩ:±(0.1%set | | 5KΩ: ±(0.1%set- | | 200KΩ:±(0.1%s | | | CONSTANT VOLTAGE+ CONSTANT CURRENT MODE Operating Range Setting Range Resolution Accuracy | 1~80V
0~81.6V
2mV
±(0.05%set + | - 0.1%F.S.) | 1–80V
0–81.6V
2mV
±(0.05%set + 0.1%F.S.) | | | |
2.5~500V
0~510V
10mV
±(0.05%set + 0.1%F.S.) | | | | Current Setting Range
Resolution | 0~20A
1mA | | 0~5A
0.125mA | 0~40A
1mA | | 0~70A
2mA | | 0~10A
0.5mA | | | Accuracy | ±(0.1%set + | 0.2%F.S) | | 22 | | ZIIIA | , | U.JIIIA | | | CONSTANT POWER MODE
Operating Range*
Setting Range
Resolution
Accuracy | 1~10W
0~10.2W
1mW
±(0.5%set +
0.5%F.S) | 1~100W
0~102W
10mW
±(0.5%set +
0.5%F.S) | 1-30W
0-30.6W
1mW
±(0.5%set +
0.5%F.S) | 1~25W
0~25.5W
1mW
±(0.5%set +
0.5%F.S) | 1~250W
0~255W
10mW
±(0.5%set +
0.5%F.S) | 1~35W
0~35.7W
1mW
±(0.5%set+
0.5%F.S) | 1~350W
0~357W
10mW
±(0.5%set+
0.5%F.S) | 1~35W
0~35.7W
1mW
±(0.5%set+
0.2%F.S) | 1~350W
0~357W
10mW
±(0.5%set+
0.5%F.S) | | DYNAMIC MODE | l l | | | | | | - 12 | | 25 72 | | T1&T2
Accuracy | 0.025mS~10r
10mS~30S/R
1μS/1mS ± 1 | les:1mS | 0.025mS~10mS/Res:
10mS~30S/Res:1mS
1μS/1mS ± 100ppm | μS | | 0.025mS~10mS/Res:1µS
10mS~30S/Res:1mS
1µS/1mS±100ppm | | 0.025mS~10mS/Res:1μS
10mS~30S/Res:1mS
1μS/1mS±100ppm | | | CONSTANT CURRENT MODE
Slew Rate (±10%set+15µS)
Slew Rate Resolution
Slew Rate Accuracy of Setting
Current Settong Range
Current Resolution
Current Accuracy | 0.32mA/μS | | 0.8~200mA/μS
0.8mA/μS
±(10%+15μs)
0~5A
0.125mA
±0.4%F.S. | 0.64~160mA/μS
0.64mA/μS
±(10%+15μs)
0~4A
0.1mA
±0.4%F.S. | 6.4~1600mA/μS
6.4mA/ μS
±(10%+15μs)
0~40A
1mA
±0.4%F.S. | 0.001~0.28A/μS
0.001A/μS
±(10%+15μs)
0~7A
0.2mA
±0.4% F.S. | 0.01~2.8A/μS
0.01A/μS
±(10%+15μs)
0~70A
2mA
±0.4% F.S. | 0.16~40mA/μS
0.16mA/μS
±(10%+15μs)
0~1A
0.05mA
±0.4%F.S. | 1.6mA/µS | | CONSTANT RESISTANCE MODE
Slew Rate
Slew Rate Resolution
Slew Rate Accuracy of setting | 0.32mA/μS | 3.2~800mA/µS
3.2mA/µS
±(10%+15µs) | 0.8~200mA/μS
0.8mA/μS
±(10%+15μs) | 0.64–160mA/μS
0.64mA/μS
±(10%+15μs) | 6.4~1600mA/μS
6.4mA/μS
±(10%+15μs) | 0.001~0.28A/μS
0.001A/μS
±(10%+15μs) | 0.01~2.8A/μS
0.01A/μS
±(10%+15μs) | 0.16mA/µS | 1.6~400mA/μS
1.6mA/μS
±(10%+15μs) | | Resistance Setting Range | 3.75Ω~15K(1 | | 15Ω~60K(30W/80V) | 0.0375Ω~150KΩ
1.875Ω~7.5K(2 | 50W/80V) | 0.025Ω~100Ω(3
1.25Ω~5K(350W | /80V) | 1.25Ω~5KΩ(3
50Ω~200K(35 | 0W/500V) | | Resistance Resolution Resistance Resolution | 0.333mS(100
6.667μS(100\
300Ω:±(0.5% | W/80V) | 83.333μS(30W/16V)
1.666μS(30W/80V)
1.2KΩ:±(0.5%set+0.1S) | 0.666mS(250W)
13.333μS(250W)
150Ω:±(0.5%se | //80V) | 1mS(350W/16V)
20μS(350W/80V)
100Ω:±(0.5%set |) | 20μS(350W/1
0.5μS(350W/!
5KΩ:±(0.5%s | 500V) | | Resistance Accuracy MEASUREMENT | 15KΩ:±(0.5% | | 60KΩ:±(0.5%set+0.01S) | 7.5KΩ:±(0.5%s | 7 1/55 135 7 T 15 16 | 5KΩ:±(0.5%set | | | 6set + 0.005S) | | VOLTAGE READBACK | Sr. | | | 10 | | - A - A - A - A - A - A - A - A - A - A | | 138 | CE SEE | | Range
Resolution | 0~16V
0.32mV | 0~80V
1.6mV | 0~16V,0~80V
0.32mV,1.6mV | 0~16V
0.32mV | 0~80V
1.6mV | 0~16V
0.32mV | 0~80V
1.6mV | 0~125V
2.5mV | 0~500V
10mV | | Accuracy | ±(0.025%set | + 0.025%F.S.) | | 4 | | | | | | | CURRENT READBACK Range Resolution | 0~2A
0.04mA | 0~20A
0.4mA | 0~5A
0.1mA | 0~4A
0.08mA | 0~40A
0.8mA | 0~7A
0.14mA | 0~70A
1.4mA | 0~1A
0.02mA | 0~10A
0.2mA | | Accuracy | ±(0.05%set + | | | 5.00.101 | 5.6 | 211 1101 | | e.vellirs | J. 2.1173 | | POWER READBACK
Range | 0~10W | 0~100W | 0~30W | 0~25W | 0~250W | 0~35W | 0~350W | 0~35W | 0~350W | | Accuracy | ±(0.1%set + | 0.10/EC*1 | | O) 0 | | | ±1 ⋅ Do | ver F.S.=Vrange F. | 27 | #### PEL-2004A Rear Panel #### PEL-2020A Rear Panel ## PEL-2000A(B) Series | SPECIFICATIONS | | | | | | | | | | |--|---|--------------------------|---|---|---------------------------|---|--------------------------|---|-------------------------| | | PEL-2 | 020A/
020B | | PEL-2030A/
PEL-2030B | | 6000000 | 2040A/
2040B | PEL-20
PEL-20 | | | PROTECTION | | | | | | | | | | | OVER POWER PROTECTION Range Resolution Accuracy OVER CURRENT PROTECTION Range Resolution Accuracy OVER VOLTAGE PROTECTION Range Resolution Accuracy Over Temperature Protection RATED POWER PROTECTION Value | 1-102W
0.5W
±(2%set+0.25
0-20.4A
0.05A
±(2%set+0.25
1-81.6V
0.2V
±(2%set+0.25
= 85°C | %F.S.) | 1~30.6W
0.15W
±(2%set+0.25%F.S.)
0~5.1A
0.0125A
±(2%set+0.25%F.S.)
1~81.6V
0.2V
±(2%set+0.25%F.S.)
= 85°C
33W | 1~255W
1.25W
±(2%set+0.25
0~40.8A
0.1A
±(2%set+0.25
1~81.6V
0.2V
±(2%set+0.25
= 85°C | %F.S.) | 1-357W
1.75W
±(2%set+0.25%F.S.)
0-71.4A
0.175A
±(2%set+0.25%F.S.)
1-81.6V
0.2V
±(2%set+0.25%F.S.)
= 85°C
385W
±(2%set) | | 1-357W
1.75W
±(2%set+0.25%F.S.)
0-10.2A
0.025A
±(2%set+0.25%F.S.)
1-510V
1.25V
±(2%set+0.25%F.S.)
= 85°C
385W | | | Accuracy GENERAL | ±(2%set) | | ±(2%set) | ±(2%set) | | ±(2705et) | | ±(2%set) | | | SHORT CIRCUIT Current(CC) Voltage(CV) Resistance(CR) | ⇒ 2.2/2A
0V
⇒ 3.75Ω | ≒22/20A
0V
≒0.075Ω | ⇒ 5.5/5A
0V
⇒ 15Ω , ⇒ 0.3Ω | = 4.4/4A
0V
= 1.875Ω | ≒44/40A
0V
≒0.0375Ω | ≒7.7/7A
0V
≒1.25Ω | ≒77/70A
0V
≒0.025Ω | ≒1.1/1A
0V
≒15Ω,≒50Ω | ≒11/10A
0V
≒1.25Ω | | INPUT RESISTANCE(LOAD OFF | 5) | | | | | | | | | | | 500KΩ(Typic | al) | | | | | | | | | POWER SOURCE | AC100V ~ 23 | OV ± 10%; 50 | Hz / 60Hz ± 2Hz | | | | | | | | WEIGHT | Approx. 3.8 | 3 kg | | | | | | | | | DIMENSIONS & WEIGHT (PEL-2002A) | 272(W) x 2 | 00(H) x 581 | (D) mm ; Approx. | 17.1kg(full mo | dules) | | | | | | DIMENSIONS & WEIGHT (PEL-2004A) | 435 (W) x 2 | 00(H) x 581 | (D) mm ; Approx. | 28.4kg(full mo | dules) | | | | | ## ORDERING INFORMATION PEL-2020A/2020B Dual Channel Module, (0~80V, 0~20A, 100W) x 2 PEL-2030A/2030B Dual Channel Module, (1~80V, 0~5A, 30W)+(1~80V, 0~40A, 250W) PEL-2040A/2040B Single Channel Module, (0–80V, 0~70A, 350W) PEL-2041A/2041B Single Channel Module, (0–500V, 0~10A, 350W) PEL-2004A 4-Slot Programmable DC Electronic Load Mainframe PEL-2002A 2-Slot Programmable DC Electronic Load Mainframe Note: Load module cannot be used without a mainframe ACCESSORIES : PEL-2002A/2004A Power Cord x1 PEL-2020A/2020B/2030A/2030B/2040A/2040B/2041A/2041B GTL-120 Test Lead x 1, GTL-121 Sense Lead x 1 * PEL-003 x 3 (PEL-2004A); PEL-003 x 1 (PEL-2002A) OPTIONAL ACCESSORIES PEL-001 GPIB Card GTL-248 GPIB Cable (2m) PEL-002 PEL-2000A(B) Series Rack Mount Kit GTL-249 Frame Link Cable PEL-003 Panel Cover GTL-246 USB Cable, USB 2.0 A-B TYPE CABLE, 4P PEL-016 LAN Card (for PEL-2000A(B) Main Frame) GTL-232 RS-232C Cable, 9-pin, F-F Type, null modem, 2000mm #### MODULARIZED STRUCTURE/PROGRAM & INTERFACE #### Modularized Structure PEL-2004A is a 4-slot mainframe with a master control unit made to hold 4 load modules, and PEL-2002A is a 2-slot mainframe with a master control unit made to hold 2 load modules. The modularized structure of the PEL-2000A Series allows any combination of mainframe and load module (PEL-2020A, PEL-2030A, PEL-2040A, PEL-2041A) to be integrated into a custom-tailored system. Multiple loads within the same mainframe can be connected in parallel to perform both static and dynamic tests. This flexibility makes the PEL-2000A Series a very cost-effective instrument for testing a broad range of power supply outputs. #### Program & Interface The PEL-2000A Series supports a total of 12 different programs and 10 sequences to each program. With a total of up to 120 different configurations. For external control and system configuration, the PEL-Series has USB and RS-232 interfaces as standard and GPIB as an option. The LabView driver and Data Logging PC software are supported for all the interfaces available. Each channel has an analog control/monitoring connector to externally turn a load on/off and to externally monitor load input current and voltage. #### B. AUTOMATICALLY SEQUENCE FUNCTION Sequence - On End Load The Sequence function allows each channel to change its load sink according to a predefined sequence at a rate of up to $100\,\mu s$ per step. Each sequence is able to run concurrently, under the control of one clock. This is one of the most powerful features of the PEL-2000A Series as it is able to realistically simulate a multi-output power supply load. Under Dynamic mode, the load current or load resistance pulses between two preset levels at a pre-defined speed up to $25\,\mu s$ per step. This is often used as the standard test procedure to verify the response of a power supply to quick load changes. The figure above shows the current waveform of a simulation using the sequence function. The picture above is an example of a sequence used as a load profile for a single output switching power supply. A load profile is programmed to simulate the current drawn of a power supply load. By using a current probe to acquire a current waveform, PEL-2000A Series is able to evaluate the performance of a power supply based on the load sequence that is programmed. An
oscilloscope is then used to display the result. #### C. PARALLEL DYNAMIC LOADING **Dynamic Test** Wire Connection All the load channels in a PEL-2000A Series mainframe can be connected in parallel to perform any combination of static or dynamic loading. Under Dynamic mode, the load current or load resistance pulses between two preset levels at a predefined speed of up to $25\,\mu s$ per step. When the channels are connected in parallel, dynamic tests are synchronously clocked. The ability to perform parallel dynamic loading gives you the flexibility to perform dynamic tests to high-power power supplies without the need for a dedicated high power electronic load. #### D. FRAMELINK The PEL-2000A Series allows multiple mainframes to be linked together with standard MIL 20-pin connectors to provide higher power load capacity. A maximum of 5 mainframes, including one master and 4 slaves, can be chained together to give a 7kW load capacity for high current and high power applications. #### PEL-5000C Series #### **FEATURES** - * Maximum Power up to 192kW - * Up to 8 units of Master/Slave Parallel Control - * 5-digit Digital Voltage, Current and Power Meter - * Large LCD Display - * Display Voltage Value, Current Value, Watt Value at the Same Time - * Suitable for Power Factor Regulator (PFC) Testing (600V, 1200V Models) - * Automatically Perform OCP, OPP Test - * The Power-on State Value Can be Set - * Constant Current, Constant Resistance, Constant Voltage, Constant Power, Constant Current + Constant Voltage, Constant Power + Constant Voltage, Dynamic and Short Circuit Modes - * Short Circuit Time Can be Set During Short Circuit Test - * Over Current, Over Power, Over Temperature Protection and Over Voltage Warning - * Voltage Polarity Display Can be Set to Positive Value ("+") or Negative Value ("-") - * Support Solar Panel MPPT Test - * Optional Interface: GPIB, RS232, USB, LAN #### Rear Panel GW Instek PEL-5000C series single-channel electronic load provides 150V/ 600V/ 1200V models with a power range of 8kW~24kW. PEL-5000C has a total of 24 models featuring different combinations of power, voltage, and current. It can test and verify the specifications of batteries, electric vehicle chargers/charging stations, electric vehicle batteries and solar panels. PEL-5000C supports parallel connection for same voltage specification and different power models. PEL-5000C can support up to 8 units connected in parallel to provide a maximum power of 192kW. For the scenario of battery testing, PEL-5000C specifically provides four battery discharge modes, namely CC+CV battery discharge test mode, CP+CV battery discharge test mode, CC+ UVP battery discharge test mode, and CP+ UVP battery discharge test mode. Users can choose a suitable test mode according to the test requirements. In addition to the four battery discharge modes, PEL-5000C also provides Time period discharge, Pulse discharge, and RAMP discharge modes. Users can set the discharge time, or discharge in the pulse current mode, or even set the rising/falling slew rate of the discharge current. These functions can be very flexible in the simulation of the battery discharge current waveform when an electric vehicle is running. In order to meet the verification requirements of different DUTs, PEL-5000C provides a variety of test functions, including inrush current test mode, solar panel MPPT test mode, automated OCP, OPP test functions and 150 sets of parameter storage function. The 1200V model of PEL-5000C not only provides full power output at 1000V, but also provides 60% power output at 1200V output, which is higher than the 50% power output of other manufacturers of similar electronic loads. High-voltage batteries or chargers directly connected to the electronic load may cause damage to the electronic load. PEL-5000C has a built-in slow starter, which not only protects the DC load, but also saves the user's installation cost and setting time for measurement. The communication interfaces supported by PEL-5000C include GPIB, RS232, USB, and LAN. The power, voltage and current of each model are shown in the following table: #### ORDERING INFORMATION | PEL-5008C-150-800 | 150V/800A/8kW | High Power DC Electronic Load | |--------------------|-----------------|-------------------------------| | PEL-5010C-150-1000 | 150V/1000A/10kW | High Power DC Electronic Load | | PEL-5012C-150-1200 | 150V/1200A/12kW | High Power DC Electronic Load | | PEL-5015C-150-1500 | 150V/1500A/15kW | High Power DC Electronic Load | | PEL-5018C-150-1800 | 150V/1800A/18kW | High Power DC Electronic Load | | PEL-5020C-150-2000 | 150V/2000A/20kW | High Power DC Electronic Load | | PEL-5024C-150-2000 | 150V/2000A/24kW | High Power DC Electronic Load | | PEL-5008C-600-560 | 600V/560A/8LW | High Power DC Electronic Load | | PEL-5010C-600-700 | 600V/700A/10kW | High Power DC Electronic Load | | PEL-5012C-600-840 | 600V/840A/12kW | High Power DC Electronic Load | | PEL-5015C-600-1050 | 600V/1050A/15kW | High Power DC Electronic Load | | PEL-5018C-600-1260 | 600V/1260A/18kW | High Power DC Electronic Load | | PEL-5020C-600-1400 | 600V/1400A/20kW | High Power DC Electronic Load | | PEL-5024C-600-1680 | 600V/1680A/24kW | High Power DC Electronic Load | | PEL-5008C-1200-320 | 1200W/320A/RkW | High Power DC Electronic Load | | PEL-5010C-1200-400 | 1200V/400A/10kW | High Power DC Electronic Load | | PEL-5012C-1200-480 | 1200V/480A/12kW | High Power DC Electronic Load | | PEL-5015C-1200-600 | 1200V/600A/15kW | High Power DC Electronic Load | | PEL-5018C-1200-720 | 1200V/720A/18kW | High Power DC Electronic Load | | PEL-5020C-1200-800 | 1200V/800A/20kW | High Power DC Electronic Load | | PEL-5024C-1200-960 | 1200V/960A/24kW | High Power DC Electronic Load | PEL-027-3 Rack Mount Kit For PEL-5015C, PEL-5018C PEL-027-4 Rack Mount Kit For PEL-5020C, PEL-5024C PEL-028 HANDLES, U-shaped Handle(fixed to the bracket) #### STANDARD ACCESSORIES PEL-5000C Series operation manual BANANA PLUGS: Please refer to Fig.1 x 1 BNC – BNC CABLE: BNC to BNC CABLE, 1m x 1 HD-DSUB: 15PIN Parallel wire Parallel Wire x 1 #### **OPTIONAL ACCESSORIES** | PEL-022 | GPIB Card | PEL-030 | GPIB+RS-232 Card | |-----------|--|----------|--------------------------------------| | PEL-023 | RS-232 Card | GTL-246 | USB Cable, USB 2.0, A-B Type, 1200mm | | PEL-024 | LAN Card | GTL-248 | GPIB Cable, Double Shielded, 2000mm | | PEL-025 | USB Card | GTL-250 | GPIB Cable, Double Shielded, 600mm | | PEL-026 | Hook Ring x 4 | | | | PEL-027-1 | Rack Mount Kit For PEL-5006C | | | | PEL-027-2 | Rack Mount Kit For PEL-5008C, PEL-5010C, F | EL-5012C | | Note: * Regarding the product delivery date, please contact your regional sales representative. D119 PEL-5008C-150-800 PEL-5008C-600-560 PEL-5008C-1200-320 PEL-5010C-150-1000 PEL-5010C-600-700 PEL-5010C-1200-400 PEL-5012C-150-1200 PEL-5012C-600-840 PEL-5012C-1200-480 PEL-5015C-150-1500 PEL-5015C-600-1050 PEL-5015C-1200-600 PEL-5018C-150-1800 PEL-5018C-600-1260 PEL-5018C-1200-720 PEL-5020C-150-2000 PEL-5020C-600-1400 PEL-5020C-1200-800 PEL-5024C-150-2000 PEL-5024C-600-1680 PEL-5024C-1200-960 | Power / Voltage | 150V | 600V | 1200V | |-----------------|----------------------------|----------------------------|---------------------------| | 8kW | PEL-5008C-150-800 (800A) | PEL-5008C-600-560 (560A) | PEL-5008C-1200-320 (320A) | | 10kW | PEL-5010C-150-1000 (1000A) | PEL-5010C-600-700 (700A) | PEL-5010C-1200-400 (400A) | | 12kW | PEL-5012C-150-1200 (1200A) | PEL-5012C-600-840 (840A) | PEL-5012C-1200-480 (480A) | | 15kW | PEL-5015C-150-1500 (1500A) | PEL-5015C-600-1050 (1050A) | PEL-5015C-1200-600 (600A) | | 18kW | PEL-5018C-150-1800 (1800A) | PEL-5018C-600-1260 (1260A) | PEL-5018C-1200-720 (720A) | | 20kW | PEL-5020C-150-2000 (2000A) | PEL-5020C-600-1400 (1400A) | PEL-5020C-1200-800 (800A) | | 24kW | PEL-5024C-150-2000 (2000A) | PEL-5024C-600-1680 (1680A) | PEL-5024C-1200-960 (960A) | PEL-022 GPIB Card PEL-023 RS-232 Card PEL-024 LAN Card PEL-025 USB Card PEL-026 Hook Ring PEL-027-1~4 Rack Mount Kit PEL-028 Handles | SPECIFICATIONS | | | | | | |
--|---|--|---|---|--|--| | MODEL | PEL-5008 | C-150-800 | PEL-50100 | C-150-1000 | PEL-50120 | C-150-1200 | | Power ² 1 | 81 | ¢W | 10 | k W | 121 | kW | | Current | 0 ~ 80A | 0 ~ 800A | 0 ~ 100A | 0 ~ 1000A | 0 ~ 120A | 0 ~ 1200A | | Voltage Min. Operating Voltage | 0.7V @ | 0 ~ 1 | | 1000A | 0.7V @ | 1200A | | Protections | 0.71 | 00011 | 0.77 | 100011 | 0.71 | 120071 | | Over Power Protection (OPP) | | 105 | | | | | | Over Current Protection (OCP) Over Voltage Protection (OVP) | | 104 | | | | | | Over Temp Protection (OTP) | 1 | 90°C | | | | | | Constant Current Mode | | ,,,, | | | | 1 | | Range ^{e2} | 80A | 800A | 100A | 1000A | 120A | 1200A | | Resolution
Accuracy ²³ | 1.28mA | 12.8mA
± 0.05% of (Se | 1.6mA | 16mA | 1.92mA | 19.2mA | | Constant Resistance Mode | | ± 0.03% 01 (3e | ttilig + Kalige) | | | | | Range | 11250Ω~0.1875Ω | 0.1875Ω~0.0009Ω | 9000Ω~0.15Ω | 0.15Ω~0.0007Ω | 7500Ω~0.125Ω | 0.125Ω~0.0006Ω | | Resolution | 88.888µS | 3.125μΩ | 111.111µS | 2.5μΩ | 133.333µS | 2.084μΩ | | Accuracy Constant Voltage Mode | | ±0.2% of (Set | ting + Kange) | | | | | Range | | 15 | 0V | | | | | Resolution | | 2.5 | | | | | | Accuracy Constant Power Mode | | ± 0.05% of (Se | tting + Kange) | | | | | Range | 800W | 8000W | 1000W | 10000W | 1200W | 12000W | | Resolution | 12.8mW | 128mW | 16mW | 160mW | 19.2mW | 192mW | | Accuracy | ± 0.1% of | ± 0.1% of | ± 0.1% of | ± 0.1% of
(Setting+Range) | ± 0.1% of | ± 0.1% of | | Constant Voltage Mode + Constant Current Mode | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | | Range | 150V | 800A | 150V | 1000A | 150V | 1200A | | Resolution | 2.5mV | 12.8mA | 2.5mV | 3.2mA | 2.5mV | 19.2mA | | Accuracy Constant Voltage Mode + Constant Power Mode | | ± 1.0% of (Set | ting + Range) | | | | | Range | 150V | 8000W | 150V | 10000W | 150V | 12000W | | Resolution | 2.5mV | 128mW | 2.5mV | 160mW | 2.5mV | 192mW | | Accuracy | | ± 1.0% of (Set | ting + Range) | | | | | Surge Test Surge & Normal current | Ι ο | -800A | 0.10 | 000A | 0~12 | 2004 | | Surge time | | 1000ms | | 000M
000ms | 10~10 | | | Surge step | 2- | 1~ | -5 | | | | | MPPT Mode | | | | | | | | MPPT Mode | T | nº | 0 | | | | | Algorithm | | P& | | | | | | Algorithm Load mode P&O interval | 1 | P&
C
000ms~60000ms ; | V | 15 | | | | Algorithm Load mode P&O interval Dynamic Mode | 1 | C | V | 15 | | | | Algorithm Load mode P&O interval Dynamic Mode Timing | | C
000ms~60000ms ; | V
resolution 1000m | | | | | Algorithm Load mode P&O interval Dynamic Mode | | C
000ms~60000ms ;
0.010~9.999 / 99.9 | V
resolution 1000m | | | | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy | | C
000ms~60000ms ;
0.010~9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100µ | V
resolution 1000m
9 / 999.9 / 9999m
/ 0.1 / 1ms
us / 1ms + 50ppm | s | | | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate | 0.0192A~1.2A/μs | 0.00ms~60000ms;
0.010~9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100µ
0.192A~12A/µs | V
resolution 1000m
9 / 999.9 / 9999m
/ 0.1 / 1ms
us / 1ms + 50ppm
0.024A~1.5A/µs | s
0.24A~15A/μs | 0.0288A~1.8A/µs | 0.288A~18A/µs | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution | | 0.010~9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100µ
0.192A~12A/µs
0.048A/µs | V
resolution 1000m
9 / 999.9 / 9999m
/ 0.1 / 1ms
us / 1ms + 50ppm
0.024A~1.5A/µs
0.006A/µs | s | 0.0288A~1.8A/µs
0.0072A/µs | 0.288A~18A/μs
0.072A/μs | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate | 0.0192A~1.2A/μs | 0.00ms~60000ms;
0.010~9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100µ
0.192A~12A/µs | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms us / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) | s
0.24A~15A/μs | 0.0072A/μs | | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range | 0.0192A~1.2A/µs
0.0048A/µs | C000ms-60000ms; 0.010~9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1 / 1ms s: / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A | s
0.24A~15A/μs
0.06A/μs
100~1000A | 0.0072A/μs
0~120A | 0.072A/μs
120~1200A | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution | 0.0192A~1.2A/µs
0.0048A/µs | C 000ms-60000ms;
0.010-9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100µ
0.192A-12A/µs
0.048A/µs
66.7µs(| V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms us / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) | s
0.24Α~15Α/μs
0.06Α/μs | 0.0072A/μs | 0.072A/µs | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range | 0.0192A~1.2A/µs
0.0048A/µs | C000ms-60000ms; 0.010~9.999 / 99.9 0.001 / 0.01 1µs / 10µs /
100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1 / 1ms s: / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A | s
0.24A~15A/μs
0.06A/μs
100~1000A | 0.0072A/μs
0~120A | 0.072A/μs
120~1200A | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) | 0.0192A-1.2A/µs
0.0048A/µs
0~80A
1.28mA | C000ms-60000ms; 0.010~9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A 12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1 ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA | S 0.24A~15A/μs 0.06A/μs 100~1000A 16mA | 0.0072A/µs 0~120A 1.92mA | 0.072A/µs
120~1200A
19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution | 0.0192A~1.2A/µs
0.0048A/µs
0~80A
1.28mA | C 000ms-60000ms;
0.010-9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100µ
0.192A-12A/µs
0.048A/µs
66.7µs(
80~800A
12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A 1.6mA | 0.24A~15A/μs
0.06A/μs
100~1000A
16mA | 0.0072A/µs
0~120A
1.92mA | 0.072A/µs
120~1200A
19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.0192A-1.2A/µs
0.0048A/µs
0~80A
1.28mA | C 000ms-60000ms;
0.010-9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100µ
0.192A-12A/µs
0.048A/µs
66.7µs(
80~800A
12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1 ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA | S 0.24A~15A/μs 0.06A/μs 100~1000A 16mA | 0.0072A/µs 0~120A 1.92mA | 0.072A/µs 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.0192A~1.2A/µs
0.0048A/µs
0~80A
1.28mA | C0000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1 | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms sis / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25mV eading + Range) | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV | 0.0072A/μs 0120A 1.92mA 015V 0.25mV | 0.072A/µs 120~1200A 19.2mA 15~150V 2.5mV | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Resolution Resolution Accuracy Current Read Back Range (5 Digital) Resolution | 0.0192A~1.2A/µs
0.0048A/µs
0~80A
1.28mA | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A 12.8mA 15-150V 2.5mV ±0.025% of (Re 80~800A 12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms is / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25 mV eading + Range) 0~100A 1.6mA | 0.24A~15A/μs
0.06A/μs
100~1000A
16mA
15~150V
2.5mV | 0.0072A/μs 0~120A 1.92mA 0~15V 0.25mV | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.0192A~1.2A/µs
0.0048A/µs
0~80A
1.28mA | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A 12.8mA 15-150V 2.5mV ±0.025% of (Re 80~800A 12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms sis / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25mV eading + Range) | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV | 0.0072A/μs 0120A 1.92mA 015V 0.25mV | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.0192A~1.2A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A 12.8mA 15-150V 2.5mV ±0.025% of (Re 80~800A 12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1 / 1ms s: / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A 1.6mA 0-15V 0.25mV vading + Range) 0-100A 1.6mA ading + Range) | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV | 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs | 0.072A/µs 120~1200A 19.2mA 15~150V 2.5mV | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy | 0.0192A~1.2A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A 12.8mA 15-150V 2.5mV ±0.025% of (Re 80~800A 12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1 / 1ms s: / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A 1.6mA 0-15V 0.25mV vading + Range) 0-100A 1.6mA ading + Range) | 5 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV | 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs 0.0072A/µs | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy Ceneral | 0.0192A-1.2A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1ps / 10ps / 100p 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A 12.8mA 15~150V 2.5mV ±0.025% of (Re: 80~800A 12.8mA ±0.05% of (Re: | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25mV ading + Range) 0~100A | S 0.24A~15A/μs 0.06A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA | 0.0072A/µs 0.0072A/µs 0.120A 1.92mA 0.15V 0.25mV 0.120A 1.92mA | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy | 0.0192A~1.2A/µs 0.0048A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV 0~80A 1.28mA | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100µ 0.192A-12A/µs 0.048A/µs 66.7µs(80~800A 12.8mA 15-150V 2.5mV ±0.025% of (Re 80~800A 12.8mA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1 ms sis / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A 1.6mA 0-15V 0.25mV vading + Range) 0-100A 1.6mA 1.6mA 1.6mA | 5 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA | 0.0072A/μs 0120A 1.92mA 015V 0.25mV 0120A 1.92mA | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Courrent Read Back Range (5 Digital) Resolution Accuracy Courrent Read Back Range (5 Digital) Resolution Accuracy Courrect Couracy Couracy Couracy Courrect Couracy C | 0.0192A~1.2A/µs 0.0048A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV 0~80A 1.28mA | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1μs / 10μs / 100μ 0.192A-12A/μs 0.048A/μs 66.7μs(80~800A 12.8mA 15~150V 2.5mV ±0.025% of (Re: 80~800A 12.8mA ±0.05% of (Re: 000W ± 0.06% of (Re: 000Q 00A 0.25 ~ | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25mV eading + Range) 0~100A 1.6mA ading + Range) | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA | 0.0072A/μs 0120A 1.92mA 015V 0.25mV 0120A 1.92mA | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) | 0.0192A~1.2A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV 0.80A 1.28mA | C0000ms-60000ms; 0.010~9.999 / 99.9 0.001 / 0.001 / 0.001 1 μs / 10μs / 100μ 0.192A-12A/μs 66.7μs(80~800A 12.8mA 15~150V 2.5mV ±0.025% of (Rei 80~800A 12.8mA ±0.05% of (Rei 009Ω 00A 0.25~ | V resolution 1000m 9 / 999.9 / 9999m /
0.1 / 1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25mV ading + Range) 0~100A 1.6mA 1.6mA 1.6mA | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA | 0.0072A/µs 0120A 1.92mA 015V 0.25mV 0120A 1.92mA | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Dower Read Back Range (5 Digital) Accuracy Ceneral Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption | 0.0192A~1.2A/µs 0.0048A/µs 0.0048A/µs 0~80A 1.28mA 0~80A 1.28mA 800 800 920 | C000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1μs / 10μs / 100μs 0.092A-12A/μs 0.048A/μs 66.7μs(80~800A 12.8mA 15-150V ±0.025% of (Res 2.5mV ±0.05% of (Res 000W 00A 0.25 ~ 0 ~ 6 00VA | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25mV rading + Range) 0-100A 1.6mA 1.6mA 100 62.5V 52.5V 920 | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA | 0.0072A/µs 0120A 1.92mA 015V 0.25mV 0120A 1.92mA | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) | 0.0192A~1.2A/µs 0.0048A/µs 0.0048A/µs 0~80A 1.28mA 0~80A 1.28mA 800 800 921 571.6x481 | C0000ms-60000ms; 0.010~9.999 / 99.9 0.001 / 0.001 / 0.001 1 μs / 10μs / 100μ 0.192A-12A/μs 66.7μs(80~800A 12.8mA 15~150V 2.5mV ±0.025% of (Rei 80~800A 12.8mA ±0.05% of (Rei 009Ω 00A 0.25~ | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A 1.6mA 0-15V 0.25mV eading + Range) 0-100A 1.6mA ading + Range) 100 ading + Range) 0-25V 22.5V 920 571.6x481 | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA | 0.0072A/µs 0-120A 1.92mA 0-15V 0.25mV 0-120A 1.92mA 1.92mA | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Dower Read Back Range (5 Digital) Current Read Back Range (5 Digital) Resolution Accuracy Dower Read Back Range (5 Digital) Resolution | 0.0192A-1.2A/µs 0.0048A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV 0~80A 1.28mA 800 800 920 571.6x445. | C 000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1μs / 10μs / 100μ 0.192A-12A/μs 0.048A/μs 66.7μs(80~800A 12.8mA 15–150V 2.5mV ±0.025% of (Rec 80~800A 12.8mA ±0.05% of (Rec 00W ±0.06% of (Rec 00W 2.5mC 0 ~ 6 00VA 2.757.3mm 5 kg | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0-100A 1.6mA 0-15V 0.25mV ading + Range) 0-100A 1.6mA 1.6mA 20-15V 0.25mV ading + Range) 0-100A 1.6mA 4ding + Range) 100 62.5V 571.6x481 467.6x445. | 0.24A~15A/μs 0.06A/μs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA 000W | 0.0072A/µs 0.0072A/µs 0.120A 1.92mA 0.15V 0.25mV 0.25mV 1.92mA 1.92mA | 0.072A/μs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA | | Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Dower Read Back Range (5 Digital) Resolution Accuracy Louracy Dower Read Back Range (5 Digital) Accuracy Locat On Voltage Load OFF Voltage Dower Consumption Dimension (HxWxD) HxWxD Non Induded Back Maunt KLubeds Dower Consumption Dimension (HxWxD) HxWxD Non Induded Back Maunt KLubeds | 0.0192A-1.2A/µs 0.0048A/µs 0.0048A/µs 0~80A 1.28mA 0~15V 0.25mV 0~80A 1.28mA 800 800 920 571.6x445. | C0000ms-60000ms; 0.010-9.999 / 99.9 0.001 / 0.01 1μs / 10μs / 100μ 0.192A-12A/μs 0.048A/μs 66.7μs(80~800A 12.8mA 15~150V 2.5mV ±0.025% of (Rei 200W ±0.05% of (Rei 200W 00A 0.25 ~ 0 ~ 6 0VA x757.3mm 2x757.3mm 5 kg | V resolution 1000m 9 / 999.9 / 9999m / 0.1 / 1ms ss / 1ms + 50ppm 0.024A-1.5A/µs 0.006A/µs typical) 0~100A 1.6mA 0~15V 0.25mV ading + Range) 0~100A 1.6mA 1.6mA 1.6mA | 0.24A~15A/µs 0.06A/µs 0.06A/µs 100~1000A 16mA 15~150V 2.5mV 100~1000A 16mA 16mA 000W 007Ω 000A | 0.0072A/µs 0.0072A/µs 0.120A 1.92mA 0.15V 0.25mV 0.25mV 1.92mA 1.92mA | 0.072A/µs 120~1200A 19.2mA 15~150V 2.5mV 120~1200A 19.2mA 000W | #### Cooling: Advanced Fan Cooled Input AC Power: 100~240 Vac ±10%, 50/60Hz, Single-phase Note *1 : The power rating specifications at ambient temperature – 25°C Note *2 : The range is automatically or forcing to range II only in CC Mode Note *3 : If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note *4 : Operating temperature range is 0–40°C * all specifications apply for 25°C±5°C | SPECIFICATIONS | DEL FATEC | 750 7500 | DEI 50300 | 150 1000 | DEL 50200 | 750 2000 | DEL 50246 | 750 2000 | |---|--|---|--|--|---|--|---|--| | MODEL
Power [®] | PEL-5015C | | PEL-5018C | | PEL-5020C | | PEL-50240 | | | Current | 0 ~ 150A | 0 ~ 1500A | 0 ~ 180A | 0 ~ 1800A | 0 ~ 200A | 0 ~ 2000A | 0 ~ 200A | kW
0 ~ 2000A | | Voltage | | | | | 150V | | | 200011 | | Min. Operating Voltage | 0.7V @ | 1500A | 0.7V @ | 1800A | 0.7V @ | 2000A | 0.7V @ | 2000A | | Protections | | | | | 9.00 | | | | | Over Power Protection (OPP) Over Current Protection (OCP) | | | | | 05%
04% | | | | | Over Voltage Protection (OVP) | | | | | 05% | | | | | Over Temp Protection (OTP) | | | | | C±5°C | | | | | Constant Current Mode | | | | | | | | | | Range ^{©2}
Resolution | 150A | 1500A | 180A | 1800A | 200A | 2000A | 200A | 2000A | | Accuracy ^{†3} | 2.4mA | 24mA | 2.88mA | 28.8mA
± 0.05% of (Set | 3.2mA | 32mA | 3.2mA | 32mA | | Constant Resistance Mode | | | | 1 0.0370 01 (36) | tillig + Kallge) | | | | | Range | 6000Ω~0.1Ω | 0.1Ω~0.0005Ω | 5000Ω~0.0833Ω | 0.0833Ω~0.0004Ω | 4500Ω~0.075Ω | 0.075Ω~0.0004Ω | 4500Ω~0.075Ω | 0.075Ω~0.0004Ω | | Resolution | 166.666µS | 1.667μΩ | 200µS | 1.389μΩ | 222.22µS | 1.25μΩ | 222.22µS | 1.25μΩ | | Accuracy Constant Voltage Mode | | | | ±0.2% of (Set | tting + Range) | | | | | Range | | | | 15 | 50V | | | | | Resolution | | | | | mV | | | | | Accuracy | | | | ± 0.05% of (S | etting + Range) | | | | | Constant Power Mode
Range | 1500W | 15000W | 1800W | 18000W | 2000W | 20000W | 2400W | 24000W | | Resolution | 24mW | 240mW | 28.8mW | 288mW | 32mW | 320mW | 38.4mW | 384mW | | Accuracy | ± 0.1% of | | (Setting+Range) | | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | | Constant Voltage Mode + Co | | | 1500 | 10004 | 1504 | 20004 | 1501/ | 20004 | | Range
Resolution | 150V
2.5mV | 1500A
24mA | 150V
2.5mV | 1800A
28.8mA | 150V
2.5mV | 2000A
32mA | 150V
2.5mV | 2000A
32mA | | Accuracy | 2.3 | 211101 | 2.5 | | tting + Range) | 32.117 | 2.51117 | 3211171 | | Constant Voltage Mode + Co | | | | | | | | | | Range | 150V | 15000W | 150V | 18000W | 150V | 20000W | 150V | 24000W | | Resolution
Accuracy | 2.5 mV | 240mW | 2.5mV | 288mW
+ 1.0% of (Se | 2.5mV
tting + Range) | 320mW | 2.5 mV | 384mW | | Surge Test | | | | 11.070 01 (50 | tting i kange) | | | | | Surge & Normal current | 0~15 | 00A | 0~ | 1800A | 0~20 | A00 | 0~20 | 000A | | Surge time | 10~10 | 00ms | 10~1 | 1000ms | 10~10 | 00ms | 10~10 | 00ms | | Surge step
MPPT Mode | | | | 1- | 5 | | | | | Algorithm | | | | P | %O | | | | | Load mode | | | | (| V | | | | | P&O interval | | | 1 | 000ms~60000ms | ; resolution 1000m | S | | | | Dynamic Mode
Timing | | | | | | | | | | Thigh & Tlow | | | (| 0.010~9.999 / 99.9 | 9 / 999.9 / 9999ms | | | | | Resolution | | | | 0.001 / 0.01 | | | | | | Accuracy | 2 | | | | | | | | | | | | | | us / 1ms + 50ppm
 | | | | Slew Rate | 0.036A~2.25A/µs | 0.360A~22.5A/µs | 0.0432A~2.7A/µs | 0.432A~27A/µs | us / 1ms + 50ppm
0.048A~3A/μs | 0.48A~30A/µs | 0.048A~3A/µs | 0.48A~30A/µs | | Resolution | 0.036A~2.25A/μs
0.009A/μs | 0.360A~22.5A/μs
0.09A/μs | 0.0432A~2.7A/μs
0.0108A/μs | 0.432A~27A/μs
0.108A/μs | us / 1ms + 50ppm
0.048A~3A/μs
0.012A/μs | 0.48A~30A/μs
0.12A/μs | 0.048A~3A/μs
0.012A/μs | 0.48A~30A/μs
0.12A/μs | | | | | | 0.432A~27A/μs
0.108A/μs | us / 1ms + 50ppm
0.048A~3A/μs | | | | | Resolution Min. Rise Time Current Range | 0.009A/μs
0~150A | 0.09A/µs | 0.0108A/μs
0~180A | 0.432A~27A/μs
0.108A/μs
66.7μs | μs / 1ms + 50ppm
0.048Α~3Α/μs
0.012Α/μs
(typical) | 0.12A/μs
200~2000A | 0.012A/μs
0~200A | 0.12A/μs
200~2000A | | Resolution Min. Rise Time Current Range Resolution | 0.009A/µs | 0.09A/µs | 0.0108A/μs | 0.432A~27A/μs
0.108A/μs
66.7μs | us / 1ms + 50ppm
0.048Α~3Α/μs
0.012Α/μs
(typical) | 0.12A/μs | 0.012A/µs | 0.12A/μs | | Resolution Min. Rise Time Current Range Resolution Measurement | 0.009A/μs
0~150A | 0.09A/µs | 0.0108A/μs
0~180A | 0.432A~27A/μs
0.108A/μs
66.7μs | μs / 1ms + 50ppm
0.048Α~3Α/μs
0.012Α/μs
(typical) | 0.12A/μs
200~2000A | 0.012A/μs
0~200A | 0.12A/μs
200~2000A | | Resolution Min. Rise Time Current Range Resolution | 0.009A/μs
0~150A | 0.09A/µs | 0.0108A/μs
0~180A | 0.432A~27A/μs
0.108A/μs
66.7μs | μs / 1ms + 50ppm
0.048Α~3Α/μs
0.012Α/μs
(typical) | 0.12A/μs
200~2000A | 0.012A/μs
0~200A | 0.12A/μs
200~2000A | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back | 0.009A/μs
0~150A
2.4mA | 0.09A/μs
150~1500A
24mA | 0.0108A/µs
0~180A
2.88mA | 0.432A-27A/µs
0.108A/µs
66.7µs
180~1800A
28.8mA
15~150V
2.5mV | us / 1ms + 50ppm
0.048A~3A/µs
0.012A/µs
(typical)
0-200A
3.2mA
0-15V
0.25mV | 0.12A/µs
200~2000A
32mA | 0.012A/μs
0~200A
3.2mA | 0.12A/µs
200~2000A
32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.009A/µs 0-150A 2.4mA | 0.09A/μs
150~1500A
24mA | 0.0108A/µs
0~180A
2.88mA | 0.432A-27A/µs
0.108A/µs
66.7µs
180~1800A
28.8mA
15~150V
2.5mV | μs / 1ms + 50ppm
0.048Α-3Α/μs
0.012Α/μs
(typical)
0-200Α
3.2mA | 0.12A/μs
200-2000A
32mA | 0.012A/µs 0~200A 3.2mA | 0.12A/µs
200~2000A
32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back | 0.009A/µs 0-150A 2.4mA 0-15V 0.25mV | 0.09A/µs 150~1500A 24mA 15~150V 2.5mV | 0.0108A/μs 0-180A 2.88mA 0-15V 0.25mV | 0.432A-27A/µs 0.108A/µs 66.7µs 180-1800A 28.8mA 15-150V 2.5mV ±0.025% of (Re | us / 1ms + 50ppm
0.048A~3A/µs
0.012A/µs
(typical)
0-200A
3.2mA
0-15V
0.25mV
eading + Range) | 0.12A/µs 200-2000A 32mA 15-150V 2.5mV | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV | 0.12A/μs
200-2000A
32mA
15-150V
2.5mV | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.009A/µs 0-150A 2.4mA | 0.09A/μs
150~1500A
24mA | 0.0108A/µs
0~180A
2.88mA | 0.432A-27A/µs
0.108A/µs
66.7µs
180~1800A
28.8mA
15~150V
2.5mV | us / 1ms + 50ppm
0.048A~3A/µs
0.012A/µs
(typical)
0-200A
3.2mA
0-15V
0.25mV | 0.12A/μs
200-2000A
32mA | 0.012A/µs 0~200A 3.2mA | 0.12A/µs
200~2000A
32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy | 0.009A/µs 0.150A 2.4mA 0.15V 0.25mV 0.750A | 0.09A/µs 150~1500A 24mA 15~150V 2.5mV | 0.0108A/μs 0180A 2.88mA 015V 0.25mV | 0.432A-27A/µs 0.108A/µs 66.7µs 180~1800A 28.8mA 15–150V 2.5mV ±0.025% of (Re | us / 1ms + 50ppm
0.048A~3A/µs
0.012A/µs
(typical)
0~200A
3.2mA
0~15V
0.25mV
eading + Range) | 0.12A/µs 200-2000A 32mA 15-150V 2.5mV | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV | 0.12A/µs 200~2000A 32mA 15~150V 2.5mV | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back | 0.009A/µs 0-150A 2.4mA 0-15V 0.25mV 0-150A 2.4mA | 0.09A/µs 150~1500A 24mA 15–150V 2.5mV 15–1500A 24mA | 0.0108A/µs 0.180A 2.88mA 0.15V 0.25mV 0.180A 2.88mA | 0.432A-27A/µs 0.108A/µs 66.7µs 180-1800A 28.8mA 15-150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA ± 0.05% of (Re | us / 1ms + 50ppm
0.048A~3A/µs
0.012A/µs
(typical)
0-200A
3.2mA
0-15V
0.25mV
eading + Range)
0-200A
3.2mA
eading + Range) | 0.12A/µs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA | 0.12A/µs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution | 0.009A/µs 0.150A 2.4mA 0.15V 0.25mV 0.750A | 0.09A/µs 150~1500A 24mA 15–150V 2.5mV 15–1500A 24mA | 0.0108A/μs 0180A 2.88mA 015V 0.25mV | 0.432A-27A/µs 0.108A/µs 66.7µs 180~1800A 28.8mA 15–150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA | us / 1ms + 50ppm
0.048A-3A/µs
0.012A/µs
(typical)
0-200A
3.2mA
0-15V
0.25mV
eading + Range)
0-200A
3.2mA
2000 | 0.12A/µs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA | 0.12A/µs 200~2000A 32mA 15~150V 2.5mV | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back | 0.009A/µs 0-150A 2.4mA 0-15V 0.25mV 0-150A 2.4mA | 0.09A/µs 150~1500A 24mA 15–150V 2.5mV 15–1500A 24mA | 0.0108A/µs 0.180A 2.88mA 0.15V 0.25mV 0.180A 2.88mA | 0.432A-27A/µs 0.108A/µs 66.7µs 180~1800A 28.8mA 15–150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA | us / 1ms + 50ppm
0.048A~3A/µs
0.012A/µs
(typical)
0-200A
3.2mA
0-15V
0.25mV
eading + Range)
0-200A
3.2mA
eading + Range) | 0.12A/µs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA | 0.12A/μs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy General | 0.009A/µs 0.150A 2.4mA 0.15V 0.25mV 0.150A 2.4mA | 0.09A/μs 150~1500A 24mA 15–150V 2.5mV 15~1500A 24mA | 0.0108A/µs 0.0108A/µs 0.0108A 2.88mA 0.000 0.000 1800 0.000 | 0.432A-27A/μs 0.108A/μs 66.7μs 180-1800A 28.8mA 15-150V 2.5mV ±0.025% of (Re 180-1800A 28.8mA ± 0.05% of (Re 000W ± 0.06% of (Re | us / 1ms + 50ppm 0.048A~3A/µs 0.012A/µs (typical) 0~200A 3.2mA 0~15V 0.25mV eading + Range) 0~200A 3.2mA 200(200A) 200A 200A 200A 200A 200A 200A 200A | 0.12A/μs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA | 0.12A/μs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current | 0.009A/µs 0.150A 2.4mA 0.15V 0.25mV 0.150A 2.4mA | 0.09A/µs 150~1500A 24mA 15~150V 2.5mV 15~1500A 24mA | 0.0108A/µs 0-180A 2.88mA 0-15V 0.25mV 0-180A 2.88mA | 0.432A-27A/μs 0.108A/μs 66.7μs 180~1800A 28.8mA 15~150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA ± 0.05% of (Re | us / 1ms + 50ppm 0.048A-3A/µs 0.012A/µs 0.012A/µs (typical) 0-200A 3.2mA 0-15V 0.25mV eading + Range) 0-200A 3.2mA 2000 eading + Range) | 0.12A/μs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA | 0.12A/µs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage | 0.009A/µs 0.150A 2.4mA 0.15V 0.25mV 0.150A 2.4mA | 0.09A/μs 150~1500A 24mA 15–150V 2.5mV 15~1500A 24mA | 0.0108A/µs 0.0108A/µs 0.0108A 2.88mA 0.000 0.000 1800 0.000 | 0.432A-27A/μs 0.108A/μs 66.7μs 180-1800A 28.8mA 15-150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA ± 0.05% of (Re 000W ± 0.06% of (Re | us / 1ms + 50ppm 0.048A-3A/µs 0.012A/µs 0.012A/µs (typical) 0-200A 3.2mA 0-15V 0.25mV eading + Range) 0-200A 3.2mA 2000 eading + Range) 0.000 eading + Range) | 0.12A/μs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA | 0.12A/μs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy Fower Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage | 0.009A/µs 0.150A 2.4mA 0.15V 0.25mV 0.150A 2.4mA | 0.09A/μs 150~1500A 24mA 15–150V 2.5mV 15–1500A 24mA | 0.0108A/µs 0.180A 2.88mA 0.15V 0.25mV 0.180A 2.88mA | 0.432A-27A/μs 0.108A/μs 66.7μs 180-1800A 28.8mA 15-150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA ± 0.05% of (Re 00W ± 0.06% of (Re 04Ω 00A 0.25 - 0 - 0 | us / 1ms + 50ppm 0.048A~3A/µs 0.012A/µs 0.012A/µs (typical) 0~200A 3.2mA 0~15V 0.25mV eading + Range) 0~200A 3.2mA 2000 eading + Range) 0.000 0.000 2000 - 62.5V
62.5V | 0.12A/μs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA 240 0.00 | 0.12A/μs 200~2000A 32mA 15–150V 2.5mV 200~2000A 32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) | 0.009A/µs 0-150A 2.4mA 0-15V 0.25mV 0-150A 2.4mA 1500 150 10.00 150 10.00 150 10.00 150 10.00 150 | 0.09A/μs 150–1500A 24mA 15–150V 2.5mV 15–1500A 24mA 00W 00SΩ 00A 0VA x757.3mm | 0.0108A/μs 0-180A 2.88mA 0-15V 0.25mV 0-180A 2.88mA 1800 1800 1800 1800 | 0.432A-27A/μs 0.108A/μs 66.7μs 180~1800A 28.8mA 15~150V 2.5mV ±0.025% of (Re 180~1800A 0.05% of (Re 000W ±0.06% of (Re 000W 0.25 - 0 - 1 00VA x757.3mm | us / 1ms + 50ppm 0.048A-3A/µs 0.012A/µs 0.012A/µs (typical) 0-200A 3.2mA 0-15V 0.25mV eading + Range) 0-200A 3.2mA 2000 ading + Range) 0.00 0.25mV eading + Range) | 0.12A/μs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA 240 0.00 20 | 0.12A/μs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD (Not Included Sack Mount Rit, wheels) | 0.009A/µs 0-150A 2.4mA 0-15V 0.25mV 0-150A 2.4mA 1500 150 1000 150 132 760.6x481 656.6x445 | 0.09A/μs 150~1500A 24mA 15–150V 2.5mV 15–1500A 24mA 000W | 0.0108A/µs 0-180A 2.88mA 0-15V 0.25mV 0-180A 2.88mA 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 | 0.432A-27A/μs 0.108A/μs 66.7μs 180-1800A 28.8mA 15-150V 2.5mV ±0.025% of (Re 180-1800A 28.8mA ± 0.05% of (Re 000W ± 0.06% of (Re 000A 0.25 - 0 - 1 00A 2x757.3mm | us / 1ms + 50ppm 0.048A-3A/µs 0.012A/µs 0.012A/µs (typical) 0-200A 3.2mA 0-15V 0.25mV eading + Range) 0-200A 3.2mA 2000 eading + Range) 0.00 200 62.5V 62.5V 62.5V 170 886.6x481 782.6x4445. | 0.12A/μs 200–2000A 32mA 15–150V 2.5mV 200–2000A 32mA 00W | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA 240 0.00 20 170 886.6x481 782.6x4455 | 0.12A/μs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA 000W | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD) Not included Rack Mount Kit, wheele) Weight | 0.009A/µs 0-150A 2.4mA 0-15V 0.25mV 0-150A 2.4mA 1500 150 1000 150 132 760.6x481 656.6x445 | 0.09A/μs 150–1500A 24mA 15–150V 2.5mV 15–1500A 24mA 00W 00SΩ 00A 0VA x757.3mm | 0.0108A/µs 0-180A 2.88mA 0-15V 0.25mV 0-180A 2.88mA 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 | 0.432A-27A/μs 0.108A/μs 66.7μs 180~1800A 28.8mA 15–150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA ± 0.05% of (Re 00W ± 0.06% of (Re 00A 0.25 - 0 - 1 0VA x757.3mm kg | us / 1ms + 50ppm 0.048A~3A/µs 0.012A/µs 0.012A/µs (typical) 0~200A 3.2mA 0~15V 0.25mV eading + Range) 0~200A 3.2mA 200(eading + Range) 0.00 200 200 405.5V 62.5V 62.5V 62.5V 170 886.6x481 782.6x445. | 0.12A/μs 200–2000A 32mA 15–150V 2.5mV 200–2000A 32mA 00W | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA 240 0.00 20 170 886.6x481 782.6x4455 | 0.12A/μs 200-2000A 32mA 15-150V 2.5mV 200-2000A 32mA 000W | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD (Net Included Rack Mount Kit,wheels) Weight Temperature*4 | 0.009A/µs 0-150A 2.4mA 0-15V 0.25mV 0-150A 2.4mA 1500 150 1000 150 132 760.6x481 656.6x445 | 0.09A/μs 150~1500A 24mA 15–150V 2.5mV 15–1500A 24mA 000W | 0.0108A/µs 0-180A 2.88mA 0-15V 0.25mV 0-180A 2.88mA 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 | 0.432A-27A/μs 0.108A/μs 66.7μs 180~1800A 28.8mA 15~150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA ± 0.05% of (Re 00W ± 0.06% of (Re 00W 20.25 or 0 or 0 00A 2757.3mm 2x757.3mm kg | us / 1ms + 50ppm 0.048A-3A/µs 0.012A/µs 0.012A/µs (typical) 0-200A 3.2mA 0-15V 0.25mV eading + Range) 0-200A 3.2mA 2000 eading + Range) 0.00 200 62.5V 62.5V 62.5V 170 886.6x481 782.6x445. 140. | 0.12A/μs 200–2000A 32mA 15–150V 2.5mV 200–2000A 32mA 00W | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA 240 0.00 20 170 886.6x481 782.6x4455 | 0.12A/μs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA 000W | | Resolution Min. Rise Time Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD) Not included Rack Mount Kit, wheele) Weight | 0.009A/µs 0.150A 2.4mA 0.15V 0.25mV 0.150A 2.4mA 1500 150 1000 150 1100 1100 1100 1100 1100 1100 | 0.09A/μs 150~1500A 24mA 15–150V 2.5mV 15–1500A 24mA 000W | 0.0108A/µs 0-180A 2.88mA 0-15V 0.25mV 0-180A 2.88mA 1800 1800 1800 132 760.6x481 656.6x445. | 0.432A-27A/μs 0.108A/μs 66.7μs 180~1800A 28.8mA 15~150V 2.5mV ±0.025% of (Re 180~1800A 28.8mA ± 0.05% of (Re 000W ± 0.06% of (Re 000W 20.25 - 0 - 1 00A 20.757.3mm 20.757.3mm 20.76 | us / 1ms + 50ppm 0.048A~3A/µs 0.012A/µs 0.012A/µs (typical) 0~200A 3.2mA 0~15V 0.25mV eading + Range) 0~200A 3.2mA 200(eading + Range) 0.00 200 200 405.5V 62.5V 62.5V 62.5V 170 886.6x481 782.6x445. | 0.12A/μs 200–2000A 32mA 15–150V 2.5mV 200–2000A 32mA 00W 04Ω 00A 0VA x757.3mm 2x757.3mm 5 kg | 0.012A/µs 0-200A 3.2mA 0-15V 0.25mV 0-200A 3.2mA 240 0.00 20 170 886.6x481 782.6x445. | 0.12A/μs 200~2000A 32mA 15~150V 2.5mV 200~2000A 32mA 000W | #### Cooling: Advanced Fan Cooled Input AC Power : $100\sim240$ Vac $\pm10\%$, 50/60Hz, Single-phase Note *1 : The power rating specifications at ambient temperature ~ 25°C Note *2 : The range is automatically or forcing to range II only in CC Mode Note *3 : If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note *4 : Operating temperature range is 0~40°C * all specifications apply for 25°C±5°C Simply Reliable | Good Will Instrument Co., Ltd. | SPECIFICATIONS | | | | | | | | |--|------------------------------|--------------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|--| | MODEL | PEL-5008 | C-600-560 | PEL-5010 | C-600-700 | PEL-5012 | C-600-840 | | | Power*1 | | kW | 10 | kW | 12 | kW | | | Current | 0 ~ 56A | 0 ~ 560A | 0 ~ 70A | 0 ~ 700A | 0 - 84A | 0 - 840A | | | Voltage | | | 600V | 6/1 | W ·· | | | | Min. Operating Voltage | 10V @ | 9 560A | 10V @ | 700A | 10∨ € | 9 840A | | | Protections Over Power Protection (OPP) | | 10 | F0/ | | | | | | Over Power Protection (OPP) Over Current Protection (OCP) | | | 5%
4% | | | | | | Over Voltage Protection (OVP) | | | 5% | | | | | | Over Temp Protection (OTP) | | | ±5°C | | | × | | | Constant Current Mode | 1 | 71.2 | | | | | | | Range*2 | 56A | 560A | 70A | 700A | 84A | 840A | | | Resolution | 0.896mA | 8.96mA | 1.12mA | 11.2mA | 1.334mA | 13.44mA | | | Accuracy°3 | | ± 0.05% of (Se | etting + Range) | | | | | | Constant Resistance Mode | 1 414410 1 44410 | | | | | | | | Resolution Resolution | 64284Ω~1.0714Ω | | 51427.2Ω~0.85712Ω | 0.85712Ω~0.014304Ω | 42856Ω~0.714267Ω | 0.714267Ω~0.01192Ω | | | Accuracy | 15.5559µS | 17.88μΩ
±0.2% of (Set | 19.4449µS | 14.304μΩ | 23.3339µS | 11.92μΩ | | | Constant Voltage Mode | | 10.270 01 (36) | illig + Kange) | | | | | | Range | T | 60 | 0V | | | | | | Resolution | 1 | | mV | | | | | | Accuracy | | ± 0.05% of (Se | | | | | | | Constant Power Mode | | | | | | | | | Range | 800W | 8000W | 1000W | 10000W | 1200W | 12000W | | | Resolution | 12.8mW | 128mW | 16mW | 160mW | 19.2mW | 192mW | | | Accuracy | ± 0.2% of
(Setting+Range) | ± 0.1% of
(Setting+Range) | ± 0.2% of
(Setting+Range) | ± 0.1% of
(Setting+Range) | ± 0.2% of
(Setting+Range) | ± 0.1% of
(Setting+Range) | | | Constant Voltage Mode + Constant Current Mode | (Jetting+Range) | (Jetting+Range) | (Jetting+Kange) | (Jennigthange) | (Jetting+Kange) | (Jetting+Range) | | | Range | 600V | 560A | 600V | 700A | 600V | 840A | | | Resolution | 10mV | 8.96mA | 10mV | 11.2mA | 10mV | 13.44mA | | | Accuracy | | ± 1.0% of (Se | tting + Range) | | | | | | Constant Voltage Mode + Constant Power Mode | | | | | | | | | Range | 600V | 8000W | 600V | 10000W | 600V | 12000W | | | Resolution | 10mV | 128mW | 10mV | 160mW | 10mV | 192mW | | | Surge Test | | ± 1.0% of (Se | tting + Range) | | | | | | Surge & Normal current | 0 | 560A | 0-1 | 700A | 0-1 | 340A | | | Surge time | | 000ms | | 000ms | | 000ms | | | Surge step | | | ~5 | | | | | | MPPT Mode | | | | | | | | | Algorithm | | | &O | | | | | | Load mode | | | CV | | | | | | P&O interval Dynamic Mode | | 1000ms~60000ms | ; resolution 1000m | 15 | | | | | Timing | | | | | | | | | Thigh &
Tlow | 1 | 0.010-9.999 / 99.9 | 9 / 999.9 / 9999m | s | | | | | Resolution | | | 1 / 0.1 / 1ms | | | | | | Accuracy | | | µs / 1ms + 50ppm | | | | | | Slew Rate | 0.0288A-1.8A/µs | | 0.0336A~2.1A/µs | 0.336A~21A/µs | 0.0384A-2.4/µs | 0.384A-24A/µs | | | Resolution | 0.0072A/μs | 0.072A/µs | 0.0084A/µs | 0.084A/µs | 0.0096A/µs | 0.096A/µs | | | Current | 0.554 | FC FC04 | 0.704 | 70 7004 | 0.044 | 00.0 | | | Range Resolution | 0~56A
0.896mA | 56~560A
8.96mA | 0~70A
1.12mA | 70~700A
11.2mA | 0~84A
1.334mA | 84~840A
13.34mA | | | Measurement | 0.030IIIA | 8.30IIIA | 1.121117 | 11.21116 | 1.334111A | 13.34111A | | | Voltage Read Back | | | | | | | | | Range (5 Digital) | 0~60V | 60~600V | 0~60V | 60~600V | 0~60V | 60~600V | | | Resolution | 1mV | 10mV | 1mV | 10mV | 1mV | 10mV | | | Accuracy | 2 | ±0.025% of (Re | ading + Range) | <u></u> | · | 2 | | | Current Read Back | | | | 70 7001 | | | | | Range (5 Digital) Resolution | 0-56A
0.896mA | 56~560A
8.96mA | 0~70A
1.12mA | 70~700A
11.2mA | 0~84A
1.334mA | 84~840A
13.34mA | | | Accuracy | 0.090IIIA | | ading + Range) | 11.211114 | 1.334IIIA | 13.34IIIA | | | Power Read Back | | 10.0370 01 (KE | adding + natige) | | | | | | Range (5 Digital) | 800 | 00W | 100 | 00W | 120 | 00W | | | Accuracy | 2 | ± 0.06% of (Re | ading + Range) | | | | | | General | | | | | | | | | Typical Short Resistance | | 179Ω | | 43Ω | | 120Ω | | | Maximum Short Current Load ON Voltage | 56 | 60A | 100V | 0A | 84 | A04 | | | LUAU OI VUITARE | | | 100V | | | | | | | 1 | J | 876.575 | | | V/A | | | Load OFF Voltage | 926 | OVA | 920VA 920VA 920VA | | | | | | | | 0VA
x757.3mm | | | | | | | Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD)Net Include Back Mount Rt.wheele) | 571.6x481 | | 920
571.6x481x
467.6x445.2 | 757.3mm | 571.6x481x
467.6x445.2 | 757.3mm | | | Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD Net indused Rack Majort Kit, wheels) Weight | 571.6x481
467.6x445. | x757.3mm
2x757.3mm
5 kg | 571.6x481x
467.6x445.2
84. | 757.3mm | 571.6x481x
467.6x445.2 | 757.3mm | | | Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD)Net Include Back Mount Rt.wheele) | 571.6x481
467.6x445. | x757.3mm
2x757.3mm
5 kg
0~4 | 571.6x481x
467.6x445.2 | 757.3mm
x757.3mm | 571.6x481x
467.6x445.2 | 757.3mm
x757.3mm | | Cooling: Advanced Fan Cooled Input AC Power: 100~240 Vac ±10%, 50/60Hz, Single-phase Note *1 : The power rating specifications at ambient temperature – 25°C Note *2 : The range is automatically or forcing to range II only in CC Mode Note *3 : If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note *4 : Operating temperature range is 0–40°C · all specifications apply for 25°C±5°C | SPECIFICATIONS | | | | | | | | | |---|--|---|--|--|--|---|--|---| | MODEL | PEL-501 | 5C-600-1050 | PEL-50180 | C-600-1260 | PEL-5020C | -600-1400 | PEL-5024C- | 600-1680 | | Power*1 | | kW | | kW | | kW | 24k | | | Current
Voltage | 0 ~ 105A | 0 ~ 1050A | 0 ~ 126A | 0 ~ 1260A | 0 ~ 140A
600V | 0 ~ 1400A | 0 ~ 168A | 0 1680A | | Min. Operating Voltage | 10V @ | 1050A | 10V @ | 1260A | 10V @ | 1400A | 10V @ | 1680A | | Protections (ODD) | | | | | | | | | | Over Power Protection (OPP) Over Current Protection (OCP) | | | | | 5%
4% | | | | | Over Voltage Protection (OVP) | | | | | 5% | | | | | Over Temp Protection (OTP) | | | | 90℃ | ±5°C | | | | | Constant Current Mode
Range*2 | 105A | 1050A | 126A | 1260A | 140A | 1400A | 168A | 1680A | | Resolution | 1.68mA | 16.8mA | 2.016mA | 20.16mA | 2.24mA | 22.4mA | 2.688mA | 26.88mA | | Accuracy*3 | | | | ± 0.05% of (S | etting + Range) | | | | | Constant Resistance Mo
Range | de
34284.8~0.571413Ω | 0.571413~0.009536Ω | 28570.67~0.476178Ω | 0.476178~0.007947Ω | 25713.6~0.42856Ω | 0.42856~0.007152Ω | 21428~0.357133Ω | 0.357133~0.00596Ω | | Resolution | 29.1674µS | 9.536μΩ | 35.0009µS | 7.947μΩ | 38.8899µS | 7.152μΩ | 46.6679µS | 5.96μΩ | | Accuracy | | | 5: 47 | ±0.2% of (Se | tting + Range) | 200 | 192 | VS-V | | Constant Voltage Mode
Range | | | | 60 | 10V | | | | | Resolution | | | | | mV | | | | | Accuracy | | | | ± 0.05% of (Se | etting + Range) | | | | | Constant Power Mode
Range | 1500W | 15000W | 1800W | 18000W | 2000W | 20000W | 2400W | 24000W | | Resolution | 24mW | 240mW | 28.8mW | 288mW | 32mW | 320mW | 38.4mW | 384mW | | Accuracy | ± 0.2% of
(Setting+Range) | ± 0.1% of | ± 0.2% of | ± 0.1% of
(Setting+Range) | ± 0.2% of | ± 0.1% of | ± 0.2% of | ± 0.1% of | | Constant Voltage Mode | | (Setting+Range) | Range | 600V | 1050A | 600V | 1260A | 600V | 1400A | 600V | 1680A | | Resolution | 10mV | 16.8mA | 10mV | 20.16mA | 10mV | 22.4mA | 10mV | 26.88mA | | Accuracy Constant Voltage Mode | + Constant Powe | er Mode | | ± 1.0% of (Se | tting + Range) | | | | | Range | 600V | 15000W | 600V | 18000W | 600V | 20000W | 600V | 24000W | | Resolution | 10mV | 240mW | 10mV | 288mW | 10mV | 320mW | 10mV | 384mW | | Accuracy
Surge Test | | | | ± 1.0% of (Se | tting + Range) | | | | | Surge & Normal current | | 050A | 0~12 | 260A | 0~1 | 400A | 0~1 | 680A | | Surge time | | | | | | | | | | | 10~10 | 000ms | 10~10 | 000ms | | 000ms | 10~10 | 000ms | | Surge step | 10~10 | 000ms | 10~10 | | ~5 | 000ms | 10~10 | 000ms | | Surge step
MPPT Mode
Algorithm | 10~10 | 000ms | 10~10 | 1
P8 | ~5
&O | 000ms | 10-10 | 000ms | | Surge step MPPT Mode Algorithm Load mode | 10~10 | 000ms | | 1
P8 | ~5
&O
CV | | 10~10 | 000ms | | Surge step
MPPT Mode
Algorithm | 10~10 | 000ms | | 1
P8 | ~5
&O | | 10~10 | 000ms | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing | 10~1(| 000ms | 1 | 1.
P8
(
000ms~60000ms | ~5
&O
CV
; resolution 1000m | ıs | 10~10 | 000ms | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow | 10~1(| 000ms | 1 | P8
(000ms~60000ms | ~5
&O
V
; resolution 1000m | ıs | 10~10 | 000ms | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing | 10~1 | 000ms | 1 | P8
C
0000ms~60000ms
0.010~9.999 / 99.9
0.001 / 0.01 | ~5
&O
CV
; resolution 1000m | ıs | 10-16 | 000ms | | Surge step MPPT
Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate | 0.0432A~2.7A/µs | 0.432A~27A/µs | 1
(
0.048Α~3Α/μs | Pl
(000ms-60000ms
0.0010-9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 10µs
0.48A-30A/µs | -5
&O
'V
; resolution 1000m
19 / 999.9 / 9999m
/ 0.1 / 1 ms
sy / 1ms + 50ppm
0.0528A-3.3A/µs | s
0.528A~33A/µs | 0.0576A~3.6A/µs | 0.576A~36A/µs | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution | | | 1 | PR
(0000ms-60000ms
0.010-9.999 / 99.99
0.001 / 0.01
1 μs / 10μs / 100 | ~5
&O
:V
; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
us / 1ms + 50ppm | is
s | | | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate | 0.0432A~2.7A/µs | 0.432A~27A/µs | 1
(
0.048Α~3Α/μs | Pl
(000ms-60000ms
0.0010-9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 10µs
0.48A-30A/µs | -5
&O
'V
; resolution 1000m
19 / 999.9 / 9999m
/ 0.1 / 1 ms
sy / 1ms + 50ppm
0.0528A-3.3A/µs | s
0.528A~33A/µs | 0.0576A~3.6A/µs | 0.576A~36A/µs | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution | 0.0432A~2.7A/µs
0.0108A/µs | 0.432A~27A/μs
0.108A/μs | 0.048Α~3Α/μs
0.012Α/μs | 1
PR
(000ms-60000ms
0.001-9.999 / 99.9
0.001 / 0.01
1µs / 10µs / 100
0.48A-30A/µs
0.12A/µs | ~5
&O
EV; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
us / 1ms + 50ppm
0.0528A~3.3A/µs
0.0132A/µs | 0.528A~33A/µs
0.132A/µs | 0.0576A-3.6A/μs
0.0144A/μs | 0.576A~36A/μs
0.144A/μs | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement | 0.0432A-2.7A/µs
0.0108A/µs
0-105A | 0.432A-27A/µs
0.108A/µs
105-1050A | 0.048A-3A/μs
0.012A/μs
0-126A | 1 P2 (000ms-60000ms 0.001 / 0.01 | -5
&O
V; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
20 / 1ms + 50ppm
0.0528A-3.3A/µs
0.0132A/µs | 0.528A~33A/µs
0.132A/µs
140~1400A | 0.0576A-3.6A/µs
0.0144A/µs
0-168A | 0.576A-36A/μs
0.144A/μs
168-1680A | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution | 0.0432A-2.7A/µs
0.0108A/µs
0-105A | 0.432A-27A/µs
0.108A/µs
105-1050A | 0.048A-3A/μs
0.012A/μs
0-126A | 1 P2 (000ms-60000ms 0.001 / 0.01 | -5
&O
V; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
20 / 1ms + 50ppm
0.0528A-3.3A/µs
0.0132A/µs | 0.528A~33A/µs
0.132A/µs
140~1400A | 0.0576A-3.6A/µs
0.0144A/µs
0-168A | 0.576A-36A/μs
0.144A/μs
168-1680A | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution | 0.0432A~2.7A/µs
0.0108A/µs
0~105A
1.68mA | 0.432A~27A/μs
0.108A/μs
105~1050A
16.8mA | 0.048A~3A/μs
0.012A/μs
0.012A
0.126A
2.016mA | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 10µs / 10µs 0.12A/µs 126-1260A 20.16mA | -5
&O
EV; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
us / 1ms + 50ppm
0.0528A-3.3A/µs
0.0132A/µs
0.0132A/µs
0.0140A
2.24mA | 0.528A~33A/µs
0.132A/µs
140~1400A
22.4mA | 0.0576A-3.6A/μs
0.0144A/μs
0-168A
2.688mA | 0.576A~36A/µs
0.144A/µs
168~1680A
26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.0432A~2.7A/µs
0.0108A/µs
0~105A
1.68mA | 0.432A-27A/µs
0.108A/µs
105-1050A
16.8mA | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 10µs / 10µs 0.12A/µs 126-1260A 20.16mA | -5
&O
-7
; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
2 / 1ms + 50ppm
0.0528A-3.3A/µs
0.0132A/µs
0-140A
2.24mA | 0.528A-33A/µs
0.132A/µs
140-1400A
22.4mA | 0.0576A~3.6A/µs
0.0144A/µs
0~168A
2.688mA | 0.576A~36A/µs
0.144A/µs
168~1680A
26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution | 0.0432A~2.7A/µs
0.0108A/µs
0~105A
1.68mA | 0.432A-27A/µs
0.108A/µs
105-1050A
16.8mA | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 10µs / 10µs 0.12A/µs 126-1260A 20.16mA | -5
&O
EV; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
us / 1ms + 50ppm
0.0528A-3.3A/µs
0.0132A/µs
0.0132A/µs
0.0140A
2.24mA | 0.528A-33A/µs
0.132A/µs
140-1400A
22.4mA | 0.0576A~3.6A/µs
0.0144A/µs
0~168A
2.688mA | 0.576A~36A/µs
0.144A/µs
168~1680A
26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution | 0.0432A-2.7A/µs
0.0108A/µs
0-105A
1.68mA
0-60V
1mV | 0.432A-27A/µs
0.108A/µs
105-1050A
16.8mA
60-600V
10mV | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100 0.48A-30A/µs 0.12A/µs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re | -5 &O CV ; resolution 1000m 19 / 999.9 / 9999m 1 / 0.1 / 1ms 25 / 1ms + 50ppm 0.0528A-3.3A/µs 0.0132A/µs 0.0132A/µs 0-140A 2.24mA 0-60V 1mV eading + Range) 0-140A 2.24mA | 0.528A-33A/µs
0.132A/µs
140-1400A
22.4mA
60-600V
10mV | 0.0576A-3.6A/µs
0.0144A/µs
0-168A
2.688mA
0-60V
1mV | 0.576A-36A/µs
0.144A/µs
168-1680A
26.88mA
60-600V
10mV | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy | 0.0432A~2.7A/µs 0.0108A/µs 0~105A 1.68mA 0~60V 1mV | 0.432A-27A/µs 0.108A/µs 105-1050A 16.8mA 60-600V 10mV | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 100 0.48A-30A/µs 0.12A/µs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re | -5
&O
:V
; resolution 1000m
19 / 999.9 / 9999m
1 / 0.1 / 1ms
us / 1ms + 50ppm
0.0528A-3.3A/µs
0.0132A/µs
0-140A
2.24mA
0-60V
1mV
eading + Range) | 0.528A-33A/µs
0.132A/µs
140-1400A
22.4mA
60-600V
10mV | 0.0576A-3.6A/µs 0.0144A/µs 0-168A 2.688mA 0-60V 1mV | 0.576A-36A/µs
0.144A/µs
168-1680A
26.88mA
60-600V
10mV | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) | 0.0432A~2.7A/µs 0.0108A/µs 0~105A 1.68mA 0~60V 1mV 0~105A 1.68mA | 0.432A-27A/µs 0.108A/µs 105-1050A 16.8mA 60-600V 10mV | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 10µs / 10µs 0.12A/µs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re 126-1260A 20.16mA ± 0.05% of (Re | -5 &O EV; resolution 1000m 19 / 999.9 / 9999m 1 / 0.1 / 1ms us / 1ms + 50ppm 0.0528A-3.3A/µs 0.0132A/µs 0.0132A/µs 0-140A 2.24mA 0-60V 1mV eading + Range) 0-140A 2.24mA 2.24mA | 0.528A-33A/µs
0.132A/µs
140-1400A
22.4mA
60-600V
10mV
140-1400A
22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0-168A 2.688mA 0-60V 1mV 0-168A 2.688mA | 0.576A-36A/µs
0.144A/µs
168-1680A
26.88mA
60-600V
10mV | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy | 0.0432A~2.7A/µs 0.0108A/µs 0~105A 1.68mA 0~60V 1mV 0~105A 1.68mA | 0.432A-27A/µs
0.108A/µs
105-1050A
16.8mA
60-600V
10mV
105-1050A
16.8mA | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 10µs / 10µs 0.12A/µs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re 126~1260A 20.16mA ± 0.05% of (Re | -5 &O -7 ; resolution 1000m -9 / 999.9 / 9999m -/ 0.1 / 1ms | 0.528A-33A/µs
0.132A/µs
140-1400A
22.4mA
60-600V
10mV
140-1400A
22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0-168A 2.688mA 0-60V 1mV 0-168A 2.688mA | 0.576A-36A/µs
0.144A/µs
168-1680A
26.88mA
60-600V
10mV | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital)
Accuracy | 0.0432A~2.7A/µs 0.0108A/µs 0~105A 1.68mA 0~60V 1mV 0~105A 1.68mA | 0.432A-27A/µs 0.108A/µs 105-1050A 16.8mA 60-600V 10mV 105-1050A 16.8mA | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV | 1000ms-6000ms 0.010-9.999 / 99.9 0.001 / 0.01 1ps / 10ps / 100 0.48A-30A/µs 0.12A/µs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re 126-1260A 20.16mA | -5 &O V; resolution 1000m 99 / 999.9 / 9999m / 0.1 / 1ms sy / 1ms + 50ppm 0.0528A-3.3A/µs 0.0132A/µs 0.0132A/µs 0-140A 2.24mA 0-60V 1mV eading + Range) 0-140A 2.24mA 2.24mA | 0.528A-33A/µs 0.132A/µs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0-168A 2.688mA 0-60V 1mV 0-168A 2.688mA | 0.576A-36A/µs 0.144A/µs 168-1680A 26.88mA 60-600V 10mV 168-1680A 26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Dewer Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current | 0.0432A-2.7A/µs 0.0108A/µs 0-105A 1.68mA 0-60V 1mV 0-105A 1.68mA | 0.432A-27A/µs
0.108A/µs
105-1050A
16.8mA
60-600V
10mV
105-1050A
16.8mA | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV | 1000ms-6000ms 0.010-9.999 / 99.9 0.001 / 0.01 1μs / 10μs / 10μs 0.12A/μs 0.12A/μs 126-1260A 20.16mA 40.025% of (Re 126-1260A 20.16mA ± 0.05% of (Re 000W ± 0.06% of (Re | 2000 140 140 140 140 140 140 140 140 140 | 0.528A-33A/μs 0.132A/μs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0-168A 2.688mA 0-60V 1mV 0-168A 2.688mA | 0.576A-36A/µs
0.144A/µs
168-1680A
26.88mA
60-600V
10mV | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Coeneral Typical Short Resistance Maximum Short Current Load ON Voltage | 0.0432A-2.7A/µs 0.0108A/µs 0-105A 1.68mA 0-60V 1mV 0-105A 1.68mA | 0.432A~27A/μs
0.108A/μs
105~1050A
16.8mA
60~600V
10mV
105~1050A
16.8mA | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1ps / 10ps / 10p 0.48A-30A/µs 0.12A/µs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re 126-1260A 20.16mA ± 0.05% of (Re 000W ± 0.06% of (Re | -5 &O V; resolution 1000m 99 / 999.9 / 9999m / 0.1 / 1ms sy / 1ms + 50ppm 0.0528A-3.3A/µs 0.0132A/µs 0-140A 2.24mA 0-60V 1mV eading + Range) 0-140A 2.24mA | 0.528A-33A/μs 0.132A/μs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0-168A 2.688mA 0-60V 1mV 0-168A 2.688mA | 0.576A-36A/µs
0.144A/µs
168-1680A
26.88mA
60-600V
10mV
168-1680A
26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Slew Rate Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Load ON Voltage Load OFF Voltage | 0.0432A~2.7A/µs 0.0108A/µs 0~105A 1.68mA 0~60V 1mV 0~105A 1.68mA | 0.432A~27A/μs
0.108A/μs
105—1050A
16.8mA
60~600V
10mV
105~1050A
16.8mA | 0.048A~3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV
0-126A
2.016mA | 1000ms-6000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 10µs / 10µs 0.12A/µs 126-1260A 20.16mA 20.16mA 40.025% of (Re 126-1260A 20.16mA ± 0.05% of (Re 180Ω 50A 0.4 ~ 0 ~ | -5 & O CV ; resolution 1000m | 0.528A-33A/μs 0.132A/μs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0-168A 2.688mA 0-60V 1mV 0-168A 2.688mA | 0.576A-36A/µs 0.144A/µs 168-1680A 26.88mA 60-600V 10mV 168-1680A 26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Lourent Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Load OFF Voltage Load OFF Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) | 0.0432A~2.7A/µs 0.0108A/µs 0.0108A/µs 0-105A 1.68mA 0-60V 1mV 0~105A 1.68mA | 0.432A~27A/μs
0.108A/μs
105~1050A
16.8mA
60~600V
10mV
105~1050A
16.8mA | 0.048A-3A/µs
0.012A/µs
0.012A/µs
0-126A
2.016mA
0-60V
1mV
0-126A
2.016mA | 1000ms-60000ms 0.010-9.999 / 99.9 0.001 / 0.01 1μs / 10μs / 100 0.48A-30A/μs 0.12A/μs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re 126-1260A 20.16mA ± 0.05% of (Re 000W ± 0.06% of (Re 000W 500A 0.4 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 | -5 &O -5 &O -7 ; resolution 1000m -9 / 999.9 / 9999m -/ 0.1 / 1ms -/ 1 | 0.528A-33A/μs 0.132A/μs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0.0144A/µs 0.0168A 2.688mA 0-60V 1mV 0-168A 2.688mA | 0.576A-36A/μs 0.144A/μs 168-1680A 26.88mA 60-600V 10mV 168-1680A 26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD)Prot included Rob Hount Rickshool Dimension (HxWxD) | 0.0432A~2.7A/µs 0.0108A/µs 0.0108A 1.68mA 0-60V 1mV 0~105A 1.68mA 150 0.00 10: 132 760.6x481 656.6x445. | 0.432A-27A/μs 0.108A/μs 105-1050A 16.8mA 60-600V 10mV 105-1050A 16.8mA 000W | 0.048A~3A/µs 0.012A/µs 0.012A/µs 0.0126A 2.016mA 0-60V 1mV 0-126A 2.016mA 180 0.00 120 132 760.6x481 656.6x445. | 1000ms-6000ms 0.010-9.999 / 99.9 0.001 / 0.01 1ps / 10ps / 10p 0.48A-30A/µs 0.12A/µs 126-1260A 20.16mA 60-600V 10mV ±0.025% of (Re 126-1260A 20.16mA ± 0.05% of (Re 000W ± 0.06% of (Re 800 50A 0.4 ~ 0 ~ | -5 &O EV; resolution 1000m 19 / 999.9 / 9999m 10.1 / 1ms 10.0528A-3.3A/µs 0.0132A/µs 0.0132A/µs 0.0140A 2.24mA 0-60V 1mV eading + Range) 0-140A 2.24mA 2.24mA 2.24mA 2.34mA 2.4mA 2.4mA 2.4mA 3.4mA 3. | 0.528A-33A/µs 0.132A/µs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0.0144A/µs 0.168A 2.688mA 0-60V 1mV 0-168A 2.688mA 240 10.00 166 170 886.6x481 782.6x445 | 0.576A-36A/μs 0.144A/μs 168-1680A 26.88mA 60-600V 10mV 168-1680A 26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Slew Rate Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Accuracy Current Read Back Range (5 Digital) Accuracy Courrent Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD Wai included Rusk Mount RX, whodel) Weight | 0.0432A~2.7A/µs 0.0108A/µs 0.0108A 1.68mA 0-60V 1mV 0~105A 1.68mA 150 0.00 10: 132 760.6x481 656.6x445. | 0.432A-27A/μs 0.108A/μs 105-1050A 16.8mA 60-600V 10mV 105-1050A 16.8mA | 0.048A~3A/µs 0.012A/µs 0.012A/µs 0.0126A 2.016mA 0-60V 1mV 0-126A 2.016mA 180 0.00 120 132 760.6x481 656.6x445. | 1000ms-6000ms 0.010-9.999 / 99.9 0.001 / 0.01 1µs / 10µs / 10µs / 10µs 0.12A/µs 126-1260A 20.16mA 20.16mA 40.05% of (Re 126-1260A 20.16mA ± 0.05% of (Re 126-1260A 20.16mA | 0-140A 2.24mA 0-60V 1mV 2.24mA 0-140A 0 | 0.528A-33A/μs 0.132A/μs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA 00W | 0.0576A-3.6A/µs 0.0144A/µs 0.0144A/µs 0.168A 2.688mA 0-60V 1mV 0-168A 2.688mA 240 10.00 166 170 886.6x481 782.6x445 | 0.576A-36A/μs 0.144A/μs 168-1680A 26.88mA 60-600V 10mV 168-1680A 26.88mA | | Surge step MPPT Mode Algorithm Load mode P&O interval Dynamic Mode Timing Thigh & Tlow Resolution Accuracy Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Loure (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD)Prox Included Rob Hount Rickshoot HxWxD)Prox Included Rob Hount Rickshoot HxWxD) | 0.0432A~2.7A/µs 0.0108A/µs 0.0108A 1.68mA 0-60V 1mV 0~105A 1.68mA 150 0.00 10: 132 760.6x481 656.6x445. | 0.432A-27A/μs 0.108A/μs 105-1050A 16.8mA 60-600V 10mV 105-1050A 16.8mA 000W | 0.048A~3A/µs 0.012A/µs 0.012A/µs 0.0126A 2.016mA 0-60V 1mV 0-126A 2.016mA 180 0.00 120 132 760.6x481 656.6x445. | 1000ms-6000ms 0.010-9.999 / 99.9 0.001 / 0.01 1 μs / 10μs / 10μs 0.48A-30A/μs 0.12A/μs 126-1260A 20.16mA ± 0.05% of (Re 126~1260A 20.16mA ± 0.05% of (Re 180Ω 0.4 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 | -5 &O EV; resolution 1000m 19 / 999.9 / 9999m 10.1 / 1ms 10.0528A-3.3A/µs 0.0132A/µs 0.0132A/µs 0.0140A 2.24mA 0-60V 1mV eading + Range) 0-140A 2.24mA 2.24mA 2.24mA
2.34mA 2.4mA 2.4mA 2.4mA 3.4mA 3. | 0.528A-33A/µs 0.132A/µs 140-1400A 22.4mA 60-600V 10mV 140-1400A 22.4mA | 0.0576A-3.6A/µs 0.0144A/µs 0.0144A/µs 0.168A 2.688mA 0-60V 1mV 0-168A 2.688mA 240 10.00 166 170 886.6x481 782.6x445 | 0.576A-36A/μs 0.144A/μs 168-1680A 26.88mA 60-600V 10mV 168-1680A 26.88mA | ### Cooling: Advanced Fan Cooled Input AC Power: 100~240 Vac ±10%, 50/60Hz, Single-phase Note *1 : The power rating specifications at ambient temperature = 25°C Note *2 : The range is automatically or forcing to range II only in CC Mode Note *3 : If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note *4 : Operating temperature range is 0-40°C * all specifications apply for 25°C±5°C Simply Reliable | Good Will Instrument Co., Ltd. | SPECIFICATIONS | | | | | | | |---|------------------|--------------------------|-----------------------------------|------------------|------------------|-------------------| | MODEL | PEL-50080 | C-1200-320 | PEL-50100 | C-1200-400 | PEL-50120 | C-1200-480 | | Power*1 | 81 | cW | 10 | kW | 12 | kW | | Current | 0 ~ 32A | 0 ~ 320A | 0 ~ 40A | 0 ~ 400A | 0 ~ 48A | 0 ~ 480A | | Voltage | | | 200V | | | | | Min. Operating Voltage Protections | 15V @ | 320A | 15V @ | 0 400A | 150 @ | 9 480A | | Over Power Protection (OPP) | T | 10 | 5% | | | | | Over Current Protection (OCP) | | 10- | | | | | | Over Voltage Protection (OVP) | | 10- | 4% | | | | | Over Temp Protection (OTP) | | 90℃ | ±5℃ | | | | | Constant Current Mode Range ^{°2} | 32A | 320A | 40A | 400A | 48A | 480A | | Resolution | 0.512mA | 5.12mA | 0.64mA | 6.4mA | 0.768mA | 7.68mA | | Accuracy*3 | 0.012 | ± 0.05% of (Set | | | 0.7001111 | 7.001117 | | Constant Resistance Mode | | | | | | | | Range | 22.5ΚΩ~3.75Ω | 3.75Ω~0.0468Ω | 18ΚΩ~3Ω | 3Ω~0.0375Ω | 15ΚΩ~2.5Ω | 2.5Ω~0.0312Ω | | Resolution | 4.444µS | 62.5μΩ
±0.2% of (Set | 5.5555µS | 50μΩ | 6.6666µS | 41.667μΩ | | Accuracy Constant Voltage Mode | 1/ | ±0.2% or (Set | ting + Kange) | | | | | Range | T. | 120 | 00V | | | | | Resolution | | 20 | | | | | | Accuracy | | ± 0.05% of (Se | tting + Range) | | | | | Constant Power Mode | 90011 | 9000111 | 1000184 | 1000011 | 12000 | 1200011 | | Range | 800W
12.8mW | 8000W
128mW | 1000W
16mW | 10000W
160mW | 1200W
19.2mW | 12000W
192mW | | | ± 0.1% of | | Accuracy | | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | (Setting+Range) | | Constant Voltage Mode + Constant Current Mode | | | | | | | | Range | 1200V | 320A | 1200V | 400A | 1200V | 480A | | Resolution Accuracy | 20mV | 5.12mA
± 1.0% of (Set | 20mV | 6.4mA | 20mV | 7.68mA | | Constant Voltage Mode + Constant Power Mode | | 11.070 01 (36) | iting + Kange) | | | | | Range | 1200V | 8000W | 1200V | 10000W | 1200V | 12000W | | Resolution | 20mV | 128mW | 20mV | 160mW | 20mV | 192mW | | Accuracy | | ± 1.0% of (Set | tting + Range) | | | | | Surge Test Surge & Normal current | 0_3 | 20A | I 0_4 | 00A | I 0.4 | 80A | | Surge time | | 000ms | | 000ms | | 000ms | | Surge step | 2 | | -5 | | | | | MPPT Mode | | | | | | | | Algorithm Load mode | | P8
C | 20 | | | | | P&O interval | 1 | | resolution 1000m | s | | | | Dynamic Mode | | | | | | | | Timing | | | | | | | | Thigh & Tlow | | | 99 / 999.9 / 9999m | S | | | | Resolution | | | 1 / 0.1 / 1ms
µs / 1ms + 50ppm | | | | | Slew Rate | 0.0192A~1.2A/µs | | 0.0224A~1.4A/µs | 0.224A~14A/µs | 0.0256A~1.6A/µs | 0.256A~16A/µs | | Resolution | 0.0048A/µs | 0.048A/µs | 0.0056A/µs | 0.056A/µs | 0.0064A/µs | 0.064A/µs | | Current | | | | | | | | Range | 0~32A
0.512mA | 32~320A
5.12mA | 0~40A
0.64mA | 40~400A
6.4mA | 0~48A
0.768mA | 48~480A
7.68mA | | Measurement | 0.312IIIA | 3.12IIIA | 0.04IIIA | 0.4111A | 0.700HIA | 7.00IIIA | | Voltage Read Back | | | | | | | | Range (5 Digital) | 0~120V | 120~1200V | 0~120V | 120~1200V | 0~120V | 120~1200V | | Resolution | 2mV | 20mV | 2mV | 20mV | 2mV | 20mV | | Accuracy Current Read Back | | ±0.025% of (R | eading + Range) | | | | | Range (5 Digital) | 0~32A | 32~320A | 0~40A | 40~400A | 0~48A | 48~480A | | Resolution | 0.512mA | 5.12mA | 0.64mA | 6.4mA | 0.768mA | 7.68mA | | Accuracy | | ±0.05% of (Re | ading + Range) | | | | | Power Read Back | 1 | now/ | 100 | 0011/ | 100 | 00W | | Range (5 Digital) | 800 | ± 0.06% of (Re | ading + Range) | 00W | 120 | UUW . | | General | 1 | _ 1.1070 or (NO | Numbel | | | | | Typical Short Resistance | | 469Ω | | 75Ω | | 13Ω | | Maximum Short Current | 32 | 20A | | 0A | 48 | 0A | | Load ON Voltage Load OFF Voltage | | | - 240V
240V | | | | | Power Consumption | 92 | 0 ~
0VA | | OVA | 926 | OVA | | Dimension (HxWxD) | | x757.3mm | | x757.3mm | | x757.3mm | | HxWxD(Not included Rack Mount Kit,wheels) | 467.6x445. | 2x757.3mm | 467.6x445. | 2x757.3mm | 467.6x445. | 2x757.3mm | | Weight | 77. | 5 kg | | 8 kg | 92 | kg | | Temperature ^{*4} | | | 40°C
E | | | | | Safety & EMC | | | | | | | Cooling: Advanced Fan Cooled Input AC Power: 100~240 Vac ±10%, 50/60Hz, Single-phase Note \pm 1 : The power rating specifications at ambient temperature = 25 °C Note \pm 2 : The range is automatically or forcing to range II only in CC Mode Note \pm 3 : If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note \pm 4 : Operating temperature range is 0–40 °C \pm all specifications apply for 25 °C \pm 5 °C | SPECIFICATIONS
MODEL | DEL 5015/ | C-1200-600 | DEL 50197 | C-1200-720 | DEL 50200 | C-1200-800 | DEL 50240 | -1200-960 | | | | |---|---|--|---|---|--|--|--|--|--|--|--| | Power*1 | 151 | | | kW | 201 | | 24 | | | | | | Current | 0 ~ 60A | 0 ~ 600A | 0 ~ 72A | 0 ~ 720A | 0 ~ 80A | 0 ~ 800A | 0 ~ 96A | 0 ~ 960A | | | | | Voltage | 351/6 | 0.004 | 351/6 | 0 ~ 1 | 2000000 | 2004 | 154.6 | 0604 | | | | | Min. Operating Voltage Protections | 150 @ | 000A | 150 @ | 720A | 15V @ | 800A | 15V @ | 960A | | | | | Over Power Protection (OPP) | | | | 105 | | | | | | | | | Over Current Protection (OCP) | | | | 104 | | | | | | | | | Over Voltage Protection (OVP) Over Temp Protection (OTP) | | | | 104
90°C: | | | | | | | | | Constant Current Mode | | | | 30 0. | | | | | | | | | Range*2 | 60A | 600A | 72A | 720A | 80A | 800A | 96A | 960A | | | | | Resolution
Accuracy ²³ | 0.96mA | 9.6mA | 1.152mA | 11.52mA
± 0.05% of (Se | 1.28mA | 12.8mA | 1.536mA | 15.36mA | | | | | Constant Resistance Mod | de | | | 1 0.03/0 01 (36 | ttilig + Kalige) | | | | | | | | Range | 12Ω-2Ω | 2Ω~ 0.0250Ω | 10ΚΩ~1.666Ω | 1.666Ω-0.0208Ω | 9ΚΩ~1.5Ω | 1.5Ω-0.0187Ω | 7.5ΚΩ~1.25Ω | 1.25Ω~0.0156Ω | | | | | Resolution
Accuracy | 8.3333µS |
33.334μΩ | 10µS | 27.778μΩ | 11.111µS | 25μΩ | 13.333µS | 20.834μΩ | | | | | Constant Voltage Mode | | | | ±0.2% of (Set | ting + kange) | | | | | | | | Range | | | | 120 | 00V | | | | | | | | Resolution | 20mV
± 0.05% of (Setting + Range) | | | | | | | | | | | | Accuracy Constant Power Mode | | | | ± 0.05% of (Se | tting + Range) | | | | | | | | Range | 1500W | 15000W | 1800W | 18000W | 2000W | 20000W | 2400W | 24000W | | | | | Resolution | 24mW | 240mW | 28.8mW | 288mW | 32mW | 320mW | 38.4mW | 384mW | | | | | Accuracy | ± 0.1% of
(Setting+Range) | | | | Constant Voltage Mode | | | , | , | ,BaBe) | , | (Seeming Committee) | (2500 B (100 Bc) | | | | | Range | 1200V | 600A | 1200V | 720A | 1200V | 800A | 1200V | 960A | | | | | Resolution
Accuracy | 20mV | 9.6mA | 20mV | 3.2mA
± 1.0% of (Set | 20mV | 3.84mA | 20mV | 15.36mA | | | | | Constant Voltage Mode | + Constant Powe | r Mode | | ± 1.0% or (Set | tting + Kange) | | | | | | | | Range | 1200V | 15000W | 1200V | 18000W | 1200V | 20000W | 1200V | 24000W | | | | | Resolution
Accuracy | 20mV | 240mW | 20mV | 288mW | 20mV | 320mW | 20mV | 384mW | | | | | Surge Test | | | | ± 1.0% of (Set | tting + Kange) | | | | | | | | Surge & Normal current | | 00A | 0~7 | 20A | 0~8 | 00A | 0~9 | 60A | | | | | Surge time | 10~10 | 000ms | 10~10 | 000ms | | 000ms | 10-10 | 00ms | | | | | Surge step MPPT Mode | | | | 1- | -5 | | | | | | | | Algorithm | | | | | 20 | | | | | | | | Load mode
P&O interval | | | | | V | | | | | | | | Dynamic Mode | | | 5) | 000ms~60000ms ; | resolution 1000m | 5 | | | | | | | Timing | | | | | | | | | | | | | Thigh & Tlow | | | (| 0.010-9.999 / 99.9 | 9 / 999.9 / 9999ms
/ 0.1 / 1ms | S | | | | | | | Resolution
Accuracy | Slew Rate | 0.0288A~1.8A/μs | 0.288A~18A/μs | 0.032A~2A/µs | 1μs / 10μs / 100μ | 0.0352A~2.2A/μs | 0.352A~22A/µs | 0.0384A~2.4A/µs | 0.384A~24A/µs | | | | | Slew Rate
Resolution | 0.0288A~1.8A/μs
0.0072A/μs | 0.288A~18A/μs
0.072A/μs | 0.032A~2A/μs
0.008A/μs | 1μs / 10μs / 100μ | ıs / 1ms + 50ppm | 0.352A~22A/μs
0.088A/μs | 0.0384A~2.4A/μs
0.0096A/μs | 0.384A~24A/μs
0.096A/μs | | | | | Slew Rate
Resolution
Current | 0.0072A/µs | 0.072A/μs | 0.008A/µs | 1μs / 10μs / 100μ
0.32A~20A/μs
0.08A/μs | 0.0352A~2.2A/μs
0.0088A/μs | 0.088A/µs | 0.0096A/μs | 0.096A/µs | | | | | Slew Rate Resolution Current Range Resolution | | | | 1μs / 10μs / 100μ
0.32A~20A/μs | us / 1ms + 50ppm
0.0352A~2.2A/μs | | | | | | | | Slew Rate Resolution Current Range Resolution Measurement | 0.0072A/μs
0–60A | 0.072A/μs
60~600A | 0.008A/µs
0-72A | 1μs / 10μs / 100μ
0.32A~20A/μs
0.08A/μs | 0.0352A~2.2A/μs
0.0088A/μs
0.80A | 0.088A/µs
80~800A | 0.0096A/μs
0~96A | 0.096A/μs
96~960A | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back | 0.0072A/μs
0-60A
0.96mA | 0.072A/μs
60–600A
9.6mA | 0.008A/µs
0-72A
1.152mA | 1µs / 10µs / 100µ
0.32A~20A/µs
0.08A/µs
72~720A
11.52mA | us / 1ms + 50ppm
0.0352A-2.2A/µs
0.0088A/µs
0-80A
1.28mA | 0.088A/µs
80–800A
12.8mA | 0.0096A/µs
0-96A
1.536mA | 0.096A/µs
96–960A
15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement | 0.0072A/μs
0–60A | 0.072A/μs
60~600A | 0.008A/µs
0-72A | 1μs / 10μs / 100μ
0.32A~20A/μs
0.08A/μs | 0.0352A~2.2A/μs
0.0088A/μs
0.80A | 0.088A/µs
80~800A | 0.0096A/μs
0~96A | 0.096A/μs
96~960A | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy | 0.0072A/µs 0-60A 0.96mA | 0.072A/µs
60–600A
9.6mA | 0.008A/µs 0-72A 1.152mA | 1µs / 10µs / 100µ
0.32A-20A/µs
0.08A/µs
72-720A
11.52mA
120-1200V
20mV | s / 1ms + 50ppm
0.0352A-2.2A/μs
0.0088A/μs
0-80A
1.28mA | 0.088A/µs
80–800A
12.8mA | 0.0096A/µs
0-96A
1.536mA | 0.096A/μs
96–960A
15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV | 0.072A/µs
60–600A
9.6mA
120–1200V
20mV | 0.008A/µs 0-72A 1.152mA 0-120V 2mV | 1µs / 10µs / 100µ
0.32A~20A/µs
0.08A/µs
72~720A
11.52mA
120~1200V
20mV
±0.025% of (Re | us / 1ms + 50ppm
0.0352A-2.2A/µs
0.0088A/µs
0-80A
1.28mA
0-120V
2mV
eading + Range) | 0.088A/µs
80–800A
12.8mA
120–1200V
20mV | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV | 0.096A/µs
96–960A
15.36mA
120–1200V
20mV | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution | 0.0072A/µs 0-60A 0.96mA | 0.072A/µs
60–600A
9.6mA | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA | 1µs / 10µs / 100;
0.32A~20A/µs
0.08A/µs
72~720A
11.52mA
120~1200V
±0.025% of (Re
72~720A
11.52mA | 18 / 1ms + 50ppm
0.0352A-2.2A/µs
0.0088A/µs
0-80A
1.28mA
0-120V
2mV
eading + Range)
0-80A
1.28mA | 0.088A/µs
80–800A
12.8mA | 0.0096A/µs
0-96A
1.536mA | 0.096A/μs
96–960A
15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV | 0.072A/µs 60-600A 9.6mA 120-1200V 20mV | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA | 1µs / 10µs / 100µ
0.32A-20A/µs
0.08A/µs
72-720A
11.52mA
120-1200V
20mV
±0.025% of (Re | 18 / 1ms + 50ppm
0.0352A-2.2A/µs
0.0088A/µs
0-80A
1.28mA
0-120V
2mV
eading + Range)
0-80A
1.28mA | 0.088A/µs
80–800A
12.8mA
120–1200V
20mV | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV | 0.096A/µs
96–960A
15.36mA
120–1200V
20mV | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 | 1µs / 10µs / 100µ
0.32A~20A/µs
0.08A/µs
72~720A
11.52mA
120~1200V
20mV
±0.025% of (Re
72~720A
11.52mA
05% of (Reading - | 1 | 0.088A/µs
80–800A
12.8mA
120–1200V
20mV
80–800A
12.8mA | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA | 0.096A/µs
96–960A
15.36mA
120–1200V
20mV
96–960A
15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA | 0.072A/µs 60-600A 9.6mA 120-1200V 20mV | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 | 1µs / 10µs / 100;
0.32A~20A/µs
0.08A/µs
72~720A
11.52mA
120~1200V
±0.025% of (Re
72~720A
11.52mA | us / 1ms + 50ppm
0.0352A-2.2A/µs
0.0088A/µs
0-80A
1.28mA
0-120V
2mV
eading + Range)
0-80A
1.28mA
1.28mA | 0.088A/µs
80–800A
12.8mA
120–1200V
20mV
80–800A
12.8mA | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV | 0.096A/µs
96–960A
15.36mA
120–1200V
20mV
96–960A
15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 | 1µs / 10µs / 100µ 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120~1200V ±0.025% of (Re 72~720A 11.52mA 0.5% of (Reading - | us / 1ms + 50ppm
0.0352A-2.2A/µs
0.0088A/µs
0-80A
1.28mA
0-120V
2mV
2ading + Range)
0-80A
1.28mA
+ Range) | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA | 0.096A/µs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 | 1µs / 10µs / 100µ 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120~1200V 20mV ±0.025% of (Re 72~720A 11.52mA 05% of (Reading - | 0.0352A-2.2A/μs 0.0088A/μs 0.0088A/μs 0-80A 1.28mA 0-120V 2mV eading + Range) 0-80A 1.28mA 2m8 0-80A 1.28mA 2m9 0-80A 1.28mA + Range) | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA | 0.096A/µs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy General | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 | 1µs / 10µs / 100; 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120—1200V ±0.025% of (Re 72~720A 11.52mA 0.55% of (Reading + | S / 1ms + 50ppm | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA | 0.096A/µs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA | | | | | Slew Rate
Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy Fower Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA 0.96mA | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 | 1µs / 10µs / 100µ 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120~1200V 20mV ±0.025% of (Re 72~720A 11.52mA 0.5% of (Reading + 0.06% of (Re | S / 1ms + 50ppm | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA | 0.096A/μs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA 1500 0.02 60 | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA 00W | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 1801 | 1µs / 10µs / 100; 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120—1200V ±0.025% of (Re 72~720A 11.52mA 0.5% of (Reading - 0.00W ± 0.06% of (Re 0.96 ~ 0.96 ~ 0.96 ~ 0.90 ~ 0. | s / 1ms + 50ppm 0.0352A-2.2A/µs 0.0088A/µs 0-80A 1.28mA 0-120V 2mV eading + Range) 0-80A 1.28mA 1.28mA 0-80A 1.28mA 0-80A 1.28mA 0-80A 1.28mA 1.28mA 1.28mA 1.28mA 1.28mA | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA 00W | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA 2400 0.01 | 0.096A/µs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Read Back Range (5 Digital) Accuracy Fower Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA 1500 1320 760.6x481 | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA 00W | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 0.022 72 | 1µs / 10µs / 100; 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120~1200V ±0.025% of (Re 72~720A 11.52mA 0.55% of (Reading + 0.06% of (Re 09Ω 0A 0.96 ~ 0~ 0VA x757.3mm | 18 / 1ms + 50ppm 0.0352A-2.2A/µs 0.0088A/µs 0-80A 1.28mA 0-120V 2mV eading + Range) 0-80A 1.28mA - Range) 0-80A 0-80A 0-80A 0-80A 0-80A 0-80A 0-80A 0-80A 1.28mA - Range) 1.28mA | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA 00W 88Ω 00A | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA 2400 0.01 96 | 0.096A/µs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA 200W | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Consumption Unimension (HxWxD) HxWxD (Not included Rack Mount Rickebels) Weight | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA 1500 1320 760.6x481. | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA 00W | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 0.02 72 132 760.6x481 656.6x445. | 1µs / 10µs / 100; 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120—1200V 20mV ±0.025% of (Re 72~720A 11.52mA 05% of (Reading + 00%) 00W ±0.06% of (Re 09Ω 0A 0.96 ~ 0~0VA x757.3mm 2x757.3mm 2x757.3mm | s / 1ms + 50ppm 0.0352A-2.2A/µs 0.0088A/µs 0-80A 1.28mA 0-120V 2mV eading + Range) 0-80A 1.28mA 1.28mA 0-80A 1.28mA 0-80A 1.28mA 1.28mA 1.28mA 780666481 782.64455 1.240V | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA 00W | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA 2400 0.01 96 | 0.096A/μs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA 200W 2757Ω 200A 200A | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy General Typical Short Resistance Maximum Short Current Load ON Voltage Load OFF Voltage Power Consumption Dimension (HxWxD) HxWxD Not Included Rack Mount Ricurbeids Weight Temperature *4 | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA 1500 1320 760.6x481. | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA 000W | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 0.02 72 132 760.6x481 656.6x445. | 1µs / 10µs / 100; 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120~1200V ±0.025% of (Re 72~720A 11.52mA 0.5% of (Reading + 0.06% of (Re 09Ω 0A 0.96 ~ 0 ~ 0VA x757.3mm 2x757.3mm kg | S / 1ms + 50ppm | 0.088A/µs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA 000W 88Ω 00A 0VA x757.3mm | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA 2400 0.01 96 1700 886.6x481 782.6x4445.7 | 0.096A/μs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA 200W 2757Ω 200A 200A | | | | | Slew Rate Resolution Current Range Resolution Measurement Voltage Read Back Range (5 Digital) Resolution Accuracy Current Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Resolution Accuracy Power Read Back Range (5 Digital) Accuracy Power Consumption Mimma Short Current Load ON Voltage Power Consumption Dimension (HxWxD) HxWxD (Voli included Rack Mount Rickebook) Weight | 0.0072A/µs 0-60A 0.96mA 0-120V 2mV 0-60A 0.96mA 1500 1320 760.6x481. | 0.072A/µs 60–600A 9.6mA 120–1200V 20mV 60–600A 9.6mA 000W | 0.008A/µs 0-72A 1.152mA 0-120V 2mV 0-72A 1.152mA ±0 1800 1800 1800 124 | 1µs / 10µs / 100; 0.32A~20A/µs 0.08A/µs 72~720A 11.52mA 120—1200V 20mV ±0.025% of (Re 72~720A 11.52mA 05% of (Reading + 00%) 00W ±0.06% of (Re 09Ω 0A 0.96 ~ 0~0VA x757.3mm 2x757.3mm 2x757.3mm | S / 1ms + 50ppm | 0.088A/μs 80–800A 12.8mA 120–1200V 20mV 80–800A 12.8mA 00W 88Ω 00A 0VA x757.3mm 2x757.3mm 5 kg | 0.0096A/µs 0-96A 1.536mA 0-120V 2mV 0-96A 1.536mA 2400 1.536mA | 0.096A/μs 96–960A 15.36mA 120–1200V 20mV 96–960A 15.36mA 200W 2757Ω 200A 200A | | | | Cooling: Advanced Fan Cooled Input AC Power: 100~240 Vac ±10%, 50/60Hz, Single-phase Note *1 : The power rating specifications at ambient temperature = 25°C Note *2 : The range is automatically or forcing to range II only in CC Mode Note *3 : If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note *4 : Operating temperature range is 0–40°C * all specifications apply for 25°C±5°C Simply Reliable | Good Will Instrument Co., Ltd. #### PEL-503-80-50 #### PEL-507-80-140 #### **FEATURES** - 5-digit Digital Voltage, Current and Power Meter - Simultaneous Display of Voltage, Current, and Watts - * Short-circuit Time Can be Set During Short-circuit Test - * Automatic Test Function of Overcurrent Protection/Overpower Protection - * The Battery Discharge Test Function Can Set the Discharge Stop Voltage(Vbatt), Discharge Capacity(AH, WH) and Stop Discharge Time - * Surge Test Can Simulate Boot Overshoot Current and Transient Current From Hot Plugging - * Constant Current, Constant Resistance, Constant Voltage, Constant Power and Dynamic Mode - * Overvoltage, Overcurrent, Overpower, Over Temperature Protection and Reverse Polarity Detection - * Voltage Polarity Display Can be set to Positive Value"+" or Negative Value"-" - * Communications Interface: RS232, USB The PEL-500 series single-channel electronic load has a total of 5 models and provides 0~80V/ 0~500V voltage operating ranges and 250~700W power operating range. The series can be applied to R&D, quality control, ATE system and production test, including voltage source/current source test; switching power supply transient response; constant voltage mode for current limiting test; battery
simulation; and battery discharge test. The PEL-500 series provides a 5-digit digital display of voltage, current and power. Users can monitor the measurement data of the DUT at the same time. In order to facilitate users to evaluate whether the DUT can withstand the overshoot current, the PEL-500 series provides Surge test, which can simulate the boot overshoot current and the transient current from hot plugging. The built-in battery discharge test function can determine the conditions for stopping the discharge according to the test requirements of the DUT, including setting the discharge stop voltage (Vbatt), discharge capacity (AH, WH) and stop discharge time. Users can set the loading voltage/unloading voltage of the PEL-500 series for testing according to the characteristics of the DUT. When the output voltage of the DUT rises to the loading voltage value, the loading starts. When the output voltage drops to the unloading voltage, the loading ends. Users can use the GO/NG function to pre-set the judgment conditions according to the function and specifications of the DUT. The PEL-500 series will automatically generate the judgment results according to the set judgment conditions during the test. Under the safety test requirements of the power supply, the PEL-500 series not only provides the Short test function, but also provides the automatic test function of overcurrent protection/overpower protection to simplify users' complicated manual operation and verify the OCP/OPP of the DUT's action points. The generated measurement results help users confirm whether the actual operating action points of the DUT for OCP/OPP are within the measurement regulations. In addition to the function of providing load current waveforms to the oscilloscope via the BNC output terminal of Imonitor, the PEL-500 series also provides overvoltage, overcurrent, overpower and over temperature protection, and reverse polarity detection. When any one of them generates a trigger action, The PEL-500 series will have protective or reminding measures to protect the PEL-500 from damage due to abnormal operating ranges. PEL-503-80-50 80V/50A/250W DC Electronic Load PEL-504-80-70 80V/70A/350W DC Electronic Load PEL-504-500-15 500V/15A/350W DC Electronic Load PEL-507-80-140 80V/140A/700W DC Electronic Load PEL-507-500-30 500V/30A/700W DC Electronic Load #### **OPTIONAL ACCESSORIES** **GTL-238** RS-232 Cable, 9-pin, M-F Type, 1000mm USB Cable, USB 2.0, A-B Type, 1200mm Note: * Regarding the product delivery date, please contact your regional sales representative. #### GTL-238 RS-232 Cable, 9-pin, M-F Type, 1000mm #### Rear Panel | Note | Mod | lel | PEL-50 | 3-80-50 | PEL-50 | 4-80-70 | PEL-504 | 4-500-15 | PEL-50 | 7-80-140 | PEL-50 | 7-500-30 | |--|--|---|---|---|------------|---|-----------------|--|-------------------|-------------|------------|-----------------------------| | Martin 100 | | | | | | | | | | | 10 | | | Mary Norman | | | 25/ |) W | 35 | 0 W | 35 | 0 W | 70 | 0 W | 7 | 00 W | | May | 100000000000000000000000000000000000000 | | 7.000 | 3.355 | | | | 13,12 | 18 | 2000 | A.5 | V1-0003 | | Pose | | | 80 | V | 8 | 0 V | 50 | 0 V | 8 | 0 V | 5 | 00 V | | Part | 40 7 | ge | 1.0V (| @ 50A | 1.2V | @ 70A | 6V @ | D 15A | 0.9V (| @ 140A | 3V | @ 30A | | Part | | | | | | <u> </u> | | | | | 200 | | | Mary minimage minima | Over Power Protection | n(OPP) | 80 V 80 V 500 V 80 V 1.0V 80 V 1.0V 80 V 1.0V 80 V 1.0V 80 S0A 1.2V 870A 6V 815A 0.9V 8140A 0.9V 8140A 1.2V 870A 6V 815A 0.9V 8140A 1.2V 870A 1.2V 870A 1.2V 870A 1.2V 8140A 1.2V 870A 1.2V 8140A 1.2V 870A 1.2V 8140A 1.2V 870A 1.2V 8140A 8 | | | | | | 35W | 5 | 735W | | | Part | Over Current Protection | on(OCP) | 25,070077 | N. 6750 | - | 274.2 37.63 | ≒15 | i.75A | ≒1 | 47A | 1 | 31.5A | | Profession | Over Voltage Protection | on(OVP) | ≒8 | 34V | = | 84V | ≒5 | 25V | = | 84V | = | 525V | | Persistentifies | Over Temp. Protection | n(OTP) | Y | ES | Y | ES | Y | ES | Y | ES | | rES | | March Mar | CC Mode | | | | | | | | | | | | | Procession Pr | Range | | 0~5.04 | ~50.4A | 0~7.02 | 2~70.2A | 0~1.5 | 5~15A | 0~14.04 | 1~140.4A | 0~- | 3~30A | | Profess | Resolution | | 0.084m | A/0.84mA | 0.117m/ | A/1.17mA | 0.025mA |
A/0.25mA | 0.234m/ | A/2.34mA | 0.05m | A/ 0.5mA | | Producing | Accuracy | | | | | | ±0.1% of (SET) | TING + RANGE) | | | | | | Paralle | CR Mode | | | | | | | | | | | | | Paralle | Range | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | 57-34200Ω | 0.2-20- | -1200000Ω | | | Maintain | | | 26.666μΩ/0.01 | 0416mSiemens | 19μΩ/0.014 | 619mSiemens | 666.667μΩ/0 | .416µSiemens | 9.5μΩ/29.2 | 39µSiemens | 333.334μΩ/ | 0.833µSiemens | | Production | Accuracy | - | | ±0.2% of (SET 0-8.1~81V | | | | | | | | | | Production | | | | | | | | | | | | | | Pool | | | 0~8.1 | ~81V | 0~8. | 1~81V | 0~60 | ~500V | 0~8. | 1~81V | 0~6 | 0~500V | | Provincy | | | | | | | | 11.730/00 | 2000000 | 20.000 | | C.O. M. 1905 | | Process | E S COST | | | | | nue to a considera | | Variable Cold | Tomas Calabase TC | 3 | | | | Registion | | | | (Imax=r1:5A, r2:50A) (Imax=r1:7A, r2:70A) (Imax=r1:1.5A, r2:15A) (Imax=r1:14A, r2:140A) | | | | | | | | | | Contact Con | 2000000 | | | | | | | | | | | | | ## Page | | · . | | | | | | | | | | | | Paymint Mode | ENGREE TON | | 0.417mW | //4.17mW | 0.584mV | V/5.84mW | | • | | | 1.17m\ | W/117mW | | Product Pro | - | | | | | | ±0.5% of (SET) | FING + RANGE) | | | | | | Periodic | | , | | | | | | | | | | | | Part Fig. | 700 7 3 7 4 7 7 | | | | | | | 1777011 777037 | | | | | | Note | Resolution | | | | | | | | | | | | | Accuracy Section Se | Slew rate | | | | | | | | | | | | | Many Note Ma | | н | 3.2~200 | 0mA/μs | 4.64~25 | 90mA/μs | | | 0.096 | ~6A/µs | 20~12 | 50mA/μs | | Mange (S Digital) 0.8.3 s | | | | | | | ±5%: | ±10µs | | | | | | Note Pack | Measurement | Daniel (E. Dialea) | 0.01 | 031/ | | 3 031/ | 0.00 | 5001 | 0.0 | 1 0114 | 1 00 | 0 5001/ | | Marcolary | | | | | | | | | | | | | | Current Read Read Read Read Read Read Read Read | Voltage Read Back | 110.194.002702 | 0.135mV | /1.35mV | 0.135m | V/1.35mV | | | 0.135m | V/1.35mV | Im\ | /10mV | | Part | | | 0.50 | 70.11 | | . 70.01 | | | 0.140 | | 1 | | | Accuracy | C | | | | | | | | | | | | | Power Read Black Resolution 0,010 0,0 | Current Read Back | 180000000000000 | 0.084m | A/0.84mA | 0.11/m/ | 4/1.17mA | 7.87.7.29.1 | | 0.234m/ | A/2.34mA | 0.05m | A/ 0.5MA | | Power Read Back Resolution 0.001W 0.01W 0.001W | | 7.67 | | | 1 | 1 | | | 22.11 | | | | | Accuracy | | | | 10000000 | 9,111,271 | | | | | | | 5000000 | | Surge Ex Normal current O-50A 0-70A 0-15A 0-140A 0-30A Surge time 10-1000ms 10-1000ms 10-1000ms 10-1000ms 10-1000ms Surge step 1-5 <th>Power Read Back</th> <th>- 100 A A</th> <th>0.001W</th> <th>0.01W</th> <th>0.001W</th> <th>0.01W</th> <th></th> <th>575.0277.02</th> <th>0.001W</th> <th>0.01W</th> <th>0.001W</th> <th>0.01W</th> | Power Read Back | - 100 A | 0.001W | 0.01W | 0.001W | 0.01W | | 575.0277.02 | 0.001W | 0.01W | 0.001W | 0.01W | | Surge & Normal current 0-50A 0-70A 0-15A 0-140A 0-30A Surge time 10-1000ms 10-1000ms 10-1000ms 10-1000ms 10-1000ms Surge step 1-5 1-5 1-5 1-5 1-5 1-5 Battery Discharge Test UVP 0-81V 0-81V 0-500V 0-81V 0-500V Time 1-9999 Sec 1-9999 Sec 1-99999 0-100V 0 205 0.00 0.00 0.02 | S T | Accuracy | | | | | ±0.1% of (REAL | DING+ RANGE) | | | | | | Surge time 10-1000ms 10-1000ms 10-1000ms 10-1000ms 10-1000ms Surge step 1-5 1-5 1-5 1-5 1-5 1-5 Battery Discharge Test UVP 0-81V 0-81V 0-500V 0-81V 0-500V Time 1-99999 Sec | | | | -04 | | 704 | | 154 | 0.1 | 1404 | | 204 | | Surge step 1-5 1-99999 Sec 1-99999 Sec 1-99999 Sec 1-99999 Sec 1-99999 Sec 0-1-000 0.1-25V 0-1-100 0.1-25V </th <th>-</th> <th>ent</th> <th></th> <th>// 10.000</th> <th></th> <th>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</th> <th></th> <th></th> <th></th> <th>- V</th> <th></th> <th></th> | - | ent | | // 10.000 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | - V | | | | Battery Discharge Test UVP 0-81V 0-81V 0-500V 0-81V 0-500V Time 1-99999 Sec 10-100V 0 0.1-25V 0.4-100V 0 0.4-100V 0 0 0 0 0 0 0 0 0 0 0 0 </th <th></th> <th>-</th> <th>0.70,00</th> <th>10.000</th> <th></th> <th>010 ve 070</th> <th>5000000</th> <th>C320007</th> <th></th> <th></th> <th></th> <th>7.00.000000</th> | | - | 0.70,00 | 10.000 | | 010 ve 070 | 5000000 | C320007 | | | | 7.00.000000 | | UVP 0-81V 0-81V 0-50V 0-81V 0-500V Time 1-9999 Sec 1-9999 Sec 1-9999 Sec 1-9999 Sec 1-9999 Sec Capacity 0.1-9999 Sec 1-9999 2 1-9999 Sec 2 1-9999 Sec 2 1-9999 Sec 2 1-9999 Sec 2 3 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | - 1 | Test . | 1- | -3 | | -3 | | -, | | -, | | | | Time 1-9999 Sec 1-9999 Sec 1-9999 Sec 1-99999 2-25V 0 200 200 200 25V 0.4-100V 0.4-25V 0.4-100V 0.050 0-100V 0.050 0.0050 | | 1636 | 0 | RIV | ٥. | 81V | 0.5 | 5001/ | 0 | 81V | | 500V | | On-1-1999,9AH/0.1~1999,9WH Others Load ON Voltage 0.1~25V 0.4~100V 0.1~25V 0.4~100V Accuracy 1% of (SETTING + RANGE) Load OFF Voltage 0.25V 0.100V 0.25V 0.700V Accuracy Full scale: 10V Current Monitor Full scale: 10V Accuracy 0.3% of (SETTING + RANGE) Typical Short Resistance 0.018Ω 0.0169Ω 0.367Ω 0.0053Ω 0.087Ω Max. short Current 50A 70A 115/230 Vac±10%, 50/60Hz Interface (Standard) USB/RS232 Power Consumption 40 VA 50 × 231 x 480mm 205 x 23 | 200000 | | 4554 | *** | /~ / | 0/4/2 | | AS AG | 1000 | NOVI V A | 2772 | 200000 | | Others Load ON Voltage 0.1~25V 0.4~100V 0.1~25V 0.4~100V Accuracy 1% of (SETTING + RANGE) Load OFF Voltage 0~25V 0~100V 0~25V 0~100V Accuracy | L (0.01.0.1000) | | 1~399 | 400 | 1~39 | | | 33/22/83/ | 1~393 | | 1~99 | | | Load ON Voltage 0.1~25V 0.4~100V 0.1~25V 0.4~100V Accuracy 1% of (SETTING + RANGE) Load OFF Voltage 0~25V 0~100V 0~25V 0~100V Accuracy | | | | | | | V.1. 19993,3MI) | (************************************* | | | | | | Accuracy 1% of (SETTING + RANGE) Load OFF Voltage 0~25V 0~100V 0~25V 0~100V Accuracy | | | | 0.1 | ~25V | | 0.4- | 100V | 0.1 | ~25V | 0.4 | ~100V | | Load OFF Voltage 0-25V 0-100V 0-25V 0-100V Accuracy 0.05% of (SETTING + RANGE) | | 3 | | 0.1 | -27 | | | | 0.1 | | 0.4 | | | Accuracy 0.05% of (SETTING + RANGE) Immitor (Non-isolated) 5.04 A/V 7.02 A/V 1.5 A/V 14.04 A/V 3 A/V Current Monitor Full scale: 10V Accuracy | | | | n. | -25V | | | , | η. | 25V | 0. | 100V | | Immoitor (Non-isolated) 5.04 A/V 7.02 A/V 1.5 A/V 14.04 A/V 3 A/V Current Monitor Full scale: 10V Accuracy | 777 | 3 | | 0. | | | | (0)00 | 0~ | | | | | Current Monitor Full scale: 10V Accuracy 0.5% of (SETTING + RANGE) Typical Short Resistance 0.018Ω 0.0169Ω 0.367Ω 0.0053Ω 0.087Ω Max. short Current 50A 70A 15A 140A 30A Power input USB/RS232 Interface (Standard) USB/RS232 Power Consumption 40 VA 60 VA Dimension (HxWxD) 205 x 123 x 477mm 205 x 123 x 477mm 205 x 231 x 480mm 205 x 231 x 480mm | | rd) | 5.04 | A/V | 7.01 | 2 A/V | | NO. 10.1 | 14.0 | 4 A/V | 3 | A/V | | Accuracy 0.5% of (SETTING + RANGE) Typical Short Resistance 0.018Ω 0.0169Ω 0.367Ω 0.0053Ω 0.087Ω Max. short Current 50A 70A 15A 140A 30A Power input USB/RS232 Interface (Standard) USB/RS232 Power Consumption 40 VA 50 VA 50 VA Dimension (HxWxD) 205 x 123 x 477mm 205 x 123 x 477mm 205 x 123 x 477mm 205 x 231 x 480mm 205 x 231 x 480mm | | | 5.04 | 9. | 7.00 | 11 | - | | 14.0 | -1. | | 0.9.5 | | Typical Short Resistance 0.018Ω 0.0169Ω 0.367Ω 0.0053Ω 0.087Ω Max. short Current 50A 70A 15A 140A 30A Power input 115/230 Vac±10%, 50/60Hz Interface (Standard) USB/RS232 Power Consumption 40 VA 60 VA Dimension (HxWxD) 205 x 123 x 477mm 205 x 123 x 477mm 205 x 231 x 480mm 205 x 231 x 480mm | | | - | | | | | | | | | | | Max. short Current 50A 70A 15A 140A 30A Power input 115/230 Vac±10%, 50/60Hz Interface (Standard) USB/RS232 Power Consumption 40 VA 60 VA Dimension (HxWxD) 205 x 123 x 477mm 205 x 123 x 477mm 205 x 123 x 477mm 205 x 231 x 480mm 205 x 231 x 480mm | | nce | 0.0 | 180 | 0.0 |
169Ω | | | 0.00 | 053O | 0.0 | 087O | | Power input | | | | A1.4774 | 7.7.7.4 | | | | | | | 13.13.04F | | Interface (Standard) USB/RS232 Power Consumption 40 VA 60 VA Dimension (HxWxD) 205 x 123 x 477mm 205 x 123 x 477mm 205 x 123 x 477mm 205 x 231 x 480mm 205 x 231 x 480mm | | | 30 | | | | | | - 1 | | | | | Power Consumption 40 VA 60 VA Dimension (HxWxD) 205 x 123 x 477mm 205 x 123 x 477mm 205 x 123 x 477mm 205 x 231 x 480mm | Power input | | | | | | | | | | | | | Dimension (HxWxD) 205 x 123 x 477mm 205 x 123 x 477mm 205 x 123 x 477mm 205 x 231 x 480mm 205 x 231 x 480mm | | - | 1 | | | | USB/ | NJ434 | | | | | | 19 SQUENCE 1 19 SQUENCE 1 19 SQUENCE 1 1 19 SQUENCE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Interface (Standard) | | | | - 40 | N/A | , | | - | | . VA | | | weigin 3.3kg 3.3kg 3.3kg 10.3kg 10.3kg | Interface (Standard) Power Consumption | | 205 222 | v 477mm | | | | | 205 223 | | | 1 × 480m | | | Interface (Standard) Power Consumption Dimension (HxWxD) | | 707 mgg, 3100 cg 1 | (0.0204,000) | 205 x 123 | 3 x 477mm | 205 x 123 | 3 x 477mm | | 1 x 480mm | 205 x 23 | - 1 × 2 × 1 × 1 × 1 × 1 × 1 | #### **AEL-5000 Series** #### **FEATURES** - * Turbo Mode (Multiplier Mode) Can Withstand up to 2 Times the Rating Current and Power of the Electronic Load in a Short Period of Time - * Operating Mode: CC, linear CC, CR, CV, CP and AC **Rectifier Loads** - * Measurement Items: Voltage Value(Vrms, Vpeak, Vmax., Vmin), Current Value(Irms, Ipeak, Imax., Imin.), Watt Value, Volt-ampere Value(VA), Frequency Value, Crest Factor, Power Factor, Voltage Total Distortion(V THD, VH), Current Total Distortion (I THD, IH), Etc - * Eight Units Connected in Parallel up to 180kW for Single-phase and 540kW for Three-phase - * Support Loading and Unloading Angle Control, Loading and Unloading Angle Control Can be set at the Full Range of 0-359 Degrees - * Support Positive Half Cycle or Negative Half Cycle Load - * Support SCR/TRIAC Current Phase Modulation Waveform, 90-degree Trailing Edge and Leading Edge - * Support the Capacitive Load (Inrush Current) when the Power Supply is Turned on and the Transient Current (Surge Current) Test when the Load is Suddenly Connected (Hot Plug-in) During Operation - * Crest Factor Range: 1.414~5.0 - * Power Factor Range: 0.1~1.0 Leading or Trailing - * Frequency Range: DC, 40~440Hz (AEL-5003-480-18.75/AEL-5004-480-28: DC, 40~70Hz), and 800Hz and 1kHz Need to be Customized - * Optional Control Interfaces: GPIB, RS-232, USB, LAN GW Instek launches 20 models of the AEL-5000 series AC/DC electronic loads depending on the power range. The power range of a single unit is from 1875W to 22500W, and up to 8 units can be connected in parallel. The maximum power of single-phase parallel connection can reach 180kW, and the total power of 3-phase can reach 540kW, which are suitable for UPS, Inverter/Breaker, AC Power Source, Battery, Fuse/Breaker, DC Power Source and other applications. The AEL-5000 series has built-in precision measurement circuits such as 16-bit A/D and DSP to provide accurate measurement items, which include voltage root mean square value (Vrms), current root mean square value (Arms), and watt value (Watt), volt-ampere (VA), crest factor (CF), power factor (PF), total harmonic distortion (THD), voltage total harmonic distortion (VTHD), current total harmonic distortion (ITHD), peak current (Ipeak), maximum current (Amax), minimum current (Amin), maximum voltage (Vmax), minimum voltage (Vmin), time measurement. In addition, built-in test modes include UPS Efficiency, PV Inverter Efficiency, UPS Back-up time, Battery Discharge time, UPS transfer time, Fuse/Breaker Trip/Non-Trip, short circuit simulation, OCP, OPP and other test modes. The AEL-5000 series has the Turbo mode (ON or OFF can be selected) design, which can increase the current and power of the electronic load by 2 times in one second. For test applications that require transient high power and large current such as transient overload test of protective components or short circuit of Fuse/Breaker and AC power supply, OCP and OPP tests etc.. The Turbo mode provides the most economical solution. The AEL-5000 series also supports the Load On startup function (pre-set Load On). When the inverter or uninterruptible power supply is turned on, the series directly loads the set load current to verify that whether startup of the inverter or uninterrupted power supply connecting to the electrical appliance is stable. At the same time, the Load On start function can also set positive half cycle or negative half load to verify whether the output voltage of the inverter or uninterruptible power supply remains stable when the actual electrical appliance only has a positive half cycle or negative half cycle load current. Control load angle and unload angle can also be set (range 0–359 degrees) to verify the stability of the transient response of the inverter or uninterruptible power supply when the appliance is plugged in and unplugged. In addition, the series also supports SCR/TRIAC current phase modulation waveform, 90 degree Trailing Edge and Leading Edge settings. For the application of the adjustable bandwidth (BW) function, when the bandwidth of the DUT does not match the bandwidth of the AEL-5000 series, there will be oscillations. Users can reduce the BW setting value accordingly to meet the response speed of the DUT. Inrush Current verifies whether the transient response of the inverter output voltage is stable when the electrical appliance is turned on (Inrush Current) and when the electrical appliance is suddenly connected (Surge The entire series of AEL-5000 provides over-voltage warning, over-current, over-power, and over-temperature protection. Analog Input terminal can control constant current, constant power and other working modes through external voltage. Vmonitor/Imonitor terminal is used to connect external voltage/current monitoring device. In addition, a variety of optional control interfaces are provided such as GPIB, RS-232, USB, and LAN to meet the needs of system integration. ## ORDERING INFORMATION | AEL-5002-350-18.75 | 350V/18.75A/1875W | AC & DC Electronic Load | |--------------------|--------------------|-------------------------| | AEL-5003-350-28 | 350V/28A/2800W | AC & DC Electronic Load | | AEL-5004-350-37.5 | 350V/37.5A/3750W | AC & DC Electronic Load | | AEL-5006-350-56 | 350V/56A/5600W | AC & DC Electronic Load | | AEL-5008-350-75 | 350V/75A/7500W | AC & DC Electronic Load | | AEL-5012-350-112.5 | 350V/112.5A/11250W | AC & DC Electronic Load | | AEL-5015-350-112.5 | 350V/112.5A/15000W | AC & DC Electronic Load | | AEL-5019-350-112.5 | 350V/112.5A/18750W | AC & DC Electronic Load | | AEL-5023-350-112.5 | 350V/112.5A/22500W | AC & DC Electronic Load | | AEL-5002-425-18.75 | 425V/18.75A/1875W | AC & DC Electronic Load | | AEL-5003-425-28 | 425V/28A/2800W | AC & DC Electronic Load | | AEL-5004-425-37.5 | 425V/37.5A/3750W | AC & DC Electronic Load | | AEL-5006-425-56 | 425V/56A/5600W | AC & DC Electronic Load | | AEL-5008-425-75 | 425V/75A/7500W | AC & DC Electronic Load | | AEL-5012-425-112.5 | 425V/112.5A/11250W | AC & DC Electronic Load | | AEL-5015-425-112.5 | 425V/112.5A/15000W | AC & DC Electronic Load | | AEL-5019-425-112.5 | 425V/112.5A/18750W | AC & DC Electronic Load | | AEL-5023-425-112.5 | 425V/112.5A/22500W | AC & DC Electronic Load | | AEL-5003-480-18.75 | 480V/18.75A/2800W | AC & DC Electronic Load | | AEL-5004-480-28 | 480V/28A/3750W | AC & DC Electronic Load | #### STANDARD ACCESSORIES AEL-5000 Series operation manual HD-DSUB: 15pin MALE to MALE 150cm x 1 PTV1-12 PIN TRML: Please refer to Fig.1 x 6 #### AEL-5002-xxx-18.75/AEL-5003-xxx-28/AEL-5004-xxx-37.5 PVL 1-4 RING TERMINALS: Please refer to Fig.4 x 2 RNYBS8-4 RING TRML: Please refer to Fig.5 x 2 AEL-5006-xxx-56/AEL-5008-xxx-78/AEL-5012-xxx-112.5/ AEL-5015-xxx-112.5/AEL-5019-xxx-112.5/AEL-5023-xxx/112.5 SLS10B RED PLUG CONN 20A RED: Please refer to Fig.2; The terminal is used for Vsense x SLS10B BLK PLUG CONN 20A BLK: Please refer to Fig.2; The terminal is used for Vsense x 1 RNB S22-6 RING TRML, #4: Please refer to Fig.3 x 2 #### **OPTIONAL ACCESSORIES** PEL-022 GPIB Card PEL-030 GPIB+RS-232 Card GTL-246 USB Cable, USB 2.0, A-B Type, 1200mm PEL-023 RS-232 Card GTL-248 GPIB Cable, Double Shielded, 2000mm PEL-024 LAN Card PEL-025 USB Card GTL-250 GPIB Cable, Double Shielded, 600mm PEL-028 HANDLES, U-shaped handle(fixed to the bracket) (for AEL-5006/5008/5012/5015) PEL-029 HANDLES Rack Accessories (for AEL-5002/5003/5004) Note: * Regarding the product delivery date, please contact your regional sales representative AEL-5002-350-18.75 AEL-5003-350-28 AEL-5004-350-37.5 AEL-5002-425-18.75 AEL-5006-350-56 AEL-5008-350-75 AEL-5006-425-56 AEL-5012-350-112.5 AEL-5015-350-112.5 AEL-5019-350-112.5 AEL-5012-425-112.5 AEL-5015-425-112.5 AEL-5019-425-112.5 AEL-5002-425-18.75 AEL-5008-425-75 AEL-5003-425-28 AEL-5004-425-37.5 AEL-5003-480-18.75 AEL-5004-480-28 | MODEL | Power (W) | | Currer | nt(Ampere) | | |--------------------|-----------|--------------|-------------------------|---------------------------|---------------------| | MODEL | Turbo OFF | Turbo ON | Turbo OFF | Turbo ON | Voltage(Volt) | | AEL-5002-350-18.75 | 1875 W | 3750W (x2)* | 18.75 Arms / 56.25Apeak | 37.5Arms/56.25Apeak (x2)* | | | AEL-5003-350-28 | 2800W | 5600W (x2)* | 28 Arms / 84Apeak | 56Arms/84Apeak (x2)* | | | AEL-5004-350-37.5 | 3750 W | 7500W (x2)* | 37.5 Arms / 112.5Apeak | 75.0Arms/112.5Apeak (x2)* | 50~350Vrms / 500Vdc | | AEL-5002-425-18.75 | 1875 W | 3750W (x2)* | 18.75 Arms / 56.25Apeak | 37.5Arms/56.25Apeak (x2)* | | | AEL-5003-425-28 | 2800W | 5600W (x2)* | 28 Arms / 84Apeak | 56Arms/84Apeak (x2)* | | | AEL-5004-425-37.5 | 3750 W | 7500W (x2)* | 37.5 Arms / 112.5Apeak | 75.0Arms/112.5Apeak (x2)* | 50~425Vrms / 600Vdc | | AEL-5006-350-56 | 5600 W | 11200W (x2)* | 56.0 Arms / 168Apeak | 112.0Arms/ 168Apeak (x2)* | | | AEL-5008-350-75 | 7500 W | 15000W (x2)* | 75.0 Arms
/ 225Apeak | 150.0Arms/225Apeak (x2)* | | | AEL-5012-350-112.5 | 11250W | 22500W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | | | AEL-5015-350-112.5 | 15000W | 30000W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | | | AEL-5019-350-112.5 | 18750W | 37500W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | | | AEL-5023-350-112.5 | 22500W | 45000W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | 50~350Vrms / 500Vdc | | AEL-5006-425-56 | 5600 W | 11200W (x2)* | 56.0 Arms / 168Apeak | 112.0Arms/ 168Apeak (x2)* | | | AEL-5008-425-75 | 7500 W | 15000W (x2)* | 75.0 Arms / 225Apeak | 150.0Arms/225Apeak (x2)* | | | AEL-5012-425-112.5 | 11250W | 22500W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | | | AEL-5015-425-112.5 | 15000W | 30000W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | | | AEL-5019-425-112.5 | 18750W | 37500W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | | | AEL-5023-425-112.5 | 22500W | 45000W (x2)* | 112.5 Arms / 337.5Apeak | 225Arms/337.5Apeak (x2)* | 50~425Vrms / 600Vdc | | AEL-5003-480-18.75 | 2800W | 5600W (x2)* | 18.75 Arms / 56.25Apeak | 37.5Arms/56.25Apeak (x2)* | | | AEL-5004-480-28 | 3750 W | 7500W (x2)* | 28 Arms / 84Apeak | 56Arms/84Apeak (x2)* | 50~480Vrms / 700Vdc | ^{*} Power and current boost rate of Turbo ON | SPECIFICATI | ONS | | | | | | | |---|---|--|--|--|---|--|---| | MODEL
Power (W) | | 1875 W | 2800W | 3750 W | AEL-5002-425-18.75 | 2800W | 3750 W | | Current(Ampere) Voltage(Volt) FREQUENCY Range | | 18.75 Arms / 56.25Apeak | 28 Arms / 84Apeak
50~350Vrms / 500Vdc
0Hz(CC,CP Mode) , DC~440Hz(LIN,CR | 37.5 Arms / 112.5Apeak | 18.75 Arms / 56.25Apeak | 28 Arms / 84Apeak
50-425Vrms / 600Vdc
Hz(CC,CP Mode) , DC-440Hz(LIN,CF | 37.5 Arms / 112.5Apeak | | PROTECTIONS Over Power Protection | | ≒ 1968.75Wrms or Programmable | ≒2940Wrms or Programmable | ≒ 3937.5Wrms or Programmable | ≒ 1968.75Wrms or Programmable | ≒2940'Wrms or Programmable | ≒ 3937.5Wrms or Programmable | | Over Current Protection Over Vlotage Protection | | ≒ 19.687 Arms or Programmable | ≒ 29.4 Arms or Programmable
≒ 367.5 Vrms / 525Vdc | ≒ 39.375 Arms, or Programmable | ≒ 19.687 Arms or Programmable | ≒ 29.4 Arms or Programmable
≒ 446.25 Vrms/630Vdc | ≒ 39.375 Arms, or Programmable | | Over Temp. Protection OPERATION MODE Constant Current Mode for Si | | | Yes | | | Yes | | | Range
Resolution | ne-Wave | 0–18.75A
0.3125mA/16bits | 0–28A
0.5mA/16bits | 0–37.5A
0.625mA/16bits | 0–18.75A
0.3125mA/16bits | 0-28A
0.5mA/16bits | 0-37.5A
0.625mA/16bits | | Accuracy | e for Sine-Wave, Square | | range) @ 50/60Hz , ± 0.5% of (set | | | ange) @ 50/60Hz , ± 0.5% of (setti | | | Range
Resolution | | 0~18.75A
0.3125mA/16bits | 0~28A
0.5mA/16bits | 0~37.5A
0.625mA/16bits | 0~18.75A
0.3125mA/16bits | 0~28A
0.5mA/16bits | 0~37.5A
0.625mA/16bits | | Constant Resistance Mode | | ± (0.1% of setting + 0.2% of | | | ± (0.1% of setting + 0.2% of r | | ting + range) @ DC and 400Hz | | Range
Resolution*1
Accuracy | | 3.2 ohm – 64k ohm
0.0052083mS/16bits | 2.0 ohm = 40 k ohm
0.0083333mS/16bits
@ 50/60Hz , ± (0.5% of setting + 2 | 1.6 ohm = 32k ohm
0.010416mS/16bits | 0.0052083mS/16bits | 2.0 ohm = 40 k ohm
0.0083333mS/16bits
50/60Hz , ± (0.5% of setting + 2) | 1.6 ohm = 32k ohm
0.010416mS/16bits | | Constant Voltage Mode
Range | | 20.2% of (Setting + Tange) | 50~350Vrms / 500Vdc | 250 OF range 7 80 DC and 400H2 | ±0.2% of (secong + range) go | 50-425Vrms / 600Vdc | is of range / g/ bc and 400H2 | | Resolution
Accuracy | | 10 | 0.01V
±(0.1% of setting + 0.1% of range) | | | 0.1V
±(0.1% of setting + 0.1% of range) | | | Constant Power Mode
Range | | 1875W | 2800W | 3750W | 1875W | 2800W | 3750W | | Resolution Accuracy*4 CREST FACTOR (CC & CP M | ODE ONLY | 0.1W
±0.5% of { se | 0.1W
tting + range) @ 50/60Hz , =2% of (s | 0.1W
etting + range) | 0.1W
±0.5% of (setti | 0.1W
ng + range) @ 50/60Hz , ±2% of (se | 0.1W
etting + range) | | Range
Resolution | ODE ONLY) | | √2~5
0.1 | | | √2~5
0.1 | | | Accuracy POWER FACTOR (CC & CP) | (ODE ONLY) | | (0.5% / Irms) + 1%F.S. | | | (0.5% / Irms) + 1%F.S. | | | Range
Resolution | A 4637 | 21 | 0-1 Lag or Lead
0.01 | | | 0-1 Lag or Lead
0.01 | | | Accuracy
TEST MODE | | | 1%F.S. | | | 1%F.S. | | | Operating Frequency Current Range | | 0-18.75A | Non-Linear Mode
Auto ; 40-440Hz
0-28A | 0-37.5A | 0-18.75A | Non-Linear Mode
Auto ; 40–440Hz
0–28A | 0-37.5A | | PF Range
Measuring Efficiency For PV S | Systems, | 7. | 0-1 | | - 10101 | 01 | | | Power Conditioners for THD Operating Frequency | 8096 | a deservation of the second | Resistive + Non-Linear Mode
Auto ; 40–440Hz | 9,5,44 | Albania Albania | Resistive + Non-Linear Mode
Auto ; 40–440Hz | | | Current Range
Resistive Range | N.C. C. | 0–18.75A
3.2 ohm – 64k ohm | 0~28A
2.0 ohm = 40k ohm | 0~37.5A
1.6 ohm ~ 32k ohm | 0~18.75A
3.2 ohm ~ 64k ohm | 0~28A
2.0 ohm = 40 k ohm | 0-37.5A
1.6 ohm ~ 32k ohm | | UPS Back-Up Function(CC,LI
UVP (VTH)
UPS Back-Up Time | N,CR,CP) | 2 | 50–350Vrms / 500Vdc
1~99999 Sec. (>27H) | | | 50-425Vrms / 600Vdc
1~99999 Sec. (>27H) | | | Bettery Discharge Function(C
UVP (VTH) | C,LIN,CR,CP) | | 50–350Vrms / 500Vdc | | | 50-425Vrms / 600Vdc | | | Battery Discharge Time UPS Transfer Time | | | 1~99999 Sec. (>27H) | | | 1~99999 Sec. (>27H) | | | Current Range
UVP (VTH) | | 0-18.75A | 0–28A
2.5V | 0-37.5A | 0-18.75A | 0–28A
2.5V | 0-37.5A | | Time Range
Fuse Test Mode | Turbo OFF(CC1-3) | | | ı | | | 1 | | Max. Current | Turbo ON(CC3) Turbo ON(CC1-2) | 18.75Arms
37.5Arms (x2) *3 | 28.0Arms
56.0Arms (x2) *3 | 37.5Arms
75.0Arms (x2) *5 | 18.75Arms
37.5Arms (x2) *3 | 28.0Arms
56.0Arms (x2) *3 | 37.5Arms
75.0Arms (x2) *3 | | Trip & Non-Trip Time | Turbo OFF(Time1~3)
Turbo ON(Time1~2) | | 0.01~333.33 Sec.
0.01~0.5 Sec. | | | 0.01~333.33 Sec.
0.01~0.5 Sec. | | | OFF Time | Turbo ON(Time3) | 2 | 0.01-600.00 Sec.
0.1-999.9 Sec. | | | 0.01-600.00 Sec.
0.1-999.9 Sec. | | | Meas. Accuracy Repeat Cycle Short/OPP/OCP Test Function | 00 | | ±0.003 Sec.
0-99999 | | | e0.003 Sec.
0-99999 | | | Short Time | Turbo OFF
Turbo ON | | 0.1–10Sec. or Cont.
0.1~1Sec. | | | 0.1-10Sec. or Cont.
0.1~1Sec. | | | OPP/OCP Step Time | Turbo OFF
Turbo ON | 22 | 100ms
100ms, up to 10 Steps | | | 100ms
100ms, up to 10 Steps | | | OCP Istop | Turbo OFF
Turbo ON | 18.75Arms
37.5Arms | 28.0Arms
56.0Arms
2800W | 37.5Arms
75.0Arms | 18.75Arms
37.5Arms
1875W | 28.0Arms
56.0Arms
2800W | 37.5Arms
75.0Arms | | OPP Pstop Programmable Inrush Current | Turbo OFF
Turbo ON | 1875W
3750W | 2800W
5600W | 3750W
7500W | 18/5W
3750W | 2800W
5600W | 3750W
7500W | | Istart, Inrush Start Current
Inrush Step Time | | 0~37.5A | 0~56A
0.1ms~100ms | 0~75A | 0~37.5A | 0~56A
0.1ms~100ms | 0~75A | | Istop, Inrush Stop Current Programmable Surge Current | : Simulation: S1/T1 - S2 | 0–18.75A
(T2 - 53/T3 | 0-28A | 0-37.5A | 0-18.75A | 0-28A | 0-37.5A | | S1 and S2 Current
T1 and T2 Time | 26 - No. 40 - No. 00 (12.2 NO. 1801) | 0~37.5A
0~18.75A | 0~56A
0.01~0.5Sec.
0~28A | 0~75A
0~37.5A | 0-37.5A
0-18.75A | 0-56A
0.01~0.5Sec.
0-28A | 0~75A
0~37.5A | | S3 Current T3 Time MEASUREMENTS | | | 0-28A
01-9.99Sec. or Cont. | 0-37.3A | U-18.73A | 0.01~9.99Sec. or Cont. | U-37.3A | | VOLTAGE READBACK V MET
Range | TER | | 500V | | | 600V | 1 | | Resolution
Accuracy | | | 0.01V
±0.05% of (reading + range)
Vrms,V Max/Min,+/-Vpk | | | ±0.05% of (reading + range)
Vrms,V Max/Min,+/-Vpk | | | Parameter CURRENT READBACK A MET Range | TER | 9.375Arms/18.75Arms | Vrms,V Max/Min,+/-Vpk | 18.75Arms/37.5Arms | 9.375Arms/18.75Arms | Vrms,V Max/Min,+/-Vpk
14Arms/28Arms | 18,75Arms/37.5Arms | | Resolution
Accuracy | | 0.2mA/0.4mA | 0.3mA/0.6mA
0.05% of (reading + range) @ 50/60 | 0.4mA/0.8mA | 0.2mA/0.4mA | 0.3mA/0.6mA | 0.4mA/0.8mA | | Parameter
WATT READBACK W METER | | | Irms,I Max/Min,+/-lpk | | | 05% of (reading + range) @ 50/60
Irms,I Max/Min,+/-lpk | | | Range
Resolution | | 1875W
0.03125W | 2800W
0.05W | 3750W
0.0625W | 1875W
0.03125W | 2800W
0.05W | 3750W
0.0625W | | Accuracy®4 VA METER POWER FACTOR METER | | | ng + range) @ 50/60Hz , ±2% of (readi
msxArms Correspond To Vrms and Are | | | ding + range) @ 50/60Hz , ±2% of (r
msxArms Correspond To Vrms and Ar | | | Range
Accuracy | | | +/- 0.000-1.000
±(0.002±(0.001/PF)*F) | | | +/- 0.000~1.000
±(0.002±(0.001/PF)*F) | | | Frequency METER(Hz)
Range | | | DC,40~440Hz | | | DC,40~440Hz | | | Accuracy
Other Parameter METER | | | 0.1% | | | 0.1% | | | OTHERS
Start up Loading | VA | , VAR, CF_I, Ipeak, Imax., Imin. Vmax., Vn | | ited un | V A | wer on loading during Immers (1995 | start un | | Start up Loading Load ON / OFF Angle Half Cycle and SCR/TRIAC Lo | nading | 0 ~ 359 degree can be | ower on loading during Inverter / UPS s
programmed for the angle of load ON
Trailing edge or Leading edge curren | and load OFF loading | 0 ~ 359 degree can be | ower on loading during Inverter / UPS
programmed for the angle of load ON
O'Trailing edge or Leading edge currer | and load OFF loading | | Master/Slave (3 Phase or
Par
External Programming Input | allel Application) | roome or regains nan cycle, 2 | Yes, 1 master and upto 7 slave units
F.S / 10Vdc, Resulotion 0.1V | | | Yes, 1 master and upto 7 slave units
F.S / 10Vdc, Resulction 0.1V | | | External SYNC Input
Vmonitor (Isolated) | | | TTL
±500V / ±10V | | | TTL
±600V / ±10V | | | Imonitor (Isolated)
Interface (OPTION) | | ±56.25Apk / ±10Vpk | ±84Apk / ±10Vpk
GPIB ; RS-232 ; LAN ; USB | ±112.5Apk / ±10Vpk | ±56.25Apk / ±10Vpk | ±84Apk / ±10Vpk
GPIB ; RS-232 ; LAN ; USB | ±112.5Apk / ±10Vpk | | MAX. Power Consumption Operation Temperature *2 Current of Input Impedance/ | wA\@50/60U~ · | 2 | 150VA | | | 150VA
0 ~ 40 °C | 200000000000000000000000000000000000000 | | Current of Input Impedance(r
@ 400Hz
Dimension(H x W x D) | uwidhanlenus : | ~V*0.3 ; ~V*2.2
177 x 440 x 552.6 mm | ~V°0.45 ; ~V°3.3
177 × 440 × 552.6 mm | ~V°0.6; ~V°4.4
177 × 440 × 552.6 mm | ~V°0.3 ; ~V°2.2
177 x 440 x 552.6 mm | ~V^0.45 ; ~V^3.3
177 x 440 x 552.6 mm | ~V^0.6; ~V^4.4
177 x 440 x 552.6 mm | | Weight | | 177 x 440 x 352.6 mm
21.5kg | 177 x 440 x 552.6 mm
27.5 kg | 177 x 440 x 552.6 mm
33.5 kg | 177 x 440 x 532.6 mm
21.5kg | 177 x 440 x 552.6 mm
27.5kg | 177 x 440 x 552.6 mm
33.5 kg | Weight 21.5kg 27.5kg 27.5kg $^{\circ}$ 1 ms (millisiemens) is the unit of conductance(G), one siemens equal to $1/\Omega$ $^{\circ}$ 2 Operating temperature range is 0-40°C, all specification apply for 25°C±5°C, except as noted $^{\circ}$ 3 Turbo mode for up to 2X Current rating & Power rating support Fuse, Short/OCP/OPP test function $^{\circ}$ 4 The specification apply for current less than 20Arms Good Will Instrument Co., Ltd. | Simply Reliable ^{*} All specifications apply for 50/60Hz * All specifications subject to change without notice | SPECIFICATION MODEL | 2142 | AEL-5006-350-56 | AEL-5008-350-75 | AEL-5012-350-112.5 | AEL-5015-350-112 | .5 AEL-5019-350-112. | .5 AEL-5023-350-1 | |--|---|--|---|--|--|--|--| | ower (W)
urrent(Ampere) | | 5600 W
56 Arms / 168Apeak | 7500 W
75 Arms / 225Apeak | 11250W
112.5 Arms / 337.5Apeak | 15000 W
112.5 Arms / 337.5Apeak | 18750W
112.5 Arms / 337.5Apeak | 22500W
112.5 Arms / 337.5Apeal | | iltage(Volt)
EQUENCY Range | | 2074 may too-speak | To Petiting Assorption | 50~350Vri | ms / 500Vdc
, DC-440Hz(LIN,CR,CV Mode) | The second of second and | 1022-11112/22/22/24 | | OTECTIONS | | | | | | 12 | | | er Power Protection
er Current Protection | | ≒ 5880Wrms or Programmable
≒ 58.8 Arms, or Programmable | ≒ 7875Wrms or Programmable ≒ 78.75 Arms, or Programmable | ≒11812.5Wrms or Programmable
≒ 118.125 Arms or Programmable | ≒ 118.125 Arms or Programmab | = 19687.5Wrms or Programmable
= 118.125 Arms or Programmable | e ≒23625Wrms or Programm.
le ≒ 118.125 Arms or Programs | | ver Vlotage Protection
ver Temp. Protection | | 100 200 | | | /rms/525Vdc
Yes | 79 800 | 9.00 (96.00) | | ERATION MODE
enstant Current Mode for Sir | ne-Wave | | | | | | | | tange
tesolution | | 0–56A
1mA/16bits | 0-75A
1.25mA/16bits | 0–112.5A
1.875mA/16bits | 0–112.5A
1.875mA/16bits | 0-112.5A
1.875mA/16bits | 0–112.5A
1.875mA/16bits | | ccuracy | for Sine Word Source W | ave or Quasi-Square Wave, PWM Wave | ± (0.1% of setting | g + 0.2% of range) @ 50/60Hz, ±0. | 5% of (setting + range) @ DC as | nd 400Hz | normal result | | lange | for sine-wave, square-w | 0~56A | 0~75A
1.25mA/16bits | 0-112.5A | 0-112.5A | 0~112.5A | 0~112.5A | | esolution
ecuracy | |
1mA/16bits | | 1.875mA/16bits
+ 0.2% of range > @ 50/60Hz , ± 0.5 | 1.875mA/16bits
5% of (setting + range) @ DC an | 1.875mA/16bits
d 400Hz | 1.875mA/16bits | | nstant Resistance Mode
lange | | 1 ohm = 20 k ohm | 0.8 ohm = 16k ohm | 0.533 ohm = 10.666k ohm | 0.533 ohm = 10.666 k ohm | 0.533 ohm = 10.666k ohm | 0.533 ohm = 10.666k ohr | | tesolution*1
ccuracy | | 0.016666mS/16bits | 0.020832mS/16bits
±0.2% of (settin | 0.031248mS/16bits
g + range) @ 50/60Hz, ± (0.5% of s | 0.031248mS/16bits
etting + 2% of range) @ DC and | 0.031248mS/16bits
400Hz | 0.031248mS/16bits | | nstant Voltage Mode
ange | | | | 50350Vr | ms / 500Vdc | | | | esolution
ccuracy | | | | | 1.1V
+ range) @ 50/60Hz | | | | nstant Power Mode | | 5600W | 7500W | 11250W | 15000 W | 18750W | 22500W | | esolution
ccuracy *4 | | 0.1W | 0.1W | 1W
±0.5% of (setting + range) @ 50/60Hz | 1W | 1W | 1W | | EST FACTOR (CC & CP MC | DE ONLY) | | | and the second of the second | | 7.0 | 75 | | ange
esolution | | 1 | | | 2~5
0.1 | | | | WER FACTOR (CC & CP M | ODE ONLY) | | | (0.5% / Irr | ns) + 1%F.5. | | | | ange
esolution | | 7 | | | g or Lead
0.01 | | | | T MODE | | | | | 6F.S. | | | | S Efficient Measurement
perating Frequency | | | | | near Mode
10–440Hz | | | | urrent Range | | 0-56A | 0-75A | 0-112.5A | 0-112.5A | 0-112.5A | 0-112.5A | | F Range
sesuring Efficiency For PV S | ystems, | 2 | | | 0-1
on-Linear Mode | | | | wer Conditioners for THD 8 perating Frequency | 0% | C 0,000,000 | 10,988 | Auto ; 4 | 10-440Hz | . 10 2.0.3.4 8.9836 | 70 9000 1000 C | | urrent Range
esistive Range | | 0~56A
1 ohm = 20 k ohm | 0~75A
0.8 ohm = 16k ohm | 0~112.5A
0.533 ohm = 10.666k ohm | 0~112.5A
0.533 ohm ~ 10.666k ohm | 0~112.5A
0.533 ohm = 10.666k ohm | 0~112.5A
0.533 ohm ~ 10.666k oh | | S Back-Up Function (CC,LIN | I,CR,CP) | | | • | ms / 500Vdc | | | | PS Back-Up Time | LIN CB CB | | | | Sec. (>27H) | | | | VP (VTH) | -unickich) | | | 50–350Vri | ms / 500Vdc | | | | attery Discharge Time S Transfer Time | | | | | Sec. (>27H) | | | | urrent Range
VP (VTH) | | 0-56A | 0-75A | 0-112.5A | 0-112.5A | 0-112.5A | 0-112.5A | | me range
se Test Mode | | | | 0.15ms- | -999.99ms | | | | Max. Current | Turbo OFF(CC1-3) Turbo ON(CC3) | 56Arms | 75Arms | 112.5Arms | 112.5Arms | 112.5Arms | 112.5Arms | | max. Current | Turbo ON(CC1-2) | 112Arms (x2) *2 | 150Arms (x2) *3 | 225Arms (x2) *3 | 225Arms (x2) *3 | 225Arms (x2) *3 | 225Arms (x2) *3 | | Trip & Non-Trip Time | Turbo OFF(Time1~3)
Turbo ON(Time1~2) | | | 0.01~0 | 13.33 Sec.
0.50 Sec. | | | | PFF Time | Turbo ON(Time3) | 2 | | 0.1-99 | 00.00 Sec.
99.9 Sec. | | | | Meas. Accuracy
Repeat Cycle | | <u> </u> | | | 03 Sec.
99999 | | | | hort/OPP/OCP Test Functio | Turbo OFF | | | 0.1~10Se | ec. or Cont. | | | | Short Time | Turbo ON
Turbo OFF | 2 | | | -1Sec.
IOms | | | | OPP/OCP Step Time | Turbo ON
Turbo OFF | 56Arms | 75Arms | 100ms, up | to 10 Steps
112.5Arms | 112.5Arms | 112.5Arms | | OCP Istop | Turbo ON
Turbo OFF | 112Arms
5600W | 150Arms
7500W | 225Arms
11250W | 225Arms
15000W | 225Arms
18750W | 225Arms
22500W | | OPP Pstop | Turbo ON | 11200W | 15000W | 22500W | 30000W | 37500W | 45000W | | ogrammable Inrush Current
tart, Inrush Start Current | Simulation: Istart - Istop | 0~112A | 0~150A | 0-225A | 0~225A | 0~225A | 0-225A | | rush Step Time
op, Inrush Stop Current | | 0-56A | 0-75A | 0.1ms
0-112.5A | ~100ms
0–112.5A | 0-112.5A | 0-112.5A | | grammable Surge Current :
and S2 Current | Simulation: S1/T1 - S2/T2 | - S3/T3
0-112A | 0-150A | 0-225A | 0-225A | 0-225A | 0-225A | | and T2 Time
Current | | 0~56A | 0~75A | 0.01~
0~112.5A | -0.5Sec.
0-112.5A | 0~112.5A | 0-112.5A | | Time
EASUREMENTS | | | | | Sec. or Cont. | | | | LTAGE READBACK V MET | ER | | | | A41. | | | | ange | | | | 0. | 00V
01V | | | | | | | | ±0.05% of (re
Vrms,V Ma | eading + range)
ox/Min,+/-Vpk | | | | esolution
ccuracy
arameter | | | | | | | 56.25Arms/112.5Arms | | ccuracy
arameter
RRENT READBACK A MET | ER | 28Arms/56Arms | 37.5Arms/75Arms | 56.25Arms/112.5Arms | 56.25Arms/112.5Arms | 56.25Arms/112.5Arms | | | ccuracy
arameter
IRRENT READBACK A METI
ange
esolution | ER | 28Arms/56Arms
0.6mA/1.2mA | 37.5Arms/75Arms
0.8mA/1.6mA | 1.2mA/2.4mA | 56.25Arms/112.5Arms
1.2mA/2.4mA
+ range) @ 50/60Hz | 56.25Arms/112.5Arms
1.2mA/2.4mA | 1.2mA/2.4mA | | ccuracy
arameter
iRRENT READBACK A METI
ange
esolution
ccuracy
arameter | ER | | | 1.2mA/2.4mA
±0.1% of (reading | | | | | occuracy parameter RRENT READBACK A MET ange esolution ccuracy parameter ATT READBACK W METER ange | ER | 0.6mA/1.2mA
5600W | 0.8mA/1.6mA
7500W | 1.2mA/2.4mA
±0.1% of { reading
lrms,I Ma
11250W | 1.2mA/2.4mA
+ range) @ 50/60Hz
x/Min.+/-lpk
15000W | 1.2mA/2.4mA | 1.2mA/2.4mA
22500W | | occuracy varanteer RRENT READBACK A METI sings solution cocuracy varanteer vity READBACK W METER sings solution cocuracy cocuracy varanteer cocuracy varanteer cocuracy varanteer solution | ER | 0.6mA/1.2mA | 0.8mA/1.6mA | 1.2mA/2.4mA
±0.1% of { reading
 Irms, Ma
11259W
0.1875W
±0.5% of [reading + range } @ 5 | 1.2mA/2.4mA
+ range) @ 50/60Hz
x/Min,+/-lpk
15000W
0.25W
0/60Hz , ±2% of (reading + range) | 1.2mA/2.4mA | 1.2mA/2.4mA | | DOCURACY PARAMETRICAD BACK A METI RENT READBACK A METI RESOLUTION DOCURACY PARAMETRICAD | ER | 0.6mA/1.2mA
5600W | 0.8mA/1.6mA
7500W | 1.2mA/2.4mA
±0.1% of { reading
Irms,I Ma
11250W
0.1875W
±0.5% of { reading + range } ⊕ 5
VrmsxArms Correspond | 1.2mA/2.4mA
+ range) ap 50/50Hz
x/Min.+/-lpk
15000W
0.25W
0/60Hz , ±2% of (reading + range)
and To Vrms and Arms | 1.2mA/2.4mA | 1.2mA/2.4mA
22500W | | SCURIACY varianter RRENT READBACK A METI nge solution Kuriacy rarmeter TIT READBACK W METER nige solution Curiacy A. METER wer Factor METER nige | ER | 0.6mA/1.2mA
5600W | 0.8mA/1.6mA
7500W | 1.2mh/2.4mh | 1.2mA/2.4mA
+ range) @ 50/60Hz
x/Min,+/-lpk
15000W
0.25W
0/60Hz , ±2% of (reading + range) | 1.2mA/2.4mA | 1.2mA/2.4mA
22500W | | CUPREY PREMT READBACK A METI INTERPREMEMBER REMT READBACK A METI INTERPREMEMBER FOR THE READBACK W METER INGE SOURTION LUPREY 94 METER WE FEATOR METER INGE CUPREY 94 METER UNDERF LUPREY METE | ER | 0.6mA/1.2mA
5600W | 0.8mA/1.6mA
7500W | 1.2mA/2.4mA a.0.1% of { reading trans,1 Me irms,1 Me 11250W 0.1875W s.0.5% of { reading + range } 0.5 VrmsvArms Corresp = (0.002a)(0.002a) | 1.2mA/2.4mA + range) @ 50/60Hz x/Min.+/-lpk 15000W | 1.2mA/2.4mA | 1.2mA/2.4mA
22500W | | curacy rameter | ER | 0.6mA/1.2mA
5600W | 0.8mA/1.6mA
7500W | 1.2mA/2.4mA
#0.1% of { reading transl. Mas 11250W 11 | 1.2mA/2.4mA
+ range) @ 50/60Hz
x/Min.+/-lpk
15000W
0.25W
0.0/60Hz , ±2% of (reading + range)
000 To Virns and Arms
00-1.000 | 1.2mA/2.4mA | 1.2mA/2.4mA
22500W | | CUPIACY THE ATTENDED TO AT | ER | 0.6mA/1.2mA
5600W | 0.8mA/1.6mA
7500W
0.125W | 1.2mA/2.4mA
#0.1% of { reading transl. Mas 11250W 11 | 1.2mA/2.4mA + range) @ 50/60Hz y/Min.+/-lpk 15000W 0.25W 0.25W 0.00Hz , ±2% of (reading + range) and Tro Virns and Arms 00-1 000 0.001/PF/-F) 0-400Hz | 1.2mA/2.4mA | 1.2mA/2.4mA
22500W | | CUPROY TARRENT READBACK A METI METER SOLUTION METER SOLUTION TO READ THE SOLUTION TO READ THE SOLUTION TO READ THE SOLUTION TO READ THE SOLUTION METER INGE CUPROY ING | ER | 0.6mA/1.2mA
5600W | 0.8mA/1.6mA 7500W 0.125W VA. VAR. CF_J, Ipeak, Im | 1.2mA/2.4mA a.0.1% of { reading } reading Irms,! Ma I1250W 0.1875W a.0.5% of { reading + range } @ 5 VrmsxArms Corresp +/- 0.0 a.(0.0021x(1) DC.44 3xs., Irmin, Vrmax., Vrmin., IHD, VHD, ITH4 Yes., Power on loading ds. | 1.2mA/2.4mA + range) @ 05/60Hz x/Min.+/-lpk 15000W 0.25W 0.25W 0/60Hz, ±2% of (reading + range) 00-1.000 00-1.000 0.001/PF)*F) 0-440Hz 1.3% 0, VTHD pring Inverter / UPS start up | 1.2mA/2.4mA
18750W
0.3125W | 1.2mA/2.4mA
22500W | | COURSEY azameter RREENT READBACK A METI ange sesolution coursey aramster aramsee coursey aramster aramsee ange coursey aramster A METER ange coursey METER(Hz) ange coursey her Paramster METER(Hz) ange HETER HET | uding | 0.6mA/1.2mA
5600W | 0.8mA/I.6mA 7500W 0.125W VA, VAR, CF_J, Ipeak, Im | 1.2mA/2.4mA a.0.136 of { reading to reading to } lims,I Ma 11250W 0.1875W 0.1875W s.0.5% of { reading + range } g) 5 Vrmsx4ms Corresp +/- 0.0 s(0.002s(t) 0.4(0.002s(t) 0. | 1.2mA/2.4mA + range) @ 50/60Hz x/Min.+/-lpk 15000W 0.25W 0.25W 0.00Hz, ±2% of (reading + range) 00-1.000
00-1.000 00- | 1.2mA/2.4mA 18750W 0.3125W | 1.2mA/2.4mA
22500W | | COURSEY ADMINISTRATER ADMINISTRATION ADMINI | uding | 0.6mA/1.2mA
5600W | 0.8mA/I.6mA 7500W 0.125W VA, VAR, CF_J, Ipeak, Im | 1.2mA/2.4mA a.0.1% of { reading lrms,! Ma linus,! li | 1.2mA/2.4mA + range) @ 50/60Hz x Min.+/-lpk 150/60Hz 150/60Hz 0.25W 0.25W 0.01/60Hz 1.500 and Arms 00-1000 0.001/PF/-F) 0.440Hz 1.7% 0.7/THD 0.7/THD 0.7/THD 0.7/THD 0.7/THD 0.7/THD angle reveter / UPS start up the angle of load ON and load OFF ON and load ON and load ON and load ON an | 1.2mA/2.4mA 18750W 0.3125W | 1.2mA/2.4mA
22500W | | COURSEY TREATE READBACK A METI mings solution COURSEY TATT READBACK W METER mings TOTT READBACK W METER METER TOTT W | uding | 0.6mA/1.2mA
5600W | 0.8mA/I.6mA 7500W 0.125W VA, VAR, CF_J, Ipeak, Im | 1.2mA/2.4mA a.0.1% of { reading lrms,! Ma l 11250W | 1.2mA/2.4mA + range) @ 50660Hz x/Min,+/-lpk 15060Hz 0.25W 0.25W 0.060Hz 1.52% of (reading = range) 000-1.000 000-1/P)**F) | 1.2mA/2.4mA 18750W 0.3125W | 1.2mA/2.4mA
22500W | | COURSEY TREATER READBACK A METT Ingg Solution COURSEY TATTREADBACK A METER Ingg TATTREADBACK W METER Ingg COURSEY THE COURSE T | uding | 0.6mA/1.2mA
5600W | 0.8mA/I.6mA 7500W 0.125W VA, VAR, CF_J, Ipeak, Im | 1.2mA/2.4mA a.0.1% of { reading lrms,! Me li1250W 0.1875W a.0.5% of [reading + range] @ 5 VrmsxArms Corresp +/-0.0 a(0.002a(f 0.002a(f 0. | 1.2mA/2.4mA + range) @ 50/60Hz x/Min,+/-lpk 150/60Hz 150/60Hz - 1.2% of (reading + range) 0.25W 0.25W 0.001/P)*-F) 0.001/P)*-F) 0.001/P)*-F) 0.440Hz 1/56 0.2,VTM0 1/66 1.20 | 1.2mA/2.4mA 18750W 0.3125W | 1.2mA/2.4mA
22500W | | COURSEY REENT READBACK A METI ange solution COURSEY FATTREADBACK A METER ange TATTREADBACK W METER ange COURSEY FATTREADBACK W METER ange COURSEY FATTREADBACK W METER ange COURSEY FATTREADBACK FATTREA | uding | 0.6mA/1.2mA
5600W
0.1W | O.8mA/I.6mA 7500W 0.123W VA, VAR, CF_I, Ipeak, Im Postive or | 1.2mA/2.4mA a.0.1% of { reading lrms,! Me li1250W 0.1875W a.0.5% of [reading + range] @ 5 VrmsxArms Corresp +/-0.0 a(0.002aft 0C,46 0 axa, Imin. Vmax., Vmin., IHD, VHD, ITH! Yes. Power on loading 6, 0 - 359 degree can be programmed or r Negative half cycle, 90 "Trailing edge or Yes. I massed for the second of o | 1.2mA/2.4mA + range) @ 50/60Hz x/Mm,+/-lpk 150/60Hz 150/6 | 1.2mA/2.4mA 18750W 0.3125W ding | 1.2mA/2.4mA 22500W 0.375W | | ccuracy | nding
Ilel Application)
OPTION) | 0.6mA/1.2mA
5600W
0.1W | 0.8mA/J.6mA 7500W 0.125W VA, VAE, CF_J, Ipeak, Im Postive of | 1.2mA/2.4mA a.0.1% of { reading lrms,! Me li1250W 0.1875W a.0.5% of [reading + range] @ 5 VrmsxArms Corresp +/-0.0 a(0.002aft 0C,46 0 axa, Imin. Vmax., Vmin., IHD, VHD, ITH! Yes. Power on loading 6, 0 - 359 degree can be programmed or r Negative half cycle, 90 "Trailing edge or Yes. I massed for the second of o | 1.2mA/2.4mA + range) @ 50/60Hz x Min.+/-lpk 150/60Hz 150/ | 1.2mA/2.4mA 18750W 0.3123W ding programmed #337.5Apk / #10Vpk | 1.2mA/2.4mA 22500W 0.375W 0.375W | - *7 ms (millisiemens) is the unit of conductance(C), one siemens equal to 1/Ω *2 Operating temperature range is 0-40°C, all specification apply for 25°C±5°C, Except as noted *3 Turbo mode for up to 2X Current rating & Power rating support Fuse, Short/OCP/OPP test function *4 The specification apply for current less than 20Arms - * All specifications apply for 50/60Hz All specifications subject to change without notice Simply Reliable | Good Will Instrument Co., Ltd. | SPECIFICATI
MODEL | ONS | AEL-5006-425-56 | | AEL-5012-425-112.5 | | | | |--|--|--|--|--
--|--|--| | Power (W)
Current(Ampere) | | 5600 W
56 Arms / 168Apeak | 7500 W
75 Arms / 225Apeak | 11250W
112.5 Arms / 337.5Apeak | 15000 W
112.5 Arms / 337.5Apeak | 18750W
112.5 Arms / 337.5Apeak | 22500W
112.5 Arms / 337.5Apeak | | Voltage(Volt)
FREQUENCY Range | | | \$ \$ | 50-425Vrm
DC,40-440Hz(CC,CP Mode), | ns / 600Vdc | <u> </u> | | | ROTECTIONS
Over Power Protection | | ≒ 5880Wrms or Programmable | ≒ 7875Wrms or Programmable | ≒11812.5Wrms or Programmable | ≒15750Wrms or Programmable | ≒19687.5Wrms or Programmable | ≒23625Wrms or Programmable | | Over Current Protection
Over Vlotage Protection | | ≒ 58.8 Arms, or Programmable | ≒ 78.75 Arms, or Programmable | ≒ 118.125 Arms or Programmable | ≒ 118.125 Arms or Programmable
rms/630Vdc | ≒ 118.125 Arms or Programmable | ≒ 118.125 Arms or Programmab | | Over Temp. Protection DPERATION MODE | | | | Y | | | | | Constant Current Mode for S
Range | ine-Wave | 0-56A | 0~75A | 0-112.5A | 0-112.5A | 0-112.5A | 0-112.5A | | Resolution
Accuracy | | 1mA/16bits | 1.25mA/16bits | 1.875mA/16bits
sing + 0.2% of range) @ 50/60Hz , ± | 1.875mA/16bits | 1.875mA/16bits | 1.875mA/16bits | | Linear Constant Current Mod | de for Sine-Wave, Square | -Wave or Quasi-Square Wave, PWM Wav
0~56A | 0~75A | 0-112.5A | 0-112.5A | 0~112.5A | 0~112.5A | | Range
Resolution | | 1mA/16bits | 1.25mA/16bits | 1.875mA/16bits | 1.875mA/16bits | 1.875mA/16bits | 1.875mA/16bits | | Constant Resistance Mode | | | ± (0.1% of sett | | 0.5% of (setting + range) @ DC a | | | | Resolution*1 | | 1 ohm – 20k ohm
0.016666mS/16bits | 0.8 ohm = 16k ohm
0.020832mS/16bits | 0.533 ohm = 10.666k ohm
0.031248mS/16bits | 0.533 ohm = 10.666k ohm
0.031248mS/16bits | 0.533 ohm – 10.666k ohm
0.031248mS/16bits | 0.533 ohm = 10.666k ohm
0.031248mS/16bits | | Accuracy Constant Voltage Mode | | | ±0.2% of (se | | | 400Hz | | | Range
Resolution | | | | 0. | | | | | Accuracy Constant Power Mode | | | | | range) @ 50/60Hz | | | | Range
Resolution | | 5600W
0.1W | 7500W
0.1W | 11250W
1W | 15000 W | 18750W
1W | 22500W
1W | | Accuracy *4 CREST FACTOR (CC & CP M | ODE ONLY) | 2 | | ±0.5% of (setting + range) @ 50/60Hz | t, a2% of (setting + range) | <u> </u> | ii | | Range
Resolution | | | | √2
0 | -5
.1 | | | | Accuracy
POWER FACTOR (CC & CP) | MODE ONLY) | | | (0.5% / Irm | s) + 1%F.S. | | | | Range
Resolution | , | | | 0-1 Lag
0. | or Lead
01 | | | | Accuracy
EST MODE | | | | 1% | | | | | UPS Efficient Measurement Operating Frequency | | V _{an} yan | physical d | Non-Line
Auto ; 40 | | No. 6/2007**2.55 | | | Current Range
PF Range | | 0-56A | 0-75A | 0-112.5A | 0-112.5A | 0-112.5A | 0-112.5A | | Measuring Efficiency For PV :
Power Conditioners for THD | Systems,
80% | | | Resistive + No | n-Linear Mode | | | | Operating Frequency
Current Range | | 0~56A | 0~75A | Auto ; 46 | 0–440Hz | 0~112.5A | 0112.5A | | Resistive Range UPS Back-Up Function(CC,LI | IN CR CR | 1 ohm – 20 k ohm | 0.8 ohm – 16 k ohm | 0.533 ohm = 10.666k ohm | 0.533 ohm = 10.666k ohm | 0.533 ohm – 10.666k ohm | 0.533 ohm = 10.666k ohm | | UVP (VTH)
UPS Back-Up Time | in,cn,cr) | | | 50-425Vrm
1~99999 S | | | | | Battery Discharge Function(C
UVP (VTH) | CC,UN,CR,CP) | | | 50-425Vrm | | | | | Battery Discharge Time UPS Transfer Time | | | | 1-99999 S | ec. (>27H) | | | | Current Range | | 0-56A | 0-75A | 0-112.5A | 0-112.5A | 0-112.5A | 0-112.5A | | UVP (VTH)
Time range | | | | 2.
0.15ms- | | | | | Fuse Test Mode | Turbo OFF(CC1-3) | 56Arms | 75Arms | 112.5Arms | 112.5Arms | 112.5Arms | 112.5Arms | | Max. Current | Turbo ON(CC3)
Turbo ON(CC1-2) | 112Arms (x2) *2 | 150Arms (x2) *3 | 225Arms (x2) *3 | 225Arms (x2) ±3 | 225Arms (x2) *3 | 225Arms (x2) *3 | | Trip & Non-Trip Time | Turbo OFF(Time1-3)
Turbo ON(Time1-2) | | | 0.01~33:
0.01~0. | | | | | OFF Time | Turbo ON(Time3) | | | 0.01-600
0.1~999 | | | | | Meas. Accuracy
Repeat Cycle | | | | ±0.00 | 3 Sec.
9999 | | | | Short/OPP/OCP Test Functi
Short Time | Turbo OFF | | | 0.1~10Sec | c. or Cont. | | | | OPP/OCP Step Time | Turbo ON
Turbo OFF | | | 0.1- | | | | | 100000000000000000000000000000000000000 | Turbo ON
Turbo OFF | 56Arms | 75Arms | 100ms, up
112.5Arms | to 10 Steps
112.5Arms | 112.5Arms | 112.5Arms | | OCP Istop | Turbo ON
Turbo OFF | 112Arms
5600W | 150Arms
7500W | 225Arms
11250W | 225Arms
15000W | 225Arms
18750W | 225Arms
22500W | | OPP Pstop
Programmable Inrush Currer | Turbo ON
nt Simulation: Istart - Ista | 11200W | 15000W | 22500W | 30000W | 37500W | 45000W | | Istart, Inrush Start Current
Inrush Step Time | | 0~112A | 0~150A | 0~225A | 0~225A
~100ms | 0~225A | 0~225A | | Istop, Inrush Stop Current
Programmable Surge Current | t Simulation: \$1/17 - \$2 | 0-56A | 0-75A | 0-112.5A | 0-112.5A | 0-112.5A | 0-112.5A | | S1 and S2 Current
T1 and T2 Time | | 0-112A | 0-150A | 0-225A | 0225A
0.55ec. | 0-225A | 0-225A | | S3 Current
T3 Time | | 0~56A | 0~75A | 0~112.5A | 0-112.5A
Sec. or Cont. | 0~112.5A | 0-112.5A | | MEASUREMENTS
VOLTAGE READBACK V MET | TER | | | 0.01-9.993 | Victor or William | | | | Range
Resolution | | | | 60 | | | | | Accuracy
Parameter | | | | | iding + range) | | | | CURRENT READBACK A ME | TER | 28Arms/56Arms | 37.5Arms/75Arms | 56.25Arms/112.5Arms | /міп,+/-vpк
56.25Arms/112.5Arms | 56.25Arms/112.5Arms | 56.25Arms/112.5Arms | | Range
Resolution | | 0.6mA/1.2mA | 0.8mA/1.6mA | 1.2mA/2.4mA | 1.2mA/2.4mA | 1.2mA/2.4mA | 1.2mA/2.4mA | | Accuracy
Parameter | | | | a0.1% of (reading 4 | range) @ 50/60Hz
/Min,+/-lpk | *** | | | WATT READBACK W METER
Range | | 5600W | 7500W | 11250W | 15000W | 18750W | 22500W | | | | 0.1W | 0.125W | 0.1875W
±0.5% of (reading + range) @ 50 | 0.25W
/60Hz , ±3% of (reading + range) | 0.3125W | 0.375W | | Accuracy © 4 | | | | VrmsxArms Correspo | nd To Vrms and Arms | | | | Accuracy © 4 VA METER Power Factor METER | | | | | | | | | Accuracy © 4 VA METER Power Factor METER Range Accuracy | | | | +/- 0.00
±(0.002±(0. | 0-1.000
001/PF)*F) | | | | Accuracy * 4 VA METER ower Factor METER Range Accuracy requency METER(Hz) | | | | ±(0.002±(0. | 0-1.000
001/PF)*F)
-440Hz | | | | Accuracy = 4 VA METER Vower Factor METER Range Accuracy requency METER(Hz) Range Accuracy | | | | ±(0.002±(0. | 001/PF)*F}
-440Hz | | | | Accuracy = 4 VA METER Power Factor METER Range Accuracy Frequency METER(Hz) Range Accuracy Other Parameter METER | | | VA, VAR, CF_I, Ipeak, | ±(0.002±(0.
DC,40- | .001/PF)*F)
-440Hz
1% | | | | Accuracy*4 VA METER Power Factor METER Range Accuracy Frequency METER(H2) Range Accuracy Other Parameter METER DTHERS START U Loading | | | VA, VAR, ČF.J, I peak, | ±(0.002±(0
DC,40-
0.)
Imax., Imin. Vmax., Vmin., IHD, VHD, ITH
Yes , Power on loading dur | 001/PF)*F) -440Hz % ID, VTHD ing Inverter / UPS start up | nov. | | | Accuracy *4 VA METER Power Factor METER Range Accuracy Frequency METER(Hz) Range Accuracy Other Parameter METER Start up Loading Load On / OFF Angle Load ON / OFF Angle | oading | | | #(0,0024)0 DC,400 DC,400 0. Imax., Imin. Vmax., Vmin., IHD, VHD, ITH Yes , Power on loading du 0 – 359 degree can be programmed for Ith Negative half cycle, 90 "Trailing edge or Ith | 001/PF)*F) 440Hz % 1D, VTHD ling Inverter / UPS start up e angle of load ON and load OFF loadi | ng
grogrammed | | | Accuracy -4 VA METER Range Accuracy Frequency METER(Hz) Range Accuracy Trequency METER(Hz) Range Accuracy There Areameter METER THERS List up Loading oad On J OFF Angle salf Cycle and SCR/TRIAC Li Master/Slave (3 Phase or Pa | rallel Application) | | | #(0.002-)(0 DC.40- DC.40- Imax., Imin. Vmax., Vmin., IHD, VHD, ITP Yes , Power on loading du 0 - 359 degree can be
programmed for It Negative half cycle, 90 Trailing dege or 1 Yes, I master and F.5 / 10/40c, R | 001/PF/FF} 440Hz 95 ID, VTHD ing Inverter / UPS start up e angle of foad ON and load OFF load assding edge current waveform can be j upto 7 slave unit seutotion 0.1V | ng
programmed | | | Accuracy -4 VA METER Range Accuracy Trequency METER(Hz) Range Accuracy Trequency METER(Hz) Range Accuracy THERS TH | rallel Application) | | Postive a | # (0.002-)(0 DC.40- DC.40- Imax., Imin., Vmax., Vmin., IHD, VHO, ITP- Yes , Power on loading du 0 - 339 degree can be programmed for least of the Vest of the Vest of | 001/PF/FF) 440Hz 56 ID, VTHD ing Inverter / UPS start up e angle of foad ON and load OFF load adding edge current waveform can be j upto 7 slave unit esulotion 0.1V TL 1 J 10V | programmed | | | Accuracy - 4 VA METER Range Accuracy Trequency METER(Hz) Range Accuracy Trequency METER(Hz) Range Accuracy Dither Parameter METER THERS SILIATE SILIAT | rallel Application) | #168Apk / #10Vpk | Postive oi
±225Apk / ±10Vpk | # (0.002-(0 DC.40 | 001/PF/FF 440Hz % ID, VTHD ing Inverter / UPS start up e angle of foad ON and load OFF load auding edge current waveform can be j upto 7 slave unit esulotion 0.1V IL / 10/W = 3337.5Apk / =10Vpk 1; LAN ; USB | programmed
±337.5Apk / ±10Vpk | a337.5Apk / a10Vpk | | Accuracy 14 VA METER Prower Factor METER Range Accuracy Frequency METER(Hz) Range Accuracy Other Parameter METER STHERS S | (OPTION) | a168Apk / a10Vpk
270VA | Postive a | # (0.002-10) DC,400 DC,400 (0.1) Imax., Imin. Vmax., Vmin., IHD, VHD, ITH Yes , Power on loading du Ves , Power on loading du Negative half cycle, 30 Trail. Image. F. S. / 10Vdc, R ### 1500 ### 15 | 001/PE/FF) 440Hz % 1D, VTHD ing Inverter / UPS start up e angle of foad ON and load OFF load starting and sta | programmed | ±337.5Apk / ±10Vpk
750VA | | Resolution Accuracy 74 VA METER VA METER Range Range Range Range Range Accuracy Other Parameter METER Range Status | (OPTION) | 77. 237 12 77 73 | Postive oi
±225Apk / ±10Vpk | # (0.002-(0 DC,400 DC,4 | 001/PE/FF) 440Hz % 1D, VTHD ing Inverter / UPS start up e angle of foad ON and load OFF load starting and sta | programmed
±337.5Apk / ±10Vpk | \$6 | Weight 58 kg 70 kg 1 ms (millisiemens) is the unit of conductance(C), one siemens equal to $1/\Omega$ 2 Operating temperature range is 0-40°C, all specification apply for 25°C±5°C, Except as noted 23 Turbo mode for up to 2X Current rating & Power rating support Fuse, Short/OCP/OPP test function 24 The specification apply for current less than 20Arms * All specifications apply for 50/60Hz * All specifications subject to change without notice Good Will Instrument Co., Ltd. | Simply Reliable | SPECIFICATI
MODEL | | AEL-5003-480-18.75 | AEL-5004-480-28 | |--|---|--|--| | Power (W)
Current(Ampere) | | 2800W
18.75 Arms / 56.25Apeak | 3750 W
28 Arms / 84Apeak | | /oltage(Volt)
FREQUENCY Range | | 50-480\ | /rms / 700Vdc
e) , DC-70Hz(LIN,CR,CV Mode) | | NOTECTIONS
Over Power Protection | | ≒2940Wrms or Programmable | ≒ 3937.5Wrms or Programmable | | ver Current Protection
ver Violage Protection | | ≒ 19.687 Arms or Programmable | ≈ 29.4 Arms or Programmable
frms / 735Vdc | | ver Temp. Protection PERATION MODE | | 7 3049 | Yes | | onstant Current Mode for S
Range | Sine-Wave | 0~18.75A | 0~28A | | tesolution
accuracy | | 0.3125mA/16bits
± (0.1% of setting + 0.2% of range) @ 50/60 | 0.5mA/16bits | | | de for Sine-Wave, Square-W | Vave or Quasi-Square Wave, PWM Wave 0~18.75A | 0~28A | | Resolution
Accuracy | | 0.3125mA/16bits
± (0.1% of setting + 0.2% of range) @ 50/60 | 0.5mA/16bits | | onstant Resistance Mode
Range | | 4 ohm ~ 80K ohm | 2.5 ohm ~ 50K ohm | | Resolution®1 | | 0.004166mS/16bits | 0.006666mS/16bits | | onstant Voltage Mode | | | 0.5% of setting + 2% of range) @ DC and 400Hz | | Range
Resolution
Accuracy | | C | /rms / 700Vdc
0.0125V | | onstant Power Mode | | 2800W | ng + 0.1% of range)
3750W | | tange
Resolution | | 0.1W | 0.1W | | ccuracy ° 4
EST FACTOR (CC & CP M | (ODE ONLY) | ±0.5% of (setting + range) @ | 50/60Hz , ±2% of (setting + range) | | tange
tesolution | | | √2~5
0.1 | | OWER FACTOR (CC & CP | MODE ONLY) | | Irms) + 1% F.S. | | tange
tesolution | | | Lag or Lead
0.01 | | Accuracy
ST MODE | | | 1%F.S. | | PS Efficient Measurement Operating Frequency | | Auto | Linear Mode
; 40–70Hz | | Current Range
PF Range | | 0-18.75A | 0-28A
0-1 | | leasuring Efficiency For PV
ower Conditioners for THD | Systems,
98096 | | Non-Linear Mode | | Operating Frequency
Current Range | | 0~18.75A | : 40~70Hz
0~28A | | Resistive Range
PS Back-Up Function(CC,L | JN,CR,CP) | 4 ohm ~ 80 k ohm | 2.5 ohm ~ 50 k ohm | | UVP (VTH)
UPS Back-Up Time | | 50~480\\1.~9999 | /rms / 700Vdc
9 Sec. (>27H) | | sttery Discharge Function(
UVP (VTH) | CC,LIN,CR,CP) | | 9 Sec. (>27H)
Vrms (700Vdc | | Battery Discharge Time | | | 9 Sec. (>27H) | | Current Range UVP (VTH) | | 0-18.75A | 0-28A | | Time range | | 0.15m | 2.5V
is=999.99ms | | use Test Mode | Turbo OFF(CC1~3) | 18.75Arms | 28.0Arms | | Max. Current | Turbo ON(CC3)
Turbo ON(CC1-2) | 37.5Arms (x2) *3 | 56.0Arms (x2) *3 | | Trip & Non-Trip Time | Turbo ON(Time1-2) | 0.01 | 333.33 Sec.
-0.50 Sec. | | OFF Time | Turbo ON(Time3) | 0.1- | 600.00 Sec.
999.9 Sec. | | Meas. Accuracy
Repeat Cycle | | | .003 Sec. | | hort/OPP/OCP Test Funct
Short Time | Turbo OFF | | | | OPP/OCP Step Time | Turbo ON
Turbo OFF | | 100ms | | OCP Istop | Turbo ON
Turbo OFF | 18.75Arms | up to 10 Steps
28.0Arms | | OPP Pstop | Turbo ON
Turbo OFF | 37.5Arms
2800W | 56.0Arms
3750W | | | Turbo ON
nt Simulation: Istart - Istop | 5600W | 7500W | | start, Inrush Start Current
nrush Step Time | | 0-37.5k | 0–56A k | | stop, Inrush Stop Current
rogrammable Surge Curren | nt Simulation: \$1/T1 - \$2/T | 0-18.75A | 0-28A | | 1 and S2
Current
1 and T2 Time | | 0-37.5A | 0–56A
11~0.5Sec. | | 3 Current
3 Time | | 0~18.75A | 0~28A
39Sec. or Cont. | | IEASUREMENTS
OLTAGE READBACK V ME | TER | V.U1~5.5 | - WHIEL | | Range
Resolution | | r | 700V
0.0125V | | Accuracy
Parameter | | ±0.05% of | (reading + range)
Aax/Min,+/-Vpk | | URRENT READBACK A ME | ETER | 9.375Arms/18.75Arms | 14Arms/28Arms | | Resolution | | 0.2mA/0.4mA | 0.3mA/0.6mA | | Accuracy
Parameter
/ATT READBACK W METER | | ±0.05% of { reading Irms, I N | ng + range) @ 50/60Hz
flax/Min,+/-lpk | | Range | · · | 2800W | 3750W | | Resolution
Accuracy *4 | | 0.05W
±0.5% of (reading + range) @ | 0.0625W
50/60Hz , ±2% of (reading + range) | | /A METER
ower Factor METER | | | spond To Vrms and Arms | | Range
Accuracy | | | 1.000-1.000
±(0.001/PF)*F) | | equency METER(Hz) | | | ,40-70Hz | | | | | 0.1% | | Accuracy | VA, | VAR, CF_I, Ipeak, Imax., Imin. Vmax., Vmin., IHD, VHD, | ITHD, VTHD | | Accuracy
Other Parameter METER | | Yes , Power on loading | during Inverter / UPS start up
r the angle of load ON and load OFF loading | | Accuracy
Other Parameter METER
THERS
tart up Loading | | 0 ~ 359 degree can be programmed for | | | Accuracy Other Parameter METER THERS tart up Loading oad ON / OFF Angle talf Cycle and SCR/TRIAC L | oading | 0 ~ 359 degree can be programmed for
Postive or Negative half cycle, 90° Trailing edge of | or ceating edge current waveform can be programmed | | Accuracy Dither Parameter METER THERS Start up Loading .oad ON / OFF Angle staff Cycle and SCR/TRIAC L Asster/Slave (3 Phase or Pa | rallel Application) | 0 ~ 359 degree can be programmed for
Postive or Negative half cycle, 90° Trailing edge of
Yes, 1 master a | ind upto 7 slave units
c, Resulotion 0.1V | | Accuracy Where Parameter METER THERS tart up Loading bad ON / OFF Angle alf Cycle and SCR/TRIAC L laster/Slave By Phase or Pa kternal Programming Input when an according to the control of the control the control of the control of the control t | rallel Application) | 0 - 359 degree can be programmed for
Postive or Negative half cycle, 90 Trailing edge of
Yes, 1 master =
F.S / 10Vde | ind upto 7 slave units c, Resulotion 0.1V TTL 10V / ±10V | | Accuracy
Dither Parameter METER
THERS
Start up Loading
Load ON / OFF Angle
dalf Cycle and SCR/TRIAC L
Master/Slave (3 Phase or Pa
External Programming Input
External SYNC Input
Tronolitor (Isolated)
monitor (Isolated)
Interface (OPTION) | rallel Application) | 0 ~ 359 degree can be programmed for
Postive or Negative half cycle, 90 Trailing edge
Yes, 1 master a
Yes, 1 master a
+70
±56.25Apk / ±10Vpk
GPIB; R5- | nd upto 7 slave units ;, Resulotion 0.1V TTL 10V / ±10V ±84Apk / ±10Vpk 232 ; LAN ; USB | | Accuracy Dither Parameter METER THERS Start up Loading and ON / OFF Angle talf Cycle and SCR/TRIAC L Master/Slave (3 Phase or Pa ticternal Programming Input Licternal SYNC Input 'monitor (Isolated) monitor (Isolated) monitor (Isolated) MAX. Power Consumption MAX. Power Consumption Jopenstion Temperature "2 | rallel Application) (OPTION) | 0 ~ 359 degree can be programmed for Postive or Negative half cycle, 90° Trailing edge. Yes, 1 master a F.S./10Vdt #70 ±56.25Apk/±10Vpk GPIB; RS- | ind upto 7 slave units : , Resulotion 0.1V TTL 00 / ±10V ±84Apk / ±10Vpk | | Accuracy Other Parameter METER THERS tart up Loading .oad ON / OFF Angle dalf Cycle and SCR/TRIAC L daster/Slave (3 Phase or Pa kxternal Programming Input ixternal SYNC Input immonitor (Isolated) monitor (Isolated) menter (so (OPTION) ANX, Power Consumption | rallel Application) (OPTION) | 0 ~ 359 degree can be programmed for Postive or Negative half cycle, 90° Trailing edge. Yes, 1 master a F.S./10Vdt #70 ±56.25Apk/±10Vpk GPIB; RS- | nd upto 7 slave units
, Resulotion 0.1V
TTL
00V / ±10V
1 ±84Apk / ±10Vpk
232 ; LAN ; USB
150VA | - "2 Operating temperature range is v-a-u v, as specification appty for 20-23 v, except as noted "3 Turbo mode for up to 2X Current rating 8 Power rating support Fuse, Short/OCP/OPP test function "4 The specification apply for current less than 20Arms AEL-5003-480-18.75 PEL-022 GPIB Card PEL-023 RS-232 Card PEL-024 LAN Card PEL-025 USB Card PEL-028 HANDLES, U-shaped handle (for AEL-5006/5008/5012/5015) PEL-029 HANDLES Rack Accessories (for AEL-5002/5003/5004) #### PEL-5000G Series #### **FEATURES** - * 4U/6K High Power Density Design Also for **Bench Testing** - * Turbo Mode Function, Which Allows 1.5 Times the Rated Power or Current to be Used Within Two Seconds - * Turbo Mode can be Used with OCP/OPP/ BMS/Short Mode/Surge Mode/Hot Plug-In - * High Tolerance to Environmental Temperature, with 4k/5kW Models not Affected by **Environmental Temperature in Power Usage** - * Can set the Power-on Status Value - * Short Circuit Duration Can be set Within Short Circuit Test Voltage Meter Display Can be Configured as Polarity Positive ("+") or Negative("-") - * Optional Interface : GPIB, RS232, USB, LAN - * Protection function Testing for Battery BMS - * Protection Against V, I, W, and ℃ GW Instek PEL-5000G series single-channel electronic load provides 150V/ 600V/ 1200V models with a power range of 4,5,6kW. PEL-5000G can test and verify the specifications of batteries, electric vehicle chargers/charging stations, electric vehicle batteries and solar panels. PEL-5000G supports parallel connection for same voltage specification and different power models. PEL-5000G can support up to 8 units connected in parallel. PEL-5000G Series has its own control and display panel, CC / CR / CV / CP /Dynamic modes. The new Turbo mode is designed for overload or protection testing, which includes OCP, OPP, Short for AC/DC or DC/DC power source; Over Charge/Discharge and Short for Battery BMS protection; and Blow/Not Blow testing for Fuse, Breaker or PTC Current Protection Components. Support Short, OCCP and OCDP protection tests for battery BMS protection testing, the peak current before protection and protection response time are measured. The BMS, Fuse, OCP and OPP single-key test functions on the module make test more efficient. The SHORT duration setting and SHORT_VH, SHORT_VL setting function, also can measure Short Voltage and Current. PEL-500G also provides Programmable LOAD ON/OFF voltage, GO/NG meter check, Voltage meter display" + "or"-" is Dynamic can be simulated under CC, CP mode. The current Rise / Fall slew rate can be adjusted individually and there is an external signal input so that load can have a simulated Specific Load Current Waveform. PEL-5000G also provides 150 sets Store / Recall larger memory is much advance feature for each different application. The 150 sets test parameter and status storage function can call the storage memory real time in accordance with the auto sequence requirement, at any time to tune out the stored memory for use. The communication interfaces supported by PEL-5000G include GPIB, RS232, USB, and LAN. The power, voltage and current of each model are shown in the following table: ORDERING INFORMATION 150V/400A/4000W High Power DC Electronic Load ## 150V/500A/5000W High Power DC Electronic Load 150V/600A/6000W High Power DC Electronic Load PEL-5005G-150-500 PEL-5006G-150-600 PEL-5004G-600-280 600V/280A/4000W High Power DC Electronic Load 600V/350A/5000W High Power DC Electronic Load PEL-5005G-600-350 600V/420A/6000W High Power DC Electronic Load PEL-5006G-600-420 PEL-5004G-1200-160 1200V/160A/4000W High Power DC Electronic Load PEL-5005G-1200-200 1200V/200A/5000W High Power DC Electronic Load PEL-5006G-1200-240 1200V/240A/6000W High Power DC Electronic Load PEL-5004G-150-400 #### STANDARD ACCESSORIES PEL-5000G Series operation manual BANANA PLUGS : Please refer to Fig.1 x 1 BNC – BNC CABLE : BNC to BNC CABLE, 1m x 1 HD-DSUB: 15PIN Parallel wire Parallel Wire x 1 PEL-028 HANDLES, U-shaped handle (fixed to the bracket) PEL-031 Rack Mount Kit For PEL-5000G #### **OPTIONAL ACCESSORIES** | PEL-023
PEL-024
PEL-025 | GPIB Card
RS-232 Card
LAN Card
USB Card
GPIB+RS-232 Card | GTL-248
GTL-250 | USB Cable, USB 2.0, A-B Type, 1200mm
GPIB Cable, Double Shielded, 2000mm
GPIB Cable, Double Shielded, 600mm
9923 Current Waveform Generator + RS232 Interface | |-------------------------------|--|--------------------|--| |-------------------------------|--|--------------------|--| Note: * Regarding the product delivery date, please contact your regional sales representative. #### Rear Panel | SPECIFICATIONS | | | | | | | |--
--|--|--|--|---|--| | MODEL | PEL-5004 | G-150-400 | PEL-5005C | -150-500 | PEL-5006C | -150-600 | | Power ¹
Current | 0 – 4kW
0 – 400A | 0 – 6kW max, *1
0 – 600A max, *1 | 0 – 5kW
0 – 500A | 0 – 7.5kW max.*1
0 – 750A max.*1 | 0 – 6kW
0 – 600A | 0 – 9kW max."
0 – 900A max." | | Voltage
Min. Operating Voltage | 0 ~
0.7V(| 150V
©400A | 0 ~
0.7V(| 150V | | 150V
p:600A | | Protections Over Power Protection(OPP) | | | 10 | 5% | • | <u> </u> | | Over Current Protection(OCP) Over Voltage Protection(OVP) | | | 10 | | | | | Over Temp Protection(OTP) Constant Current Mode | | | 90°0 | ±5°C | | *************************************** | | Range ²
Resolution | 0 – 40A
0.64mA | 0 – 400A
6.4mA | 0 – 50A
0.80mA | 0 – 500A
8.0mA | 0 – 60A
0.96mA | 0 – 600A
9.6mA | | Accuracy 3 Constant Resistance Mode | | | ± 0.05% of (S | etting + Range) | | | | Range
Resolution | 22.5kΩ ~ 0.375Ω
44μS | 0.375Ω ~ 0.0018Ω
6.25μΩ | 18kΩ ~ 0.3Ω
56μS | $0.3\Omega \sim 0.0015\Omega$
$5\mu\Omega$ | 15kΩ ~ 0.25Ω
67μS | 0.25Ω ~ 0.0012Ω
4.167μΩ | | Accuracy
Constant Voltage Mode | ± (0.1%(Vin / Setting) + 0.1% IF.S.) | ± (0.2%(Vin / Setting) + 0.5% IF.S.) ⁴⁹ | ± (0.1%(Vin / Setting) + 0.1% IF.S.) | | ± (0.2%(Vin / Setting) + 0.1% IF.S.) | ± (0.2%(Vin / Setting) + 0.5% IF.S.)*5 | | Range
Resolution | 14
15 | | 0 -
2.5 | 150V
mV | | | | Accuracy
Constant Power Mode | | | | etting + Range) | | | | Range
Resolution | 0 ~ 400W | 400 ~ 4kW
64mW | 0 ~ 500W
8mW | 500 – 5kW
80mW | 0 ~ 600W
9.6mW | 600 ~ 6kW
96mW | | Accuracy Constant Voltage Mode + Current Limit M | loda | | ± 0.2% of (Se | tting + Range) | | | | Range
Resolution | 150V
2.5mV | 400A
6.4mA | 150V
2.5mV | 500A
8mA | 150V
2.5mV | 600A
9.6mA | | Accuracy 4 Constant Voltage Mode + Power Limit Mo | ± 0.05% of (Setting + Range) | ± 1.0% of (Setting + Range) | ± 0.05% of (Setting + Range) | ± 1.0% of (Setting + Range) | ± 0.05% of (Setting + Range) | ± 1.0% of (Setting + Range) | | Range
Resolution | 150V
2.5mV | 4kW
64mW | 150V
2.5mV | 5kW
80mW | 150V
2.5mV | 6kW
96mW | | Accuracy 4 | ± 0.05% of (Setting + Range) | ± 1.0% of (Setting + Range) | ± 0.05% of (Setting + Range) OFF | ± 1.0% of (Setting + Range) | ± 0.05% of (Setting + Range) OFF | ± 1.0% of (Setting + Range) | | Turbo Mode ** Short / OCP / OPP Test Function Max. Current | 400A | 600A | 500A | 750A | 600A | 900A | | Max. Power Test Accuracy 6 | 4000W | 6000W | 5000W | 7500W
oding + Range) | 6000W | 9000W | | Short Time | 100 ~ 10000ms
Continuous | 100 – 2000ms | 100 ~ 10000ms
Continuous | 100 – 2000ms | 100 ~ 10000ms
Continuous | 100 – 2000ms | | Setting, Accuracy
Short V Hi | The same of sa | | +5 | ms
00V / Resolution : 0.0025V | | · | | Short V Lo
OCP Time (Tstep) | 100ms | 20ms | Setting range : 0.00V - 150 | 00V / Resolution : 0.0025V
20ms | 100ms | 20ms | | Setting. Accuracy | Setting range : 0.00A - 400.00A / | Setting range : 0.00A - 600.00A / | ±5 Setting range : 0.00A - 500.00A / | ms Setting range : 0.00A - 750.00A / | Setting range : 0.00A - 600.00A / | Setting range : 0.00A - 900.00A / | | OCP ISTAR / ISTEP / ISTOP
OCP VTH | Resolution : 6.4mA | Resolution : 9.6mA | Resolution: 8.0mA | Resolution : 12mA
00V / Resolution : 0.0025 V | Resolution : 9.60mA | Resolution : 14.4mA | | OPP Time (Tstep) Setting, Accuracy | 100ms | 20ms | 100ms | 20ms | 100ms | 20ms | | OPP PSTAR / PSTEP / PSTOP | Setting range: 0.00W - 4000.0W /
Resolution: 64.0mW | Setting range : 0.00W - 6000.0W /
Resolution : 96.0mW | Setting range : 0.00W - 5000.0W /
Resolution : 80.0mW | Setting range : 0.00W - 7500.0W /
Resolution : 120mW | Setting range : 0.00W - 6000.0W /
Resolution : 96mW | Setting range : 0.00W - 9000.0W /
Resolution : 144mW | | OPP VTH
BidS Test Mode*7 | Resolution : 04.0mw | Resolution ; 96.0mw | Setting range : 0.00V - 150 | 00V / Resolution : 0.0025V | Resolution; 90mw | nesolution : 144mw | | Max. Current | 400A | 600A | 500A | 750A
ding + Range) | 600A | 900A | | Meas. Accuracy Short test Time | | | 0.05ms-10ms / R | esolution : 0.01ms
2ms | | | | Meas. Accuracy Setting Accuracy | 6.00 | | ±0.0 | 5ms | | | | Short ITH | Setting range : 0.19A - 200.00A /
Resolution : 6.4mA | Setting range : 0.28A - 300.00A /
Resolution : 9.6mA | Setting range : 0.24A - 250.00A /
Resolution : 8.0mA | Setting range: 0.36A - 375.00A /
Resolution: 12mA | Setting range : 0.28A - 300.00A /
Resolution : 9.6mA | Setting range : 0.43A - 450.00A /
Resolution : 14.4mA | | OCP ISTAR | Setting range : 0.64A - 400.00A /
Resolution : 6.4mA | Setting range : 0.96A - 600.00A /
Resolution : 9.6mA | Setting range : 0.80A - 500.00A /
Resolution : 8.0mA | Setting range : 1.20A - 750.00A /
Resolution : 12mA | Setting range : 0.96A - 600.00A /
Resolution : 9.6mA | Setting range : 1.44A - 900.00A /
Resolution : 14.4mA | | OCP TSTEP | 0.05 ~ 10ms
11 ~ 1000ms | 0.05 ~ 10ms | 0.05 ~ 10ms
11 ~ 1000ms | 0.05 ~ 10ms | 0.05 ~ 10ms
11 ~ 1000ms | 0.05 ~ 10ms | | Meas. Accuracy
OCP ISTEP | ±0.1ms / ±0.5ms
Setting range : 0.00A - 400.00A / | ±0.5ms
Setting range : 6.00A - 600.00A / | ±0.1ms / ±0.5ms
Setting range : 0.00A - 500.00A / | ±0.5ms
Setting range : 7.50A - 750.00A / | ±0.1ms / ±0.5ms
Setting range : 0.00A - 600.00A / | ±0.5ms
Setting range : 9.00A - 900.00A / | | OCP ISTOP | Resolution : 6.4mA Setting range : 0.64A - 400.00A / | Resolution : 9.6mA
Setting range : 0.96A - 600.00A / | Resolution: 8.0mA
Setting range: 0.80A - 500.00A / | Resolution : 12mA
Setting range : 1.20A - 750.00A / | Resolution : 9.6mA
Setting range : 0.96A - 600.00A / | Resolution: 14.4mA
Setting range: 1.44A - 900.00A / | | OCPITH | Resolution: 6.4mA
Setting range: 0.19A - 200.00A / | Resolution: 9.6mA
Setting range: 0.29A - 300.00A / | Resolution: 8.0mA
Setting range: 0.24A - 250.00A / | Resolution: 12mA
Setting range: 0.37A - 375.00A / | Resolution: 9.6mA
Setting range: 0.29A - 300.00A / | Resolution: 14.4mA
Setting range: 0.44A - 450.00A / | | Surge Test Mode | Resolution : 6.4mA | Resolution : 9.6mA | Resolution : 8.0mA | Resolution : 12mA | Resolution : 9.6mA | Resolution : 14.4mA | | Surge Current
Normal Current | 0 - | 600A
300A | 0 -
0 - | 375A | 0- | 900A
450A | | Surge Time
Surge Step
Butt test Mode | 10 ~ 2 | 2000ms
~ 5 | 10 ~ 2 | 000ms
- 5 | 10~2 | 2000ms
~ 5 | | Mode CC | Setting range: 0.00A - 40 | 0.00A / Resolution : 6.4mA | Setting range : 0.00A - 50 | 0.00A / Resolution : 8.0mA | Setting range : 0.00A - 60 | 0.00A / Resolution : 9.6mA | | Mode CP
STOP Voltage(UVP) | Setting range: 0.00W - 400 | 0.0W / Resolution : 64.0mW | Setting range: 0.00V - 150 | 0.0W / Resolution : 80.0mW
00V / Resolution : 0.0025V | Setting range : 0.00W - 60 | 00.0W / Resolution : 96mW | | STOP TIME
STOP CAP.AH | 1 | | Setting range : OFF 0.1 - 1 | 99999s / Resolution : 1s
9999AH / Resolution : 0.1AH | | | | STOP CAP,WH SEQ Load Mode (remode only) | 1 | | Setting range : OFF 0.1 - 19 | 999WH / Resolution : 0.1WH | | | | Load mode
Setting STEP | Y | | 2 - | / CP
16 | | | | Timing
Resolution | 3 | | 20 ~ 1000 μs / 2~ 65 | 535ms / 66 ~ 999sec
ms / 1sec | | | | Dynamic Mode
Timing | <u> </u> | | | | | | | Thigh & Tlow
Resolution | P | | 0.001 / 0.01 | 9 / 999.9 / 9999ms
/ 0.1 / 1ms | | | | Accuracy
Slew Rate | 0.0256~1.600A / μs | 0.2560~16.000A / μs | 0.0320~2.000A / μs | μs / 1ms + 50ppm
0.3200~20.000A / μs | 0.0384~2.400A / μs | 0.3840~24.000A / μs | |
Resolution
Min. Rise Time | 0.0064A / μs | 0.064A / μs | 0.008A / μs
25 μs | 0.08A / μs
typical) | 0.0096A / μs | 0.096A / μs | | Accuracy
Current | <u></u> | | ±(5% of Se | tting)±10µs | | | | Range
Resolution | 0 ~ 40A
0.64mA | 40 ~ 400A
6.4mA | 0 ~ 50A
0.8mA | 50 ~ 500A
8mA | 0 ~ 60A
0.96mA | 60 ~ 600A
9.6mA | | Conf Key Peremeter LDon Voltage | | | Setting range : 0.25V - 62 | .50V / Resolution : 0.25V | | | | LDoFF Voltage
Average Time | | | 0- | 250V / Resolution : 0.0025V
64 | | | | Cy Res. Speed | | | | astest) | | | | Voltage Read Back Range (5 Digital)
Resolution | 0 – 15V
0.25mV | 15 – 150V
2.5mV | 0 – 15V
0.25mV | 15 – 150V
2.5mV | 0 – 15V
0.25mV | 15 ~ 150V
2.5mV | | Accurac:
Current Read Back Range [5 Digital] | 0 ~ 40A | 40 ~ 400A | 0 - 50A | eading + Range)
50 ~ 500A | 0 ~ 60A | 60 ~ 600A | | Resolutior
Accuracy | 0.64mA | 6.4mA | 0.8mA
± 0.05% of (Re | 8mA
ading + Range) | 0.96mA | 9.6mA | | Power Read Back Range (5 Digital)
Resolution | 4 | kW | 5.0.0 | W
1W | 6 | kW | | Accurac ^{*4} | | | ± 0.06% of (Re | ading + Range) | | | | Typical Short Resistance
Maximum Short Current | | lmΩ
00A | 50 | | | PmΩ
OOA | | Load ON Voltage | 7 | | 0 - 6 | 62.5V
2.25V | | | | Input Range & Power Consumption
Dimension(H x W x D) | 3 083 | ~ ~ | 100Vac ~ 240Vac , 47Hz
177mm x 440 | ~ 63Hz ; 550VA(max.)
mm x 745mm | 975 | 190 | | Weight
Temperature ¹⁸ | 32 | 2kg | 32
0 – | 5kg
40°C | 32 | .5kg | | Safety & EMC | | | | E | | | Note *1: The power rating specifications at ambient temperature = 25°C Note *2: The range is automatically or forcing to range II only in CC mode Note *3: If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note *4: Power range = Vrange x Irange Note *5: Turbo mode for up to 1.5% Current rating & Power rating support Surge, Bms, Short/OCP/OPP test function Note *6: The best accuracy of OCP/OPP test is Istep/Pstep=1%F5 Note *7: Bms Test function for Battery Management System Board SHORT, OCCP and DCDP Test Note *8: Operating temperature range is 0-40°C, All specifications apply for 25°Cs5°C, Except as noted Note *9: The specification is valid only for input voltage =1.5V and resistance setting > 0.0037Ω (PEL-5004G-150-400), 0.003Ω (PEL-5005G-150-500), 0.0025Ω (PEL-5006G-150-600) | MODEL | PEL-5004G-600-280 | | PEL-50050 | G-600-350 | PEL-50060 | G-600-420 | |--|--|--|--|--|---|--| | ower ^{c)} | 0 – 4kW | 0 – 6kW max.*1 | 0 – 5kW | 0 – 7.5kW max.*1 | 0 – 6kW | 0 – 9kW max. *1 | | rrent
tage | 0 ~ 280A | 0 ~ 420A max." | | 0 ~ 525A max."1 | | 0 ~ 630A max." | | n. Operating Voltage | 1000 |)280A | | D350A | 1000 | D420A | | er Power Protection(OPP)
er Current Protection(OCP) | | | 10 | 4% | | | | er Voltage Protection(OVP)
er Temp Protection(OTP) | | | | 5%
25°C | | | | nstant Current Mode | 0 – 28A | 0 – 280A | 0 – 35A | 0 – 350A | 0 – 42A | 0 – 420A | | solution
curacy" ²
natant Resistance Mode | 0.448mA | 4.48mA | 0.56mA
± 0.05% of (S | 5.6mA
etting + Range) | 0.672mA | 6.72mA | | nge | 128610Ω – 2.1435Ω | 2.1435Ω – 0.0357Ω | 102888Ω 1.7148Ω | 1.7148Ω – 0.0285Ω | 85740D - 1.4290D | 1.4290Ω - 0.0238Ω | | colution | ± (0.1%(Vin / Setting) + 0.1% IF.S.) | ± (0.2%(Vin / Setting) + 0.5% IF.S.) | ± (0.1%(Vin / Setting) + 0.1% IF.S.) | ± (0.2%(Vin / Setting) + 0.5% IF.S.) | ± (0.2%(Vin / Setting) + 0.1% IF.S.) | ± (0.2%(Vin / Setting) + 0.5% | | netant Voltage Mode | | | | 600V | | | | colution | | | | lmV
etting + Range) | | | | netant Power Mode | 0 – 400W | 400 – 4kW | 0-500W | 500-5kW | 0-600W | 600-6kW | | olution
uracy * | 6.4mW | 64mW | 8mW
± 0.1% of (Se | 80mW
etting + Range) | 9.6mW | 96mW | | stant Voltage Mode + Current Limit M
ge | 600V | 280A | 600V | 350A | 600V | 420A | | olution
uracy
stant Voltage Mode + Power Limit Me | 10mV
± 0.05% of (Setting + Range) | 4.48mA
± 1.0% of (Setting + Range) | 10mV
± 0.05% of (Setting + Range) | 5.6mA
± 1.0% of (Setting + Range) | 10mV
± 0.05% of (Setting + Range) | 6.72mA
± 1.0% of (Setting + Range | | ge | 600V | 4kW | 600V | 5kW | 600V | 6kW | | olution
uracy 4 | 10mV
± 0.05% of (Setting + Range) | 64mW
± 1.0% of (Setting + Range) | 10mV
± 0.05% of (Setting + Range) | 80mW
± 1.0% of (Setting + Range) | 10mV
± 0.05% of (Setting + Range) | 96mW
± 1.0% of (Setting + Range) | | to Mode "
rt / OCP / OPP Test Function | OFF | ON | OFF | ON | OFF | ON | | r. Current
r. Power | 280A
4000W | 420A
6000W | 350A
5000W | 525A
7500W | 420A
6000W | 630A
9000W | | Accuracy st Time | 100 – 10000ms | 100 ~ 2000ms | ± 1.0% of (Re | ading + Range)
100 ~ 2000ms | 100 – 10000ms | 100 ~ 2000ms | | ing. Accuracy | Continuous | TOU ~ ZOUUTIS | Continuous
±5 | ims | Continuous | 100 ~ 2000ms | | ort V Hi
ort V Lo | | | Setting range : 0.00V - 60
Setting range : 0.00V - 60 | 0.00V / Resolution : 0.01V
0.00V / Resolution : 0.01V | | | | P Time (Tstep)
ting, Accuracy | 100ms | 20ms | 100ms
±5 | 20ms
ims | 100ms | 20ms | | PISTAR / ISTEP / ISTOP | Setting range : 0.00A - 280.00A /
Resolution : 4.48mA | Setting range : 0.00A - 420.00A /
Resolution : 6.72mA | Setting range : 0.00A - 350.00A /
Resolution : 5.6mA | Setting range : 0.00A - 525.00A /
Resolution : 8.4mA | Setting range : 0.00A - 420.00A /
Resolution : 6.72rnA | Setting range: 0.00A - 630.00
Resolution: 10.08mA | | P VTH
P Time(Tstep) | 100ms | 20ms | Setting range : 0.00V - 60
100ms | 0.00V / Resolution : 0.01 V
20ms | 100ms | 20ms | | ting, Accuracy | Setting range : 0.00W - 4000.0W / | Setting range : 0.00W - 6000.0W / | ±5 Setting range : 0.00W + 5000.0W / | Setting range : 0.00W - 7500.0W / | Setting range : 0.00W - 6000.0W / | Setting range : 0.00W - 9000.0 | | P PSTAR / PSTEP / PSTOP | Resolution : 64.0mW | Resolution : 96.0mW | Resolution: 80.0mW | Resolution: 120mW
0.00V / Resolution: 0.01V | Resolution : 96mW | Resolution : 144mW | | S Test Mode*7
x. Current | 280A | 420A | 350A | 525A | 420A | 630A | | as. Accuracy 6 | 2001 | 4204 | ±3.0% of (Rea | ading + Range)
desolution : 0.01 ms | 42010 | 0304 | | as. Accuracy
ting Accuracy | | | ±0.0 | 12ms | | | | ort ITH | Setting range : 0.13A - 140.00A /
Resolution : 4.48mA | Setting range : 0.20A - 210.00A / | Setting range: 0.16A - 175.00A / | Setting range: 0.25A - 262 50A / | Setting range: 0.20A - 210.00A / | Setting range : 0.30A - 315.0
Resolution : 10.08mA | | PISTAR | Setting range: 0.44A - 280.00A / | Resolution: 6.72mA
Setting range: 0.67A - 420.00A / | Resolution : 5.6mA
Setting range : 0.56A - 350.00A / | Resolution : 8.4mA
Setting range : 0.84A - 525.00A / | Resolution: 6.72mA
Setting range: 0.67A - 420.00A / | Setting range : 1.00A - 630.00 | | PTSTEP | Resolution : 4.48mA
0.05 ~ 10ms
11 - 1000ms | Resolution : 6.72mA
0.05 ~ 10ms | Resolution : 5.6mA
0.05 ~ 10ms
11 – 1000ms | Resolution : 8.4mA
0.05 ~ 10ms | Resolution : 6.72mA
0.05 ~ 10ms
11 – 1000ms | Resolution : 10.08mA
0.05 ~ 10ms | | as. Accuracy | ±0.1ms / ±0.5ms | ±0.5ms
Setting range : 4.20A - 420.00A / | ±0.1ms / ±0.5ms | ±0.5ms | ±0.1ms / ±0.5ms | ±0.5ms | | PISTEP | Setting range: 0.00A - 280.00A /
Resolution: 4.48mA | Resolution: 6.72mA | Setting range : 0.00A - 350.00A /
Resolution : 5.6mA | Setting range : 5.25A - 525.00A /
Resolution : 8.4mA | Setting range : 0.00A - 420.00A /
Resolution : 6.72mA | Setting range : 6.30A - 630.00
Resolution : 10.08mA | | PISTOP | Setting range : 0.44A - 280.00A /
Resolution : 4.48mA | Setting range: 0.67A - 420.00A /
Resolution: 6.72mA | Setting range : 0.56A - 350.00A /
Resolution : 5.6mA | Setting range: 0.84A - 525.00A /
Resolution: 8.4mA | Setting range : 0.67A - 420.00A /
Resolution : 6.72mA | Setting range: 1.00A - 630.00
Resolution: 10.08mA | | PITH | Setting range : 0.13A - 140.00A /
Resolution : 4.48mA | Setting range : 0.20A - 210.00A /
Resolution : 6.72mA | Setting range : 0.17A - 175.00A /
Resolution : 5.6mA | Setting range : 0.26A - 262.50A /
Resolution : 8.4mA | Setting range : 0.20A - 210.00A /
Resolution : 6.72mA | Setting range: 0.30A - 315.00
Resolution: 10.08mA | | ge Test Mode
ge Current | | 420A | 0- | 525A | | 630A | | mal Current
ge Time | 10~2 | 210A
000ms | 10~2 | 62.5A
9000ms | 10~: | 315A
2000ms | | e Step
test Mode | | ~5 | | ~5 | | ~ 5 | | le CC
le CP | Setting range : 0.00A - 280
Setting range : 0.00W - 400 | .00A / Resolution : 4.48mA
0.0W / Resolution : 64.0mW | Setting range: 0.00W - 500 | 0.00A / Resolution : 5.6mA
0.0W / Resolution : 80.0mW | Setting range : 0.00A - 420
Setting range : 0.00W - 60 | 0.00A / Resolution : 6.72mA
00.0W / Resolution : 96mW | | P Voltage (UVP)
P TIME | | | Setting range : OFF 1 - | 0.00V / Resolution : 0.01V
99999s / Resolution : 1s | 70 (31-00) | N77 | | P CAP,WH | | | Setting range : OFF 0.1 - 19
Setting range : OFF 0.1 - 19 | 9999AH / Resolution : 0.1AH
9999WH / Resolution : 0.1WH | | | | Load Mode (remode only) d Mode | | | cc | / CP | | | | ting STEP | | | | - 16
535ms / 66 ~ 999sec | | | | olution
namic Mode | | | 10 μs / 1 | ms / 1sec | | | | ning
gh & Tlow | | | 0.010-9.999 / 99.5 | 99 / 999.9 / 9999ms | | | | olution
uracy | | | 1 μs / 10 μs / 100 | / 0.1 / 1ms
µs / 1ms + 50ppm | | | | v Rate
olution | 0.01792~1.120A / μs
0.00448A / μs | 0.1792~11.200A / μs
0.0448A / μs | 0.0224~1.400A /
μs
0.0056A / μs | 0.2240-14.00A / μs
0.056A / μs | 0.02688~1.680A / μs
0.00672A / μs | 0.2688~16.800A / μs
0.0672A / μs | | . Rise Time
uracy | | | | typical)
tting)±10 µs | | | | rent
ge | 0 – 28A | 28 – 280A | 0 – 35A | 35 – 350A | 0 ~ 42A | 42 – 420A | | olution
Key Peremeter | 0.45mA | 4.48mA | 0.56mA | 5.6mA | 0.67mA | 6.72mA | | n Voltage
FF Voltage | | | Setting range: 0.000V - 9 | 00.0V / Resolution : 0.4V
19.60V / Resolution : 0. 01V | | | | age Time
Res. Speed | | | | - 64
Fastest) | | | | age Read Back Range (5 Digital) | 0 ~ 60V | 60~ 600V | 0 ~ 60V | 60 ~ 600V | 0 ~ 60V | 60 ~ 600V | | Resolution
Accuracy | 1.00mV | 10.0mV | | 10.0mV
eading + Range) | 1.00mV | 10.0mV | | ent Read Back Range (5 Digital)
Resolution | 0 – 28A
0.448mA | 28 – 280A
4.48mA | 0 – 35A
0.56mA | 35 – 350A
5.6mA | 0 – 42A
0.672mA | 42 – 420A
6.72mA | | Accuracy
er Read Back Range (5 Digital) | 4 | w. | 5 | ading + Range)
kW | | kw | | Resolution
Accuracy | | | | 01W
rading + Range) | | | | cal Short Resistance | | 3mΩ | 28.5 | 84mΩ | | 32mí2 | | imum Short Current
d ON Voltage | 21 | OA . | 3: | 50A
- 100V | | 20A | | OFF Voltage
ut Range & Power Consumption | | | 100Vac ~ 240Vac , 47Hz | | | | | ension(H x W x D) | 1 | | | Omm x 745mm | | | | ght
nperature ⁻¹ | 3 | 2.5kg | | 3kg | | 33kg | Note *1: The power rating specifications at ambient temperature = 25°C Note *2: The range is automatically or forcing to range II only in CC mode Note *3: If the operating current is below range 0.3%, the accuracy specification is 0.1% F.S. Note *4: Power ranges/Yange x lrange(the specification is valid only for the model PEL-600-XXX with loading current > 0.03% F.S.) Note *5: Turbo mode for up to 1.5X Current rating & Power rating support Surge, Bms, Short/OCP/OPP test function Note *6: The best accuracy of OCP/OPP test is Istep/Pstep=1%F5 Note *7: Bms Test function for Battery Management System Board SHORT, OCCP and OCDP Test Note *8: Operating temperature range is 0-40°C, All specifications apply for 25°C±5°C, Except as noted | Resolution 2.56mA | SPECIFICATIONS
MODEL | PEL-50040 | G-1200-160 | PEL-50050 | | PEL-50060 | G-1200-240 | |--|---|--|--|--|--|--|--------------------------------------| | Company Comp | Current | 0 ~ 160A | 0 ~ 240A max." | 0 ~ 200A | 0 ~ 300A max." | 0 ~ 240A | 0 ~ 360A max." | | Control Programme | Min. Operating Voltage | 15V@ | 200V
160A | 15V@ | 200V
200A | 15V ₀ | 200V
D240A | | Color Colo | Over Power Protection(OPP) Over Current Protection(OCP) | | | 10 | 1% | | | | Column | Over Temp Protection(OTP) | 5 | | 10.
90°C | 5%
±5°C | | | | Company Comp | | | 0 – 160A
2.56mA | 0 – 20A
0.32mA | | 0 – 24A
0.384mA | 0 – 240A
3.84mA | | Column | Accuracy Constant Resistance Mode | | | ± 0.05% of (Se | tting + Range) | | | | Column C | Resolution | 2.2 uS | 125μΩ | 2.8 µS | 100μΩ | 3.3 µS | 83.34μΩ | | Company Comp | Constant Voltage Mode | ± (0.1%(vin / Setting) + 0.1% ir.s.) | ± (0.2% (Vin / Setting) + 0.5% IF.S.) | | | ± (0.2% (Vin / Setting) + 0.1% IF.S.) | ± (0.2%(Vin / Setting) + 0.5% IF.S.) | | Column | Resolution | | | 20
± 0.05% of (Se | nV
tting + Range) | | | | The content of | Range | 0 ~ 400W | | | 500-5kW | 0-600W | | | Company Comp | Accuracy 4 | ode | DAILIM | ± 0.2% of (Se | ting + Range) | 5.0ff/W | 30fl W | | Company Comp | Range
Resolution | 1200V
20mV | 2.56mA | 20mV | 3,2mA | 20mV | 3.84mA | | Column | | ie | | | | | | | Max. | Resolution | 20mV
± 0.05% of (Setting + Range) | | 20mV | | 20mV | | | March | Turbo Mode " Short / OCP / OPP Test Function | | | | | | | | Description 100 - 100000 | Max. Power | | | 5000W | 7500W | | | | Street 1997 1907 1908 1909 | | | 100 ~ 2000ms | 100 – 10000ms | | | 100 ~ 2000ms | | Company Comp | Short V Hi | | | ±5
Setting range : 0.25V - 12i | ms
00.0V / Resolution : 0.02V | | | | Control Print Pr | OCP Time(Tstep) | 100ms | 20ms | | | 100ms | 20ms | | Column Series Column Series Column C | FEG. C. A. A. (ACC) 1975 | | | Resolution: 3.2mA | Resolution: 4.8mA | | | | Description Service cape CORP CORP | OPP Time(Tstep) | | | Setting range: 0.00V - 120 | 0.00V / Resolution : 0.02V | | | | Series age; 10000 10000 10000 10000 10000 10000 100 | | Setting range : 0.00W - 4000.0W / | Setting range : 0.00W - 6000.0W / | ±5 Setting range : 0.00W - 5000.0W / | | Setting range : 0.00W - 6000.0W / | Setting range : 0.00W - 9000.0W / | | Max. Course 1904 2004 2005
2005 | OPP VTH | Resolution : 64.0mW | Resolution : 96.UmW | Setting range : 0.00V - 120 | 0.00V / Resolution : 0.02V | Resolution : 96mW | Resolution : 144mW | | Ches. No. 1976 Setting range; CSPA - 18586/ rang | Max. Current
Meas. Accuracy 6 | 160A | 240A | ±3.0% of (Rea | ding + Range) | 240A | 360A | | Setting Temps 1909 A. 19 | Meas. Accuracy | | | 0.05ms~10ms / R
±0.0 | esolution : 0.01ms
2ms | | | | Cop Fix Setting ranger 23.54 - 160.006 Setting ranger 23.84 - 240.006 Sett | 2000 00000 | | | | | | | | OS - 10ms | OCP ISTAR | Setting range : 0.25A - 160.00A / | Setting range : 038A - 240.00A / | Setting range : 0.32A - 200:00A / | Setting range : 048A - 300.00A / | Setting range: 0.38A - 240.00A / | Setting range : 057A - 360.00A / | | COP STOP Setting range: 10.004 - 10.00.006 Setting range: 2.004 - 10.00.006 Setting range: 3.004 10.006 Setting range: 3.004 - 10.00 Se | | 0.05 – 10ms
11 – 1000ms | | 0.05 – 10ms
11 – 1000ms | | 0.05 – 10ms
11 – 1000ms | | | CP STOP | 10, 4400 (1999) 11 m | Setting range: 0.00A - 160.00A / | Setting range : 2.40A - 240.00A / | Setting range : 0.00A - 200.00A / | Setting range : 3.00A - 300.00A / | Setting range : 0.00A - 240.00A / | Setting range: 3.60A - 360.00A / | | Setting range; 0.194 - 130.004 | OCP ISTOP | Setting range : 0.25A - 160.00A /
Resolution : 2.56mA | Setting range : 0.38A - 240.00A /
Resolution : 3.84mA | Setting range : 0.32A - 200.00A /
Resolution : 3.2mA | Setting range : 0.48A - 300.00A /
Resolution : 4.8mA | Setting range : 0.38A - 240.00A /
Resolution : 3.84mA | Setting range : 0.57A - 360.00A / | | Surge Current | | Setting range : 0.10A - 80.00A / | Setting range: 0.15A - 120.00A / | Setting range : 0.10A - 100.00A / | Setting range: 0.15A - 150.00A / | Setting range: 0.10A - 120.00A / | Setting range : 0.15A - 180.00A / | | Description | Surge Current | 0 - : | 240A | 0- | 000A | 0- | 360A | | Mode CC Setting range : 0.000 - 160.000 / Resolution : 2.7mA Setting range : 0.000 - 260.000 / Resolution : 2.7mA Setting range : 0.000 0.0000 / Resolution : 2.7mA Setting range : 0.0000 / Resolution : 2.7mA Setting rang | Surge Time | 10 ~ 2 | 000ms | 10 ~ 2 | 000ms | 10 ~ 2 | 000ms | | Setting range COOP - 1,000,000 Sensition COOP | Belt test Mode
Mode CC | Setting range : 0.00A - 160 | 00A / Resolution : 2.56mA | Setting range : 0.00A -200 | .00A / Resolution : 3.2mA | Setting range : 0.00A - 240 | .00A / Resolution : 3.84mA | | Setting range (OPF 0.1 - 19999847 Resolution o.104H | STOP Voltage (UVP) | Setting range : 0.00W - 4000 | 0.0W / Resolution : 64.0mW | Setting range: 0.00V - 120 | 0.00V / Resolution : 0.02V | Setting range : 0.00W - 600 | 00.0W / Resolution : 96mW | | Carl Mode CC CP | STOP CAP.WH | | | Setting range : OFF 0.1 - 19
Setting range : OFF 0.1 - 19 | 999AH / Resolution : 0.1AH
999WH / Resolution : 0.1WH | | | | Finding 20 - 1000 js / 2 - 6555/sm / 66 - 999sec | Load Mode | | | | | | | | Dynamic Mode | Timing | | | 20 ~ 1000 μs / 2~ 65 | 535ms / 66 ~ 999sec | | | | Resolution | Dynamic Mode
Timing | 2 | | | | | | | Siew Rate | Resolution | ()
() | | 0.001 / 0.01 | / 0.1 / 1ms | | | | Min. Rise Time | Slew Rate
Resolution | | | 0.0128~0.800A / μs
0.0032A / μs | 0.1280-8.000A / μs
0.032A / μs | 0.01536~0.960A / μs
0.00384A / μs | | | Range | Min. Rise Time
Accuracy | | | 25 μs() | ypical) | | | | Cool Parameter | Range | | | | | | | | LDOFF Voltage | Conf Key Parameter | U.ZOTTA | 2.30MA | | | U.Jámn | J.MITMO.C | | Voltage Read Back Range S Digital O - 120V 120 - 1200V O - 120V 120 - 1200V O - 120V 120 - 1200V O - 120V | LDoFF Voltage
Average Time | | | Setting range : 0.000V - 2-
0 - | 19.0V / Resolution : 0.02V
64 | | | | Resolution 2.00mV 20.0mV | CV Res. Speed Measurement Voltage Rend Resk, Proces (5 Digital) | 0-1304 | 120 _ 12000 | | 101001) | 0_3260 | 130_13000 | | Current Read Back Range S Digital 0 - 164 | Resolution
Accuracy | 2.00mV | 20.0mV | 2.00mV
± 0.025% of (Re | 20.0mV
ading + Range) | 2.00mV | 20.0mV | | Power Read Back Range (5 Digital) | Current Read Back Range (5 Digital)
Resolution | | | 0 ~ 20A
0.32mA | 20 ~ 200A
3.2mA | | | | Accuracy ± 0.05% of [Reading + Range] | Power Read Back Range (5 Digital) | 46 | W | 51 | W | 6 | ew . | | Typical Short Resistance 93.75m2 75m2 62.505m2 Maximum Short Current 160A 200A 240A 1 250V | Accuracy ** General | | | ± 0.06% oF (Re | ading + Range) | | | | Load OFF Voltage 0 ~ 249V | Typical Short Resistance
Maximum Short Current | | | 20 | 0A | | | | | Load OFF Voltage | | | 0-2 | 49V | | | | Input Bange & Power Consumption 100Vac ~ 240Vac ~ A714z ~ 6314; S50VA(max.) | Dimension(H x W x D) | 32 | g | 177mm x 440 | mm x 745mm | 32 | .5kg | | Temperature* 0 - 40°C Safety & EMC CE | Temperature's | | | 0~ | 10°C | | | Note *1: The power rating specifications at ambient temperature = 25°C Note *2: The range is automatically or forcing to range II only in CC mode Note *3: If the operating current is below range 0.1%, the accuracy specification is 0.1% F.S. Note *4: Power range = Vrange x Irange Note *5: Turbo mode for up to 1.5X Current rating & Power rating support Surge, Bms, Short/OCP/OPP test function Note *6: The best accuracy of OCP/OPP test is istep/Patep=1%FS Note *7: Bms Est function for Battery Management System Board SHORT, OCCP and OCDP Test Note *8: Operating temperature range is 0-40°C, All specifications apply for 25°C±5°C, Except as noted # **ACCESSORIES** | MODEL | DESCRIPTION | APPLICABLE DEVICE | |------------------------|---|---| | APS-001 | GPIB
Interface Card | APS-7000 Series | | APS-002 | RS-232/USB Interface Card | APS-7050, APS-7100 | | APS-003
APS-004 | Output Voltage Capacity (0~600Vrms) Output Frequency Capacity (45–999.9Hz) | APS-7000 Series APS-7000 Series | | APS-007 | RS-232 Interface Card | APS-7200, APS-7300 | | APS-008 | Air Inlet Filter | ASR-3000 Series | | ASR-001 | Air Inlet Filter | ASR-2000 Series | | ASR-002 | External Three Phase Control Unit | ASR-2000 Series, ASR-3000 Series | | ASR-C003 | GPIB Interface Card Modbus TCP Feature | ASR-6000 Series | | ASR-003 | DeviceNet Interface Card | ASR-2000 Series, ASR-3000 Series, ASR-6000 Series ASR-6000 Series | | ASR-005 | CAN BUS Interface Card | ASR-6000 Series | | ASR-006 | External Parallel Cable | ASR-6000 Series | | GET-001 | Extended Terminal with max.30A for 30V/80V/160V models | PSW-Series, PSW-Multi Series | | GET-002
GET-003 | Extended Terminal with max.10A for 250V/800V models | PSW-Series, PSW-Multi Series | | GET-003 | Extended Universal Power Socket Extended European Power Socket | ASR-2000 Series ASR-2000 Series | | GET-005 | Extended European Terminal with max.20A for 30V/80V/160V models | PSW-Series, PSW-Multi Series | | GET-006 | Universal Extension, AC signel phase 250V/13Amps | ASR-6000/3000/2000 Series | | GPS-001 | Knob, Voltage/Current Protection Knob | GPS-x303 Series, SPD-3606 | | GPW-001 | UL/CSA Power Cord, 3000mm | PSU-Series | | GPW-002
GPW-003 | VDE Power Cord, 3000mm PSE Power Cord, 3000mm | PSU-Series PSU-Series | | GPW-005 | Power cord, 3m, 105°C, UL/CSA type | ASR-3000 Series | | GPW-006 | Power cord, 3m, 105℃, VDE type | ASR-3000 Series | | GPW-007 | Power cord, 3m, 105℃, PSE type | ASR-3000 Series | | GPW-008 | 6RV3 Power Cord; 10AWG/3C, 3m Max Length, , RV5-5*3P, RV5-5*3P UL Type | ASR-6000 Series | | GPW-011
GPW-012 | 6RV5 UL Power Cord; 10AWG/5C, 3m, RV5-5*5P,RV5-5*5P UL Type
6RVV5 VDE Power Cord; 2.5mm2/5C, 3m Max Length, RVS3-5*5P, RVS3-5*5P VDE Type | ASR-6000 Series ASR-6000 Series | | GPW-012 | 6RVT5 PSE Power Cord; 2.5mm2/5C, 3m Max Length, RVS3-5*5P, RVS3-5*5P VDE Type 6RVT5 PSE Power Cord; 2.0mm2/5C, 3m Max Length, RVS2-5*5P, RVS2-5*5P PSE Type | ASR-6000 Series | | GPW-014 | 6RV4 UL Power Cord; 10AWG/4C, 3m, RV5-5*4P,RV5-5*4P UL TYPE | ASR-6000 Series | | GPW-015 | 6RVV4 VDE Power Cord; 2.5mm2/4C, 3m Max Length, RVS3-5*4P, RVS3-5*4P VDE Type | ASR-6000 Series | | GRA-401 | Rack Mount Kit, 19", 4U Size | GPC-Series, GPR-M Series, PPE-3323, PPS-3635, PPT-Series, PEL-300 | | GRA-403 | Rack Mount Kit, 19", 4U Size | PSH-Series | | GRA-407
GRA-408 | Rack Mount Kit, 19", 4U Size Rack Mount Kit, 19", 4U Size | PST-Series PSS-Series | | GRA-409 | Rack Mount Kit, 19", 40 Size | APS-1102A | | GRA-410-E | Rack Mount Kit (EIA), 19", 3U Size | PSW-Series, PSW-Multi Series | | GRA-410-J | Rack Mount Kitt (JIS), 19", 3U Size | PSW-Series, PSW-Multi Series | | GRA-413-E | Rack Mount Kitt (EIA), 19", 3U Size | PEL-3211A/3211AH | | GRA-413-J | Rack Mount Kitt (JIS), 19", 3U Size | PEL-3211A/3211AH | | GRA-414-E
GRA-414-J | Rack Mount Kit (EIA), 19", 3U Size Rack Mount Kit (JIS), 19", 3U Size | PEL-3021A(H)/3041A(H)/3111A(H), PEL-3000AE Series PEL-3021A(H)/3041A(H)/3111A(H), PEL-3000AE Series | | GRA-419-E | Rack Mount Kit (EIA), 19", 2U Size | PCS-10001 | | GRA-419-J | Rack Mount Kit (JIS), 19", 2U Size | PCS-1000I | | GRA-423 | Rack Mount Kit, 19", 2U Size | APS-7000/7000E Series | | GRA-424 | Rack Mount Kit, 19", 3U Size | PSB-2000 Series | | GRA-428
GRA-429 | Rack Mount Kit (EIA), 19", 3U Size Rack Mount Kit, 7U Size | PSP-Series APS-7200 Series | | GRA-430 | Rack Mount Kit, 9U Size | APS-7300 Series | | GRA-431-J | Rack Mount Kit (JIS) | PFR-Series | | GRA-431-E | Rack Mount Kit (EIA) | PFR-Series | | GRA-439-J | Rack Mount Kit (JIS), 19", 3U Size | ASR-2000 Series | | GRA-439-E
GRA-441-J | Rack Mount Kit(EIA)), 19", 3U Size Rack Mount Kit (JIS), 19", 3U Size | ASR-2000 Series PPX-Series | | GRA-441-E | Rack Mount Kit (IS), 19 , 30 Size | PPX-Series | | GRA-442-J | Rack Mount Kit (JIS), 19", 3U Size | ASR-3000 Series | | GRA-442-E | Rack Mount Kit(EIA)), 19", 3U Size | ASR-3000 Series | | GRA-449-J | Rack Mount Kit (JIS), 19", 3U Size | GPP-Series, GPP-3060/6030/3650, GPP-3610H/7250 | | GRA-449-E | Rack Mount Kit (EIA), 19", 3U Size | GPP-Series, GPP-3060/6030/3650, GPP-3610H/7250 | | GRA-450-J
GRA-450-E | Rack Mount Kit (JIS), 19", 3U Size Rack Mount Kit (EIA), 19", 3U Size | GSM-20H10, PPH-Series GSM-20H10, PPH-Series | | GRA-451-J | Rack Mount Kit (JIS), 19", 3U Size | ASR-6000 Series | | GRA-451-E | Rack Mount Kit (EIA), 19", 3U Size | ASR-6000 Series | | GRJ-1101 | Module Cable (0.5m) | PSB-2000 Series | | GRM-001 | Slide Bracket 2pcs/set | PSU-Series | | GTL-104A | Test Lead, U-type to Alligator Test Lead, Max. Current 10A, 1000mm | PFR/PSP/PST/GPC/GPD/GPP/GPR/GPS/GPE/PPT-Series, PPS-3635, SPD-3606, PPX-Series, GPP-3060/6030/3650 | | GTL-105A | Test Lead, Alligator to Banana Test Lead, Max. Current 3A, 1000mm | PFR/PSS/PST/GPC/GPD/GPP/GPR/GPS/PPT-Series, PEL-2000B, PPE-3323, SPD-3606, | | GTL-117 | Test Lead, Banana to Probe Test Lead, 1200mm | PCS-1000I, PPX-Series PPH-1503/1503D/1506D | | GTL-117 | Test Lead, O-type to O-type Test Lead, 1200mm Test Lead, O-type to O-type Test Lead, Max. 40A, 1200mm | PEL-3000/3000H Series, PEL-2000A(B) Series | | GTL-121 | Sense Lead, O-type to Gree Lead, 1200mm | PEL-2000A(B) Series | | GTL-122 | Test Lead, U-type to Alligator Test Lead, Max. Current 40A, 1200mm | PSH-Series, GPR-U Series, GPR-H Series | | GTL-123 | Test Lead, O-type to O-type Test Lead, 1200mm | PSW-Series, APS-7000 Series | | GTL-130 | Test Leads: 2 x red, 2 x black, for 250V/800V models, 1200mm Test Leads for Rear Panel, 1200mm, 10A, 16 AWG | PSW-Series, PSW-Multi Series PFR-Series | | GTL-134
GTL-137 | Test Leads for Rear Panel, 1200mm, 10A, 16 AWG Output Power wire(load wire_10AWG:50A, 600V/sense wire_16AWG:20A, 600V) | PFR-Series ASR-3000 Series | | GTL-201A | Ground Lead, Banana to Banana, European Terminal, 200mm | AFG-200/100 Series, GPD-Series, GPP-Series, GPS-X303 Series, SPD-3606, | | | STEET OF AN ARTHUR AND AN ARTHUR AND | PPX-Series, GPP-3060/6030/3650 | | GTL-203A | Test Lead, Banana to Alligator, European Terminal, Max. Current 3A, 1000mm | PSS/PST/GPD/GPP/GPS/SPS-Series, SPD-3606, PPH-1503/1503D/1506D, PPX-Series | | GTL-204A | Test Lead, Banana to Alligator, European Terminal, Max. Current 10A, 1000mm | PFR/PSP/PSS/GPS/GPE/PPT/PST/GPD/GPP-Series, SPD-3606, PPH-1503/1503D/1506D,
PPX-Series, GPP-3060/6030/3650 | | GTL-205A | Temperature Probe Adapter(Thermal Coupling, K-Type), about 1000mm | PPX-Series | | GTL-207A | Test Lead, Banana to Probe Test Lead, 800mm | PCS-1000I, GSM-20H10 | | GTL-218 | Test Lead, O-type to O-type Test Lead, Max. 200A, 1500mm | PSU/PSW/PEL-3000/3000H Series | | GTL-219 | Test Lead, O-type to O-type Test Lead, Max. 200A, 3000mm | PSU/PSW/PEL-3000/3000H Series | | GTL-220 | Test Lead, O-type to O-type Test Lead, Max. 300A, 1500mm | PSU/PSW/PEL-3000/3000H Series | | GTL-221
GTL-222 | Test Lead, O-type to O-type Test Lead, Max. 300A, 3000mm Test Lead, O-type to O-type Test Lead, Max. 400A, 1500mm | PSU/PSW/PEL-3000/3000H Series PSU/PSW/PEL-3000/3000H Series | | 010222 | rest case, onlype to onlype rest ceau, max. noon, 1300mm | . 50). STIPEE-3000/300011 Selies | # **ACCESSORIES** | MODEL | DESCRIPTION | APPLICABLE DEVICE | |--|--
---| | GTL-223 | Test Lead, O-type to O-type Test Lead, Max. 400A, 3000mm | PSU/PSW/PEL-3000/3000H Series | | GTL-232 | RS-232C Cable, 9-pin, F-F Type, null modem, 2000mm | PSH/PSS-Series, APS-7000 Series, PEL-2000A(B) Series, ASR-6000/3000/2000 Series | | GTL-232A | RS-232C Cable, 9-pin, F-F Type, null modem, 2000mm | PSP-Series PSP-Series | | GTL-234 | RS-232C Cable, 9-pin, F-F Type, 2000mm | APS-1102A | | GTL-238 | RS-232 Cable, 9-pin, M-F Type, 1000mm | PEL-500 Series | | GTL-240
GTL-246 | USB Cable, USB 2.0, A-B Type (L Type), 1200mm USB Cable, USB 2.0, A-B Type, 1200mm | PSW-Series, PSU-Series, APS-1102A, APS-7000 Series, PCS-10001 PFR-Series, PSU-Series, PSB-2000 Series, PPH-1503/1503D, GPD-Series, GPP-Series, APS-1102A, | | G1L-246 | USB Cable, USB 2.0, A-B Type, T200mm | PR-Series, PSU-Series, PSB-2000 Series, PPH-1303/13030, QPU-Series, QPP-Series, APS-1102A, APS-7000 Series, PEL-3000/3000H Series, PEL-3000AE Series, PEL-2000A(B) Series, PPX-Series, ASR-3000, Series, PEL-5000C Series, AEL-5000 Series, GPP-3060/6030/3650, GPP-3610H/7250, GSM-20H10, PEL-5000G | | GTL-248 | GPIB Cable, Double Shielded, 2000mm | PSB-2000 Series, PPH-1503, PSW/PSW-Multi/PSU/PSH/PSS/PPT-Series, APS-7000 Series,
PEL-3000/3000H Series, PEL-3000AE Series, PEL-2000A(B) Series, ASR-6000/3000 Series,
PEL-5000C Series, AEL-5000 Series, PEL-5000G Series, GSM-20H10 | | GTL-249
GTL-250 | Frame Link Cable, 300mm
GPIB Cable, Double Shielded, 600mm | PEL-2000A(B) Series PSW/PSW-Multi/PSU/PSH-Series, PSB-2000 Series, APS-7000 Series, PEL-5000C Series, AEL-5000 Series | | GTL-255 | Frame Link Cable, 300mm | PEL-3000/3000H Series | | GTL-258 | GPIB Cable, 25 pins Micro-D Connector | PFR-Series, PPX-Series, ASR-2000 Series, PSU-Series | | GTL-259 | RS-232 Cable with DB9 Connector to RJ45 | PPX-Series, PFR-Series, PSU-Series | | GTL-260
GTL-261 | RS-485 Cable with DB9 Connector to RJ45 Serial Master Cable + Terminator, 0.5M | PPX-Series, PFR-Series, PSU-Series PSU-Series, PFR-Series, PSU-Series, PPX-Series | | GTL-262 | RS-485 Slave Cable | PPX-Series, PFR-Series, PSU-Series | | GUG-001 | GPIB-USB Adaptor, GPIB to USB Adaptor | GDS-3000 Series, PSW-Series, PSW-Multi Series | | GUR-001A | RS232-USB Cable, 300mm | PSW-Series, PSW-Multi Series | | GUR-001B | RS-232 to USB Adapter with #4-40 UNC Rivet Nut | PSW-Multi Series | | PCS-001 | Basic Accessory Kit | PCS-10001 | | PEL-001
PEL-002 | GPIB Card Rack Mount Kit, PEL-2000 Series Rack Mount Kit | PEL-2000A(B) Series PEL-2000A(B) Series | | PEL-002
PEL-003 | Panel Cover | PEL-2000A(B) Series PEL-2000A(B) Series | | PEL-004 | GPIB Card | PEL-3000/3000H Series, PEL-3000AE Series | | PEL-005 | Connect Cu Plate | PEL-3000/3000H Series | | PEL-006 | Connect Cu Plate | PEL-3000/3000H Series | | PEL-007 | Connect Cu Plate | PEL-3000/3000H Series | | PEL-008
PEL-009 | Connect Cu Plate Connect Cu Plate | PEL-3000/3000H Series PEL-3000/3000H Series | | PEL-010 | Dust Filter | PEL-3000/3000H Series, PEL-3000AE Series | | PEL-011 | Load Input Terminal Cover | PEL-3000/3000H Series | | PEL-012 | Terminal Fittings Kits | PEL-3000/3000H Series | | PEL-013 | Flexible Terminal Cover | PEL-3000/3000H Series | | PEL-014 | J1/J2 Protection Plug | PEL-3000/3000H Series | | PEL-016 | LAN Card | PEL-2000A(B) Series | | PEL-018 | LAN Card | PEL-3000/3000H Series | | PEL-022
PEL-023 | GPIB Card
RS-232 Card | PEL-5000C Series, AEL-5000 Series, PEL-5000G Series PEL-5000C Series, AEL-5000 Series, PEL-5000G Series | | PEL-024 | LAN Card | PEL-5000C Series, AEL-5000 Series, PEL-5000G Series | | PEL-025 | USB Card | PEL-5000C Series, AEL-5000 Series, PEL-5000G Series | | PEL-026 | Hook Ring | PEL-5000C Series | | PEL-027-1~4 | Rack Mount Kit | PEL-5000C Series | | PEL-028 | HANDLES, U-shaped Handle (Fixed to the Bracket) | PEL-5000C Series, AEL-5000 Series | | PEL-029
PEL-030 | HANDLES Rack Accessories (for AEL-5002/5003/5004) GPIB+RS-232 Card | AEL-5000 Series PEL-5000C Series, AEL-5000 Series, PEL-5000G Series | | PEL-030 | Rack Mount Kit | PEL-5000G | | PEL-032 | 9923 Current Waveform Generator + RS232 Interface | PEL-5000G | | PPX-G | GPIB Interface(Factory Installed) | PPX-Series | | PSB-001 | GPIB Card | PSB-2000 Series | | PSB-003 | Parallel Connection Kit (for Horizontal Installation), Kit Includes: (PSB-007 Joint Kit,
Horizontal bus bar x 2 , PSB-005 x1) | PSB-2000 Series | | PSB-004 | Parallel Connection Kit (for Vertical Installation) Kit Includes: (PSB-007 Joint Kit,
Verical bus bar x 2, PSB-005 x 1) | PSB-2000 Series | | DCD AAF | | | | PSB-005 | Parallel Connection Signal Cable | PSB-2000 Series | | PSB-006 | Parallel Connection Signal Cable
Serial Connection Signal Cable | PSB-2000 Series | | | Parallel Connection Signal Cable | 22-79-13-00-1 | | PSB-006
PSB-007 | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4 ; [M3x8]screw x 2 | PSB-2000 Series PSB-2000 Series | | PSB-006
PSB-007
PSB-008
PSU-001
PSU-01A | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) | PSB-2000 Series PSB-2000 Series PSB-2000 Series | | PSB-006
PSB-007
PSB-008
PSU-001
PSU-01A
PSU-01B | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSU-Series PSU-Series | | PSB-006
PSB-007
PSB-008
PSU-001
PSU-01A
PSU-01B
PSU-01C | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates,
[M3x6]screws x 4 ; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit (Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSU-Series PSU-Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02B | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02B PSU-02C | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4 ; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 7 s units in Parallel Operation Cable for 3 units in Parallel Operation Cable for 3 units in Parallel Operation | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02B | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01B PSU-02A PSU-02A PSU-02A | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 7 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02C PSU-03A PSU-03B PSU-03C PSU-03C PSU-032 | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02C PSU-03A PSU-03A PSU-03C PSU-03C PSU-032 PSU-03C PSU-032 | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit (Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01A PSU-01C PSU-02A PSU-02B PSU-02C PSU-03A PSU-03B PSU-03C PSU-03E PSU-03E PSU-03E PSU-03E PSU-03E PSU-03E | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02C PSU-03A PSU-03C PSU-03C PSU-03C PSU-03E PSU-03C PSU-03E PSU-03C PSU-03E PSU-03C PSU-03C PSU-03C PSU-03C PSU-03C PSU-03C | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Cable for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with D89 Connector Kit RS485 Cable with D89 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02B PSU-02C PSU-03A PSU-03B PSU-03C PSU-03E PSU-03E PSU-03C PSU-03E PSU-03C PSU-03E PSU-03C PSU-03C PSU-03C PSU-03B PSU-03C | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in parallel Operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit PSU CPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02C PSU-03A PSU-03C PSU-03C PSU-03C PSU-03E PSU-03C PSU-03E PSU-03C PSU-03E PSU-03C PSU-03C PSU-03C PSU-03C PSU-03C PSU-03C | Parallel Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates,
[M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Cable for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with D89 Connector Kit RS485 Cable with D89 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02C PSU-02A PSU-02A PSU-03A PSU-03A PSU-03B PSU-05C-04 PSW-001 | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit (Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable Bir therefore Cable with DB9 Connector Kit RS232 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Accessory Kits | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01A PSU-01C PSU-02A PSU-02B PSU-02C PSU-03A PSU-03C PSU-03C PSU-03E PSU-03C PSU-03E PSU-03C | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 R5232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation R5232 Cable with DB9 Connector Kit R5485 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) Accessory Kits Simple IDC Tool | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSU-Series, PFR-Series PSU-Series PSU-Series, PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series | | PSB-006 PSB-007 PSB-008 PSB-007 PSU-011 PSU-01A PSU-01A PSU-01B PSU-01C PSU-02A PSU-02B PSU-02B PSU-03C PSU-03A PSU-03C | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 R5232C Cable (PSB-2000 Only) Front Panel Filter kit (Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation Cable for 4 units in Parallel Operation R5232 Cable with DB9 Connector Kit R5232 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Accessory Kits Simple IDC Tool Contact Removal Tool Basic Accessory Kit for 30V/80V/160V models Series Operation Cable for 2 units (30V/80V/160V models | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series | | PSB-006 PSB-007 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02B PSU-02C PSU-03A PSU-03A PSU-03B PSU-03C PSU-03B PSU-03C PSW-001 PSW-002 PSW-003 PSW-005 PSW-006 | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Accessory Kits Simple IDC Tool Contact Removal Tool Basic Accessory Kit for 30V/80V/160V models Series Operation Cable for 2 units (30V/80V/160V models moly) Parallel Operation Cable for 2 units | PSB-2000 Series PSB-2000 Series PSU-Series PSU-Series, PFR-Series PSU-Series, PFR-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSU-Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series | | PSB-006 PSB-007 PSB-007 PSB-007 PSB-008 PSU-011 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02C PSU-03A PSU-03C PSU-03G PSU-03C PSW-003 PSW-004 PSW-005 PSW-006 | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit(Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Cable for 4 units in Parallel Operation Cable for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Accessory Kits Simple IDC Tool Contact Removal Tool Basic Accessory Kit for 30V/80V/160V models Series Operation Cable for 2 units Parallel Operation Cable for 2 units | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series PSW-Series PSW-Series | | PSB-006 PSB-007 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02B PSU-02C PSU-03A PSU-03C PSW-001 PSW-002 PSW-003 PSW-004 PSW-005 PSW-005 PSW-007 PSW-007 | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit (Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Accessory Kits Simple IDC Tool Contact Removal Tool Basic Accessory Kit for 30V/80V/160V models Series Operation Cable for 2 units Basic Accessory Kit for 250V/800V models Basic Accessory Kit for 250V/800V models | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series PSW-Series PSW-Series | | PSB-006 PSB-007 PSB-008 PSB-007 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02A PSU-02B PSU-02C PSU-03C PSU-06 PSU-06
PSW-007 PSW-006 PSW-006 PSW-006 PSW-008 | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 R5232C Cable (PSB-2000 Only) Front Panel Filter kit (Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation Use Bers of Units in Parallel Operation Cable for 4 units in Parallel Operation Cable for 4 units in Parallel Operation Cable Grable with DB9 Connector Kit R5232 Cable with DB9 Connector Kit R5232 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Accessory Kit Simple IDC Tool Contact Removal Tool Basic Accessory Kit for 30V/80V/160V models Series Operation Cable for 2 units Parallel Operation Cable for 3 units Parallel Operation Cable for 3 units Basic Accessory Kit for 30V/80V/160V models Output Terminal Cover for 30V/80V/160V models | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSW-Series, PSW-Multi Series PSW-Series PSW-Series PSW-Series | | PSB-006 PSB-007 PSB-007 PSB-008 PSU-001 PSU-01A PSU-01B PSU-01C PSU-02B PSU-02C PSU-03A PSU-03C PSW-001 PSW-002 PSW-003 PSW-004 PSW-005 PSW-005 PSW-007 PSW-007 | Parallel Connection Signal Cable Serial Connection Signal Cable Serial Connection Signal Cable Joint Kit: Includes 4 Joining Plates, [M3x6]screws x 4; [M3x8]screw x 2 RS232C Cable (PSB-2000 Only) Front Panel Filter kit (Factory Installed) Joins a vertical stack of 2 PSU units together. 2U-sized handles x 2, joining plates x 2 Bus Bar for 2 units in parallel operation Cable for 2 units in parallel operation Joins a vertical stack of 3 PSU units Together. 3U-sized Handles x 2, joining plates x 2 Bus Bar for 3 units in Parallel Operation Cable for 3 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Joins a Vertical Stack of 4 PSU units Together. 4U-sized Handles x 2, joining plates x 2 Bus Bar for 4 units in Parallel Operation Cable for 4 units in Parallel Operation RS232 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit RS485 Cable with DB9 Connector Kit PSU GPIB Interface Card (Factory Installed) Isolated Current Remote Control Card (Factory Installed) Isolated Voltage Remote Control Card (Factory Installed) Accessory Kits Simple IDC Tool Contact Removal Tool Basic Accessory Kit for 30V/80V/160V models Series Operation Cable for 2 units Basic Accessory Kit for 250V/800V models Basic Accessory Kit for 250V/800V models | PSB-2000 Series PSB-2000 Series PSB-2000 Series PSU-Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series, PSW-Multi Series PSW-Series PSW-Series PSW-Series | #### GRA-414-J Rack Mount Kit (JIS) For: PEL-3021/3021H/3041/3041H/3111/3111H PEL-3031AE/3032AE #### GRA-414-E Rack Mount Kit (EIA) For: PEL-3021/3021H/3041/3041H/3111/3111H PEL-3031AE/3032AE #### GRA-419 Rack Mount Kit (JIS) For: PCS-1000I #### **GRA-419 EIA Rack Mount Kit** For: PCS-1000 #### **GRA-423 Rack Mount Kit** For: APS-7050/7100/7050E/7100E Series For: PSB-2000 Series **GRA-429 Rack Mount Kit** For: APS-7200 Series **GRA-430 Rack Mount Kit** ## GRA-431-J Rack Mount Kit (JIS) with AC 100V/200V For : PFR-Series #### GRA-431-E Rack Mount Kit (EIA) with AC 100V/200V For : PFR-Series ## GRA-439-J Rack Mount Kit (JIS) For: ASR-2000 Series #### GRA-439-E Rack Mount Kit (EIA) For : ASR-2000 Series #### GRA-441-J Rack Mount Kit (JIS) #### GRA-441-E Rack Mount Kit (EIA) # **ACCESSORIES** # Haben Sie Fragen? Ihr Distributor hilft Ihnen gerne weiter: Telefon +49(0)8141.3697-0 E-Mail info@plug-in.de Am Sonnenlicht 5 D-82239 Alling bei München WWW.PLUG-IN.DE